45 research outputs found

    Short-Term Hydropower Optimization Using A Time-Decomposition Algorithm

    Full text link
    Hydropower operations optimization models select a sequence of releases from one or more reservoirs that maximizes the expected benefit while honoring many social and environmental constraints. A 3-tiered time-decomposition algorithm is adopted to compute optimal sub-daily releases for the Harris Station reservoir in Maine, USA. This involves solving nested optimization models, each with a different planning horizon and time-step, where the longer-term planning models inform the shorter-term models. This allows for rapid optimization of short-term operations, while efficiently considering seasonal objectives and constraints. In the case study presented, 6-hr release decisions in a weekly model are made by iteratively solving weekly, monthly, and annual models using sampling stochastic dynamic programming. A key consideration is how uncertainty is represented in each of the nested models. Uncertainty is inherent in hydropower operations optimization because the future availability of water and future energy prices are unknown at the time a decision is made. In order to ensure efficient operation of the hydropower system, it is often important that such uncertainties be well represented. Reservoir operations are simulated using release decisions from time-decomposition models with different representations of uncertainty. By comparing the operational efficiency of each model, the relative merits of different uncertainty representations are examined. In particular, we consider the value of inflow forecasts to inform the uncertainty model at various planning horizons and how this changes with seasonal hydrology. Summer inflows are generally low, and it is often desirable to operate at full head to maximize generated power per volume released. Still, brief and intense localized rainstorms can cause a spike in reservoir inflow, which can result in spilling. Not surprisingly we found that short-term forecasts are of most importance to summer reservoir performance, and longer-term forecasts contributed little to operational efficiency. In other periods of the year the relative importance of long- and short-term forecasts varies

    Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling

    Get PDF
    Major multi-reservoir cascades represent a primary mechanism for dealing with hydrologic variability and extremes within institutionally complex river basins worldwide. These coordinated management processes fundamentally reshape water balance dynamics. Yet, multi-reservoir coordination processes have been largely ignored in the increasingly sophisticated representations of reservoir operations within large-scale hydrological models. The aim of this paper is twofold, namely (i) to provide evidence that the common modeling practice of parameterizing each reservoir in a cascade independently from the others is a significant approximation and (ii) to demonstrate potential unintended consequences of this independence approximation when simulating the dynamics of hydrological extremes in complex reservoir cascades. We explore these questions using the Water Balance Model, which features detailed representations of the human infrastructure coupled to the natural processes that shape water balance dynamics. It is applied to the Upper Snake River basin in the western US and its heavily regulated multi-reservoir cascade. We employ a time-varying sensitivity analysis that utilizes the method of Morris factor screening to explicitly track how the dominant release rule parameters evolve both along the cascade and in time according to seasonal high- and low-flow events. This enables us to address aim (i) by demonstrating how the progressive and cumulative dominance of upstream releases significantly dampens the ability of downstream reservoir rules\u27 parameters to influence flow conditions. We address aim (ii) by comparing simulation results with observed reservoir operations during critical low-flow and high-flow events in the basin. Our time-varying parameter sensitivity analysis with the method of Morris clarifies how independent single-reservoir parameterizations and their tacit assumption of independence leads to reservoir release behaviors that generate artificial water shortages and flooding, whereas the observed coordinated cascade operations avoided these outcomes for the same events. To further explore the role of (non-)coordination in the large deviations from the observed operations, we use an offline multi-reservoir water balance model in which adding basic coordination mechanisms drawn from the observed emergency operations is sufficient to correct the deficiencies of the independently parameterized reservoir rules from the hydrological model. These results demonstrate the importance of understanding the state–space context in which reservoir releases occur and where operational coordination plays a crucial role in avoiding or mitigating water-related extremes. Understanding how major infrastructure is coordinated and controlled in major river basins is essential for properly assessing future flood and drought hazards in a changing world

    Short-Term Optimization Model With ESP Forecasts For Columbia Hydropower System With Optimized Multi-Turbine Powerhouses

    Full text link
    Hydroelectric generation is the major source of electric energy in the Pacific Northwestern region of the United States, and efficient operation of that system while meeting environmental constraints and reserve capacity demands is an important economic, environmental, and social issue. This paper describes efforts to develop a new stochastic short-term scheduling model (with perhaps a 3-week planning horizon) for the ten major reservoirs operated by the federal Bonneville Power Administration (BPA) on the Columbia and Snake River systems. The analysis incorporates time-delays (up to 24 hours in a model with time steps increasing from 6 hours initially perhaps to 24 hours); non-economic turbine dispatch with operational constraints; and inflow and load uncertainty (reflecting wind generation) through use of Ensemble Streamflow Predictions (ESP) augmented to include load uncertainties (ESLP). Synthetic ESLPs will be generated for the model testing effort. The intent is to evaluate the benefits of alternative representations of uncertainty subject to all of the operational constraints, both physical and those that result from environmental concerns. Large BPA storage projects can include many turbines of different types; for example, Grand Coulee has 27 turbines of 4 different types. To make system optimization faster and more reliable, concave “powerhouse” functions are pre-computed which are as economically efficient as possible given estimated turbine performance characteristics, and operational dispatch and release constraints. Powerhouse generation functions are forced to be concave if such constraints are consistent with the data; in other cases mandated fish-passage constraints result in non-economic turbine dispatch sequences and often limit allowable discharge ranges, both of which complicate the computation of the loading of individual turbines and the optimization of the hydropower system. Pre-computation of powerhouse functions is an effective decomposition technique for this large stochastic nonlinear optimization problem

    Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

    Get PDF
    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14

    MASTREE+: Time-series of plant reproductive effort from six continents.

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≄20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    corecore