3,686 research outputs found
Effective Field Theory and Finite Density Systems
This review gives an overview of effective field theory (EFT) as applied at
finite density, with a focus on nuclear many-body systems. Uniform systems with
short-range interactions illustrate the ingredients and virtues of many-body
EFT and then the varied frontiers of EFT for finite nuclei and nuclear matter
are surveyed.Comment: 27 pages, 5 figure
Detecting the direction of a signal on high-dimensional spheres: Non-null and Le Cam optimality results
We consider one of the most important problems in directional statistics,
namely the problem of testing the null hypothesis that the spike direction
of a Fisher-von Mises-Langevin distribution on the -dimensional
unit hypersphere is equal to a given direction . After a reduction
through invariance arguments, we derive local asymptotic normality (LAN)
results in a general high-dimensional framework where the dimension goes
to infinity at an arbitrary rate with the sample size , and where the
concentration behaves in a completely free way with , which
offers a spectrum of problems ranging from arbitrarily easy to arbitrarily
challenging ones. We identify various asymptotic regimes, depending on the
convergence/divergence properties of , that yield different
contiguity rates and different limiting experiments. In each regime, we derive
Le Cam optimal tests under specified and we compute, from the Le Cam
third lemma, asymptotic powers of the classical Watson test under contiguous
alternatives. We further establish LAN results with respect to both spike
direction and concentration, which allows us to discuss optimality also under
unspecified . To investigate the non-null behavior of the Watson test
outside the parametric framework above, we derive its local asymptotic powers
through martingale CLTs in the broader, semiparametric, model of rotationally
symmetric distributions. A Monte Carlo study shows that the finite-sample
behaviors of the various tests remarkably agree with our asymptotic results.Comment: 47 pages, 4 figure
Lorentz Violation in Warped Extra Dimensions
Higher dimensional theories which address some of the problematic issues of
the Standard Model(SM) naturally involve some form of -dimensional
Lorentz invariance violation (LIV). In such models the fundamental physics
which leads to, e.g., field localization, orbifolding, the existence of brane
terms and the compactification process all can introduce LIV in the higher
dimensional theory while still preserving 4-d Lorentz invariance. In this
paper, attempting to capture some of this physics, we extend our previous
analysis of LIV in 5-d UED-type models to those with 5-d warped extra
dimensions. To be specific, we employ the 5-d analog of the SM Extension of
Kostelecky et. al. ~which incorporates a complete set of operators arising from
spontaneous LIV. We show that while the response of the bulk scalar, fermion
and gauge fields to the addition of LIV operators in warped models is
qualitatively similar to what happens in the flat 5-d UED case, the gravity
sector of these models reacts very differently than in flat space.
Specifically, we show that LIV in this warped case leads to a non-zero bulk
mass for the 5-d graviton and so the would-be zero mode, which we identify as
the usual 4-d graviton, must necessarily become massive. The origin of this
mass term is the simultaneous existence of the constant non-zero
curvature and the loss of general co-ordinate invariance via LIV in the 5-d
theory. Thus warped 5-d models with LIV in the gravity sector are not
phenomenologically viable.Comment: 14 pages, 4 figs; discussion added, algebra repaire
Early star-forming galaxies and the reionization of the Universe
Star forming galaxies represent a valuable tracer of cosmic history. Recent
observational progress with Hubble Space Telescope has led to the discovery and
study of the earliest-known galaxies corresponding to a period when the
Universe was only ~800 million years old. Intense ultraviolet radiation from
these early galaxies probably induced a major event in cosmic history: the
reionization of intergalactic hydrogen. New techniques are being developed to
understand the properties of these most distant galaxies and determine their
influence on the evolution of the universe.Comment: Review article appearing in Nature. This posting reflects a submitted
version of the review formatted by the authors, in accordance with Nature
publication policies. For the official, published version of the review,
please see http://www.nature.com/nature/archive/index.htm
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors
Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field
We present transport measurements on a strongly coupled graphene quantum dot
in a perpendicular magnetic field. The device consists of an etched
single-layer graphene flake with two narrow constrictions separating a 140 nm
diameter island from source and drain graphene contacts. Lateral graphene gates
are used to electrostatically tune the device. Measurements of Coulomb
resonances, including constriction resonances and Coulomb diamonds prove the
functionality of the graphene quantum dot with a charging energy of around 4.5
meV. We show the evolution of Coulomb resonances as a function of perpendicular
magnetic field, which provides indications of the formation of the graphene
specific 0th Landau level. Finally, we demonstrate that the complex pattern
superimposing the quantum dot energy spectra is due to the formation of
additional localized states with increasing magnetic field.Comment: 6 pages, 4 figure
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- …
