598 research outputs found

    No time for change? Impact of contextual factors on the effect of training primary care healthcare workers in Kyrgyzstan and Vietnam on how to manage asthma in children - A FRESH AIR implementation study.

    Get PDF
    BACKGROUND: Training is a common and cost-effective way of trying to improve quality of care in low- and middle-income countries but studies of contextual factors for the successful translation of increased knowledge into clinical change are lacking, especially in primary care. The purpose of this study was to assess the impact of contextual factors on the effect of training rural healthcare workers in Kyrgyzstan and Vietnam on their knowledge and clinical performance in managing pediatric patients with respiratory symptoms. METHODS: Primary care health workers in Kyrgyzstan and Vietnam underwent a one-day training session on asthma in children under five. The effect of training was measured on knowledge and clinical performance using a validated questionnaire, and by direct clinical observations. RESULTS: Eighty-one healthcare workers participated in the training. Their knowledge increased by 1.1 Cohen's d (CI: 0.7 to 1.4) in Kyrgyzstan where baseline performance was lower and 1.5 Cohen's d (CI: 0.5 to 2.5) in Vietnam. Consultations were performed by different types of health care workers in Kyrgyzstan and there was a 79.1% (CI 73.9 to 84.3%) increase in consultations where at least one core symptom of respiratory illness was asked. Only medical doctors participated in Vietnam, where the increase was 25.0% (CI 15.1 to 34.9%). Clinical examination improved significantly after training in Kyrgyzstan. In Vietnam, the number of actions performed generally declined. The most pronounced difference in contextual factors was consultation time, which was median 15 min in Kyrgyzstan and 2 min in Vietnam. DISCUSSION AND CONCLUSION: The effects on knowledge of training primary care health workers in lower middle-income countries in diagnosis and management of asthma in children under five only translated into changes in clinical performance where consultation time allowed for changes to clinical practice, emphasizing the importance of considering contextual factors in order to succeed in behavioral change after training

    Impact of Temporary Nitrogen Deprivation on Tomato Leaf Phenolics

    Get PDF
    Reducing the use of pesticides represents a major challenge of modern agriculture. Plants synthesize secondary metabolites such as polyphenols that participate in the resistance to parasites. The aim of this study was to test: (1) the impact of nitrogen deficiency on tomato (Solanum lycopersicum) leaf composition and more particularly on two phenolic molecules (chlorogenic acid and rutin) as well as on the general plant biomass; and (2) whether this effect continued after a return to normal nitrogen nutrition. Our results showed that plants deprived of nitrogen for 10 or 19 days contained higher levels of chlorogenic acid and rutin than control plants. In addition, this difference persisted when the plants were once again cultivated on a nitrogen-rich medium. These findings offer interesting perspectives on the use of a short period of deprivation to modulate the levels of compounds of interest in a plant

    High content live cell imaging for the discovery of new antimalarial marine natural products

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, <it>Plasmodium falciparum</it>.</p> <p>Methods</p> <p>A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown <it>in vitro </it>in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope.</p> <p>Results</p> <p>Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts.</p> <p>Conclusion</p> <p>Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.</p

    The fate of redundant cues: Further analysis of the redundancy effect

    Get PDF
    Pearce, Dopson, Haselgrove, and Esber (Journal of Experimental Psychology: Animal Behavior Processes, 38, 167–179, 2012) conducted a series of experiments with rats and pigeons in which the conditioned responding elicited by two types of redundant cue was compared. One of these redundant cues was a blocked cue X from A+ AX+ training, whereas the other was cue Y from a simple discrimination BY+ CY–. Greater conditioned responding was elicited by X than by Y; we refer to this difference as the redundancy effect. To test an explanation of this effect in terms of comparator theory (Denniston, Savastano, & Miller, 2001), a single group of rats in Experiment 1 received training of the form A+ AX+ BY+ CY–, followed by an A– Y+ discrimination. Responding to the individual cues was tested both before and after the latter discrimination. In addition to a replication of the redundancy effect during the earlier test, we observed stronger responding to B than to X, both during the earlier test and, in contradiction of the theory, after the A– Y+ discrimination. In Experiment 2, a blocking group received A+ AX+, a continuous group received AX+ BX–, and a partial group received AX± BX± training. Subsequent tests with X again demonstrated the redundancy effect, but also revealed a stronger response in the partial than in the continuous group. This pattern of results is difficult to explain with error-correction theories that assume that stimuli compete for associative strength during conditioning. We suggest, instead, that the influence of a redundant cue is determined by its relationship with the event with which it is paired, and by the attention it is paid

    Nutrition, diet and immunosenescence

    Get PDF
    Ageing is characterized by immunosenescence and the progressive decline in immunity in association with an increased frequency of infections and chronic disease. This complex process affects both the innate and adaptive immune systems with a progressive decline in most immune cell populations and defects in activation resulting in loss of function. Although host genetics and environmental factors, such as stress, exercise and diet can impact on the onset or course of immunosenescence, the mechanisms involved are largely unknown. This review focusses on identifying the most significant aspects of immunosenescence and on the evidence that nutritional intervention might delay this process, and consequently improve the quality of life of the elderly

    Effects of nitrogen and potassium fertilization on the susceptibility of tomatoes to post-harvest proliferation of Salmonella enterica

    Get PDF
    Fresh fruits and vegetables are increasingly recognized as vehicles of salmonellosis. Pre- and post-harvest environmental conditions, and physiological, and genetic factors are thought to contribute to the ability of human pathogens to persist in the production environment, attach to, colonize and proliferate in and on raw produce. How field production conditions affect the post-harvest food safety outcomes is not entirely understood. This study tested how varying nitrogen and potassium fertilization levels affected the "susceptibility" of tomatoes to Salmonella infections following the harvest of fruits. Two tomato varieties grown over three seasons under high, medium, and low levels of nitrogen and potassium fertilization in two locations were inoculated with seven strains of Salmonella. Even though the main effects of nitrogen and potassium fertilization on the susceptibility of tomatoes to infections with Salmonella enterica were not statistically significant overall, differences in nitrogen concentrations in plant tissues correlated with the susceptibility of partially ripe tomatoes (cv. Solar Fire) to Salmonella. Tomato maturity and the season in which tomatoes were produced had the strongest effect on the ability of Salmonella to multiply in tomatoes. Tomato phenolics, accumulation of which is known to correlate with rates of the N fertilization, did not inhibit growth of Salmonella in vitro

    Biomaterial based modulation of macrophage polarization: a review and suggested design principles

    Get PDF
    Macrophages have long been known for their phagocytic capabilities and immune defence; however, their role in healing is being increasingly recognized in recent years due to their ability to polarize into pro-inflammatory and anti-inflammatory phenotypes. Historically, biomaterials were designed to be inert to minimize the host response. More recently, the emergence of tissue engineering and regenerative medicine has led to the design of biomaterials that interact with the host through tailored mechanical, chemical and temporal characteristics. Due to such advances in biomaterial functionality and an improved understanding of macrophage responses to implanted materials, it is now possible to identify biomaterial design characteristics that dictate the host response and contribute to successful tissue integration. Herein, we begin by briefly reviewing macrophage cell origin and the key cytokine/chemokine markers of macrophage polarization and then describe which responses are favorable for both replacement and regenerative biomaterials. The body of the review focuses on macrophage polarization in response to inherent cues directly provided by biomaterials and the consequent cuesthat result from events related to biomaterial implantation. To conclude, a section on potential design principles for both replacement and regenerative biomaterials is presented. An in depth understanding of biomaterial cues to selectively polarize macrophages may prove beneficial in the design of a new generation of ‘immuno-informed’ biomaterials that can positively interact with the immune system to dictate a favorable macrophage response following implantation
    corecore