458 research outputs found
Texas A&M Beef Cattle Short Course: Program Evaluation
Survey results (n = 3,748) collected over a period of 7 years from the Texas A&M Beef Cattle Short Course (BCSC) were analyzed to evaluate course demographics and the impact of the course on attendees. Results of this survey demonstrate that attendee demographics of the BCSC are representative of beef cattle producers in the United States and that the BCSC is effective at delivering information that positively impacts beef production in Texas. Extension professionals can make use of these findings to tailor future education programs to better serve the needs of beef cattle producers nation-wide
Quantification of calsequestrin 2 (CSQ2) in sheep cardiac muscle and Ca 2+ -binding protein changes in CSQ2 knockout mice
Calsequestrin 2 (CSQ2) is generally regarded as the primary Ca2+-buffering molecule present inside the sarcoplasmic reticulum (SR) in cardiac cells, but findings from CSQ2 knockout experiments raise major questions about its role and necessity. This study determined the absolute amount of CSQ2 present in cardiac ventricular muscle to gauge its likely influence on SR free Ca2+ concentration ([Ca2+]) and maximal Ca2+ capacity. Ventricular tissue from hearts of freshly killed sheep was examined by SDS-PAGE without any fractionation, and CSQ2 was detected by Western blotting; this method avoided the >90% loss of CSQ2 occurring with usual fractionation procedures. Band intensities were compared against those for purified CSQ2 run on the same blots. Fidelity of quantification was verified by demonstrating that CSQ2 added to homogenates was detected with equal efficacy as purified CSQ2 alone. Ventricular tissue from sheep (n = 8) contained 24 ± 2 μmol CSQ2/kg wet wt. Total Ca2+ content of the ventricular tissue, measured by atomic absorption spectroscopy, was 430 ± 20 μmol/kg (with SR Ca2+ likely <250 μmol/kg) and displayed a linear correlation with CSQ2 content, with gradient of ∼10 Ca2+ per CSQ2. The large amount of CSQ2 bestows the SR with a high theoretical maximal Ca2+-binding capacity (∼1 mmol Ca2+/kg ventricular tissue, assuming a maximum of ∼40 Ca2+ per CSQ2) and would keep free [Ca2+] within the SR relatively low, energetically favoring Ca2+ uptake and reducing SR leak. In mice with CSQ2 ablated, histidinerich Ca2+-binding protein was upregulated ∼35% in ventricular tissue, possibly in compensation
Herbage Accumulation, Nutritive Value and Persistence of Mulato II in Florida
Grasses in the Brachiaria genus are the most widely grown forages in tropical America, occupying over 80 Mha (Boddey et al. 2004). Mulato II is apomictic and a vigorous, semi-erect cultivar resulting from 3 generations of crosses including original crosses between ruzigrass and signal-grass (cv. Basilisk, apomictic tetrapliod). According to Peters et al. (2003), Mulato produced 25% more herbage mass than palisadegrass (Brachiaria brizantha) and koroni-viagrass (Brachiaria humidicola) under similar management practices. Although Mulato II shows promise as a forage in tropical regions, herbage accumulation and persistence in subtropical areas is unknown. This publication summarises results of the research with Mulato II conducted in Florida in the last 5 years
Observations of nonlinear internal waves at a persistent coastal upwelling front
We collected high-resolution observations of nonlinear internal waves (NLIWs) at a persistent upwelling front in the shallow coastal environment (~20 m) of northern Monterey Bay, CA. The coastal upwelling front forms between recently upwelled waters and warmer stratified waters that are trapped in the bay (upwelling shadow). The front propagates up and down the coast in the along-shore direction as a buoyant plume front due to modulation by strong diurnal wind forcing. The evolution of the coastal upwelling front, and the subsequent modulation of background environmental conditions, is examined using both individual events and composite day averages. We demonstrate that regional-scale upwelling and local diurnal wind forcing are key components controlling local stratification and the formation of internal wave guides that allow for high-frequency internal wave activity. Finally, we discuss the ability of theoretical models to describe particularly large-amplitude internal waves that exist in the presence of a strong background shear and test a fully nonlinear model (i.e., the Dubreil–Jacotin–Long equation)
Lyapunov Potential Description for Laser Dynamics
We describe the dynamical behavior of both class A and class B lasers in
terms of a Lyapunov potential. For class A lasers we use the potential to
analyze both deterministic and stochastic dynamics. In the stochastic case it
is found that the phase of the electric field drifts with time in the steady
state. For class B lasers, the potential obtained is valid in the absence of
noise. In this case, a general expression relating the period of the relaxation
oscillations to the potential is found. We have included in this expression the
terms corresponding to the gain saturation and the mean value of the
spontaneously emitted power, which were not considered previously. The validity
of this expression is also discussed and a semi-empirical relation giving the
period of the relaxation oscillations far from the stationary state is proposed
and checked against numerical simulations.Comment: 13 pages (including 7 figures) LaTeX file. To appear in Phys Rev.A
(June 1999
Signatures of malaria-associated pathology revealed by high-resolution whole-blood transcriptomics in a rodent model of malaria.
The influence of parasite genetic factors on immune responses and development of severe pathology of malaria is largely unknown. In this study, we performed genome-wide transcriptomic profiling of mouse whole blood during blood-stage infections of two strains of the rodent malaria parasite Plasmodium chabaudi that differ in virulence. We identified several transcriptomic signatures associated with the virulent infection, including signatures for platelet aggregation, stronger and prolonged anemia and lung inflammation. The first two signatures were detected prior to pathology. The anemia signature indicated deregulation of host erythropoiesis, and the lung inflammation signature was linked to increased neutrophil infiltration, more cell death and greater parasite sequestration in the lungs. This comparative whole-blood transcriptomics profiling of virulent and avirulent malaria shows the validity of this approach to inform severity of the infection and provide insight into pathogenic mechanisms
Neutralizing antibodies against the preactive form of respiratory syncytial virus fusion protein offer unique possibilities for clinical intervention
Human respiratory syncytial virus (hRSV) is the most important viral agent of pediatric respiratory infections worldwide. The only specific treatment available today is a humanized monoclonal antibody (Palivizumab) directed against the F glycoprotein, administered prophylactically to children at very high risk of severe hRSV infections. Palivizumab, as most anti-F antibodies so far described, recognizes an epitope that is shared by the two conformations in which hRSV_F can fold, the metastable prefusion form and the highly stable postfusion conformation. We now describe a unique class of antibodies specific for the prefusion form of this protein that account for most of the neutralizing activity of either a rabbit serum raised against a vaccinia virus recombinant expressing hRSV_F or a human Ig preparation (Respigam), which was used for prophylaxis before Palivizumab. These antibodies therefore offer unique possibilities for immune intervention against hRSV, and their production should be assessed in trials of hRSV vaccines
"I am your mother and your father!": In vitro derived gametes and the ethics of solo reproduction
In this paper, we will discuss the prospect of human reproduction achieved with gametes originating from only one person. According to statements by a minority of scientists working on the generation of gametes in vitro, it may become possible to create eggs from men’s non-reproductive cells and sperm from women’s. This would enable, at least in principle, the creation of an embryo from cells obtained from only one individual: ‘solo reproduction’. We will consider what might motivate people to reproduce in this way, and the implications that solo reproduction might have for ethics and policy. We suggest that such an innovation is unlikely to revolutionise reproduction and parenting. Indeed, in some respects it is less revolutionary than in vitro fertilisation as a whole. Furthermore, we show that solo reproduction with in vitro created gametes is not necessarily any more ethically problematic than gamete donation—and probably less so. Where appropriate, we draw parallels with the debate surrounding reproductive cloning. We note that solo reproduction may serve to perpetuate reductive geneticised accounts of reproduction, and that this may indeed be ethically questionable. However, in this it is not unique among other technologies of assisted reproduction, many of which focus on genetic transmission. It is for this reason that a ban on solo reproduction might be inconsistent with continuing to permit other kinds of reproduction that also bear the potential to strengthen attachment to a geneticised account of reproduction. Our claim is that there are at least as good reasons to pursue research towards enabling solo reproduction, and eventually to introduce solo reproduction as an option for fertility treatment, as there are to do so for other infertility related purposes
Generic model of an atom laser
We present a generic model of an atom laser by including a pump and loss term
in the Gross-Pitaevskii equation. We show that there exists a threshold for the
pump above which the mean matter field assumes a non-vanishing value in
steady-state. We study the transient regime of this atom laser and find
oscillations around the stationary solution even in the presence of a loss
term. These oscillations are damped away when we introduce a position dependent
loss term. For this case we present a modified Thomas-Fermi solution that takes
into account the pump and loss. Our generic model of an atom laser is analogous
to the semi-classical theory of the laser.Comment: 15 pages, including 5 figures, submitted to Phys. Rev. A, revised
manuscript, file also available at
http://www.physik.uni-ulm.de/quan/users/kne
Star formation in the early universe: beyond the tip of the iceberg
We present late-time Hubble Space Telescope imaging of the fields of six
Swift GRBs lying at 5.0<z<9.5. Our data includes very deep observations of the
field of the most distant spectroscopically confirmed burst, GRB 090423, at
z=8.2. Using the precise positions afforded by their afterglows we can place
stringent limits on the luminosities of their host galaxies. In one case, that
of GRB 060522 at z=5.11, there is a marginal excess of flux close to the GRB
position which may be a detection of a host at a magnitude J(AB)=28.5. None of
the others are significantly detected meaning that all the hosts lie below
L\star at their respective redshifts, with star formation rates SFR<4Mo/yr in
all cases. Indeed, stacking the five fields with WFC3-IR data we conclude a
mean SFR<0.17Mo/yr per galaxy. These results support the proposition that the
bulk of star formation, and hence integrated UV luminosity, at high redshifts
arises in galaxies below the detection limits of deep-field observations.
Making the reasonable assumption that GRB rate is proportional to UV luminosity
at early times allows us to compare our limits with expectations based on
galaxy luminosity functions derived from the Hubble Ultra-Deep Field (HUDF) and
other deep fields. We infer that a luminosity function which is evolving
rapidly towards steeper faint-end slope (alpha) and decreasing characteristic
luminosity (L\star), as suggested by some other studies, is consistent with our
observations, whereas a non-evolving LF shape is ruled out at >90% confidence.
Although it is not yet possible to make stronger statements, in the future,
with larger samples and a fuller understanding of the conditions required for
GRB production, studies like this hold great potential for probing the nature
of star formation, the shape of the galaxy luminosity function, and the supply
of ionizing photons in the early universe.Comment: ApJ in press. 14 pages, 6 figures. (small updates from version 1
- …