1,556 research outputs found

    Evaluation of neutron induced reaction cross sections in the resolved and unresolved resonance region at EC-JRC-IRMM

    Get PDF
    Recent efforts made at the EC-JRC-IRMM to produce evaluated cross section data files for neutron induced reactions are described as well as the methodology applied in both the resolved and unresolved resonance. For the resolved resonance region the paper focuses on a recent evaluation of isotopes present in natural cadmium. For the unresolved resonance region results for gold are presented.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Neutron transmission and capture of 241Am

    Get PDF
    A set of neutron transmission and capture experiments based on the Time Of Flight (TOF) technique, were performed in order to determine the 241Am capture cross section in the energy range from 0.01 eV to 1 keV. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM) served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the americium sample, while a Li-glass detector was used in the transmission setup. Results from the capture and transmission data acquired are consistent with each other, but appear to be inconsistent with the evaluated data files. Resonance parameters have been derived for the data up to the energy of 100 eV.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Neutron capture cross section measurements for 197Au from 3.5 to 84 keV at GELINA

    Get PDF
    Cross section measurements have been performed at the time-of-flight facility GELINA to determine the average capture cross section for 197Au in the energy region between 3.5 keV and 84 keV. Prompt gamma-rays, originating from neutron induced capture events, were detected by two C6D6 liquid scintillators. The sample was placed at about 13 m distance from the neutron source. The total energy detection principle in combination with the pulse height weighting technique was applied. The energy dependence of the neutron flux was measured with a double Frisch-gridded ionization chamber based on the 10B(n,alpha)reaction. The data have been normalized to the well-isolated and saturated 197Au resonance at 4.9 eV. Special care was taken to reduce bias effects due to the weighting function, normalization, dead time and background corrections. The total uncertainty due to normalization, neutron flux and weighting function is 1.0%. An additional uncertainty of 0.5% results from the correction for self-shielding and multiple interaction events. Fluctuations due to resonance structures have been studied by complementary measurements at a 30 m flight path station. The results reported in this work deviate systematically by more than 5% from the cross section that is recommended as a reference for astrophysical applications. They are about 2% lower compared to an evaluation of the 197Au(n,gamma) cross section, which was based on a least squares fit of experimental data available in the literature prior to this work. The average capture cross section as a function of neutron energy has been parameterized in terms of average resonance parameters. Maxwellian average cross sections at different temperatures have been calculated.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Neutron cross-sections for advanced nuclear systems : The n-TOF project at CERN

    Get PDF
    © Owned by the authors, published by EDP Sciences, 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n-TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.Peer reviewedFinal Published versio

    Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF

    Get PDF
    Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated

    238U(n, Îł) reaction cross section measurement with C 6D6 detectors at the n-TOF CERN facility

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,Îł) cross section measurement performed at n-TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction.Peer reviewe

    Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV

    High accuracy 234U(n,f) cross section in the resonance energy region

    Get PDF
    New results are presented of the 234U neutron-induced fission cross section, obtained with high accuracy in the resonance region by means of two methods using the 235U(n,f) as reference. The recent evaluation of the 235U(n,f) obtained with SAMMY by L. C. Leal et al. (these Proceedings), based on previous n-TOF data [1], has been used to calculate the 234U(n,f) cross section through the 234U/235U ratio, being here compared with the results obtained by using the n-TOF neutron flux

    The nucleosynthesis of heavy elements in Stars : The key isotope 25Mg

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedWe have measured the radiative neutron-capture cross section and the total neutron-induced cross section of one of the most important isotopes for the s process, the 25Mg. The measurements have been carried out at the neutron time-of-flight facilities n-TOF at CERN (Switzerland) and GELINA installed at the EC-JRC-IRMM (Belgium). The cross sections as a function of neutron energy have been measured up to approximately 300 keV, covering the energy region of interest to the s process. The data analysis is ongoing and preliminary results show the potential relevance for the s process.Peer reviewe
    • 

    corecore