53 research outputs found

    Differences in Self-Rated Versus Parent Proxy–Rated Vision-Related Quality of Life and Functional Vision of Visually Impaired Children

    Get PDF
    PURPOSE: To investigate disagreement between children's self-reported vision-related quality of life (VQoL) and functional vision (FV), and their parents' proxy-reports. DESIGN: Cross-sectional study. METHODS: 152 children aged 7-18 years with visual impairment (VI) (defined by the World Health Organization), and their parents, were recruited from 22 National Health Service (NHS) Ophthalmology Departments in the United Kingdom. Age-appropriate versions of 2 vision-specific instruments capturing VQoL and FV, were administered to children alongside modified versions for completion by parents on behalf of their child (i.e. parent proxy-report). Disagreement between self- and parent proxy-report was examined using the Bland-Altman (BA) method, and a threshold of disagreement based on 0.5 standard deviation. Disagreement was analysed according to participants' age, gender and clinical characteristics, using logistic regression analyses. RESULTS: Children rated themselves as having better outcomes than their parents did, although parents both under- and over-estimated their child's VQoL (mean score difference = 7.7). With each year of increasing age, there was a 1.18 (1.04 - 1.35) higher odds of children self-rating their VQoL better than their parents (p = 0.013). Although parents consistently under-estimated their child's FV (mean score difference = -4.7), no characteristics were significantly associated with differences in disagreement. CONCLUSIONS: Disagreement between child self-report on the impact of VI, and their parents' proxy-reports varies by age. This implies that self-report from children must remain the gold standard. Where self-reporting is not possible, parent proxy-reports may provide useful insights, but must be interpreted with caution

    Genome-wide SNP identification by high-throughput sequencing and selective mapping allows sequence assembly positioning using a framework genetic linkage map

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Determining the position and order of contigs and scaffolds from a genome assembly within an organism's genome remains a technical challenge in a majority of sequencing projects. In order to exploit contemporary technologies for DNA sequencing, we developed a strategy for whole genome single nucleotide polymorphism sequencing allowing the positioning of sequence contigs onto a linkage map using the bin mapping method.</p> <p>Results</p> <p>The strategy was tested on a draft genome of the fungal pathogen <it>Venturia inaequalis</it>, the causal agent of apple scab, and further validated using sequence contigs derived from the diploid plant genome <it>Fragaria vesca</it>. Using our novel method we were able to anchor 70% and 92% of sequences assemblies for <it>V. inaequalis </it>and <it>F. vesca</it>, respectively, to genetic linkage maps.</p> <p>Conclusions</p> <p>We demonstrated the utility of this approach by accurately determining the bin map positions of the majority of the large sequence contigs from each genome sequence and validated our method by mapping single sequence repeat markers derived from sequence contigs on a full mapping population.</p

    Recombinational Landscape and Population Genomics of Caenorhabditis elegans

    Get PDF
    Recombination rate and linkage disequilibrium, the latter a function of population genomic processes, are the critical parameters for mapping by linkage and association, and their patterns in Caenorhabditis elegans are poorly understood. We performed high-density SNP genotyping on a large panel of recombinant inbred advanced intercross lines (RIAILs) of C. elegans to characterize the landscape of recombination and, on a panel of wild strains, to characterize population genomic patterns. We confirmed that C. elegans autosomes exhibit discrete domains of nearly constant recombination rate, and we show, for the first time, that the pattern holds for the X chromosome as well. The terminal domains of each chromosome, spanning about 7% of the genome, exhibit effectively no recombination. The RIAILs exhibit a 5.3-fold expansion of the genetic map. With median marker spacing of 61 kb, they are a powerful resource for mapping quantitative trait loci in C. elegans. Among 125 wild isolates, we identified only 41 distinct haplotypes. The patterns of genotypic similarity suggest that some presumed wild strains are laboratory contaminants. The Hawaiian strain, CB4856, exhibits genetic isolation from the remainder of the global population, whose members exhibit ample evidence of intercrossing and recombining. The population effective recombination rate, estimated from the pattern of linkage disequilibrium, is correlated with the estimated meiotic recombination rate, but its magnitude implies that the effective rate of outcrossing is extremely low, corroborating reports of selection against recombinant genotypes. Despite the low population, effective recombination rate and extensive linkage disequilibrium among chromosomes, which are techniques that account for background levels of genomic similarity, permit association mapping in wild C. elegans strains

    A genome-wide genetic map of NB-LRR disease resistance loci in potato

    Get PDF
    Like all plants, potato has evolved a surveillance system consisting of a large array of genes encoding for immune receptors that confer resistance to pathogens and pests. The majority of these so-called resistance or R proteins belong to the super-family that harbour a nucleotide binding and a leucine-rich-repeat domain (NB-LRR). Here, sequence information of the conserved NB domain was used to investigate the genome-wide genetic distribution of the NB-LRR resistance gene loci in potato. We analysed the sequences of 288 unique BAC clones selected using filter hybridisation screening of a BAC library of the diploid potato clone RH89-039-16 (S. tuberosum ssp. tuberosum) and a physical map of this BAC library. This resulted in the identification of 738 partial and full-length NB-LRR sequences. Based on homology of these sequences with known resistance genes, 280 and 448 sequences were classified as TIR-NB-LRR (TNL) and CC-NB-LRR (CNL) sequences, respectively. Genetic mapping revealed the presence of 15 TNL and 32 CNL loci. Thirty-six are novel, while three TNL loci and eight CNL loci are syntenic with previously identified functional resistance genes. The genetic map was complemented with 68 universal CAPS markers and 82 disease resistance trait loci described in literature, providing an excellent template for genetic studies and applied research in potato

    Insights into the Musa genome: Syntenic relationships to rice and between Musa species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Musa </it>species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning <it>Musa </it>genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of <it>Musa </it>genomic sequence have been conducted. This study compares genomic sequence in two <it>Musa </it>species with orthologous regions in the rice genome.</p> <p>Results</p> <p>We produced 1.4 Mb of <it>Musa </it>sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for <it>Musa</it>-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the <it>Musa </it>lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from <it>M. acuminata </it>and <it>M. balbisiana </it>revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya.</p> <p>Conclusion</p> <p>These results point to the utility of comparative analyses between distantly-related monocot species such as rice and <it>Musa </it>for improving our understanding of monocot genome evolution. Sequencing the genome of <it>M. acuminata </it>would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated <it>Musa </it>polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.</p

    A randomised controlled trial to assess the clinical effectiveness and cost-effectiveness of alternative treatments to Inhibit VEGF in Age-related choroidal Neovascularisation (IVAN)

    Full text link

    Renouveler la vision de la mondialisation avec les religions

    No full text
    Points de vue croisés entre christianisme, bouddhisme et islam sur la mondialisation et le rôle actuel et à venir des religion
    corecore