1,755 research outputs found

    Hybrid Meson Decay Phenomenology

    Get PDF
    The phenomenology of a newly developed model of hybrid meson decay is developed. The decay mechanism is based on the heavy quark expansion of QCD and the strong coupling flux tube picture of nonperturbative glue. A comprehensive list of partial decay widths of a wide variety of light, ssˉs\bar s, ccˉc\bar c, and bbˉb \bar b hybrid mesons is presented. Results which appear approximately universal are highlighted along with those which distinguish different hybrid decay models. Finally, we examine several interesting hybrid candidates in detail.Comment: 37 pages, 2 figures, 6 tables, Revte

    The XMM large scale structure survey: optical vs. X-ray classifications of active galactic nuclei and the unified scheme

    Full text link
    Our goal is to characterize AGN populations by comparing their X-ray and optical classifications. We present a sample of 99 spectroscopically identified X-ray point sources in the XMM-LSS survey which are significantly detected in the [2-10] keV band, and with more than 80 counts. We performed an X-ray spectral analysis for all of these 99 X-ray sources. Introducing the fourfold point correlation coefficient, we find only a mild correlation between the X-ray and the optical classifications, as up to 30% of the sources have differing X-ray and optical classifications: on one hand, 10% of the type 1 sources present broad emission lines in their optical spectra and strong absorption in the X-rays. These objects are highly luminous AGN lying at high redshift and thus dilution effects are totally ruled out, their discrepant nature being an intrinsic property. Their X-ray luminosities and redshifts distributions are consistent with those of the unabsorbed X-ray sources with broad emission lines. On the other hand, 25/32 are moderate luminosity AGN, which are both unabsorbed in the X-rays and only present narrow emission lines in their optical spectra. The majority of them have an optical spectrum which is representative of the host galaxy. We finally infer that dilution of the AGN by the host galaxy seems to account for their nature. 5/25 have been defined as Seyfert 2. In conclusion, most of these 32 discrepant cases can be accounted for by the standard AGN unified scheme, as its predictions are not met for only 12% of the 99 X-ray sources. ABRIDGEDComment: 25 pages, 19 figures, Accepted for publication in A&

    AlbaTraDIS:Comparative analysis of large datasets from parallel transposon mutagenesis experiments

    Get PDF
    Bacteria need to survive in a wide range of environments. Currently, there is an incomplete understanding of the genetic basis for mechanisms underpinning survival in stressful conditions, such as the presence of anti-microbials. Transposon directed insertion-site sequencing (TraDIS) is a powerful tool to identify genes and networks which are involved in survival and fitness under a given condition by simultaneously assaying the fitness of millions of mutants, thereby relating genotype to phenotype and contributing to an understanding of bacterial cell biology. A recent refinement of this approach allows the roles of essential genes in conditional stress survival to be inferred by altering their expression. These advancements combined with the rapidly falling costs of sequencing now allows comparisons between multiple experiments to identify commonalities in stress responses to different conditions. This capacity however poses a new challenge for analysis of multiple data sets in conjunction. To address this analysis need, we have developed 'AlbaTraDIS'; a software application for rapid large-scale comparative analysis of TraDIS experiments that predicts the impact of transposon insertions on nearby genes. AlbaTraDIS can identify genes which are up or down regulated, or inactivated, between multiple conditions, producing a filtered list of genes for further experimental validation as well as several accompanying data visualisations. We demonstrate the utility of our new approach by applying it to identify genes used by Escherichia coli to survive in a wide range of different concentrations of the biocide Triclosan. AlbaTraDIS identified all well characterised Triclosan resistance genes, including the primary target, fabI. A number of new loci were also implicated in Triclosan resistance and the predicted phenotypes for a selection of these were validated experimentally with results being consistent with predictions. AlbaTraDIS provides a simple and rapid method to analyse multiple transposon mutagenesis data sets allowing this technology to be used at large scale. To our knowledge this is the only tool currently available that can perform these tasks. AlbaTraDIS is written in Python 3 and is available under the open source licence GNU GPL 3 from https://github.com/quadram-institute-bioscience/albatradis

    The far-infrared/radio correlation and radio spectral index of galaxies in the SFR-M* plane up to z 2

    Get PDF
    [Abridged] We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate-stellar masse (i.e. SFR-M*) plane up to z 2. We start from a M*-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR-M* plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR-M*-z bin. The infrared luminosities of our SFR-M*-z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with Herschel. Their radio luminosities and radio spectral indices (i.e. alpha, where Snu nu^-alpha) are estimated using their stacked 1.4GHz and 610MHz flux densities from the VLA and GMRT, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields -GOODS-N/S, ECDFS, and COSMOS- covering a sky area of 2deg^2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M*>10^10Msun and 0<z<2.3. We find that alpha^1.4GHz_610MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR-M* plane (i.e. Delta_log(SSFR)_MS=log[SSFR(galaxy)/SSFR_MS(M*,z)]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that qFIR displays a moderate but statistically significant redshift evolution as qFIR(z)=(2.35+/-0.08)*(1+z)^(-0.12+/-0.04), consistent with some previous literature. Finally, we find no significant correlation between qFIR and Delta_log(SSFR)_MS, though a weak positive trend, as observed in one of our redshift bins, cannot be firmly ruled out using our dataset.Comment: Accepted for publication in A&A; 18 pages, 10 figure

    Photo-- and Electroproduction of JPC=1−+J^{PC}=1^{-+} exotics

    Get PDF
    We estimate the kinematic dependence of the exclusive photo-- and electroproduction of JPC=1−+J^{PC}=1^{-+} exotic mesons due to π\pi exchange. We show that the kinematic dependence is largely independent of the exotic meson form factor, which is explicitly derived for a 1−+1^{-+} isovector hybrid meson in the flux-tube model of Isgur and Paton. The relevance to experiments currently planned at Jefferson Lab is indicated.Comment: 15 pages, latex, epsf, 8 postscript figure

    Polycyclic aromatic hydrocarbon processing in interstellar shocks

    Full text link
    Context: PAHs appear to be an ubiquitous interstellar dust component but the effects of shocks waves upon them have never been fully investigated. Aims: To study the effects of energetic (~0.01-1 keV) ion (H, He and C) and electron collisions on PAHs in interstellar shock waves.Methods: We calculate the ion-PAH and electron-PAH nuclear and electronic interactions, above the threshold for carbon atom loss from a PAH, in 50-200 km/s shock waves in the warm intercloud medium. Results: Interstellar PAHs (Nc = 50) do not survive in shocks with velocities greater than 100 km/s and larger PAHs (Nc = 200) are destroyed for shocks with velocities greater/equal to 125 km/s. For shocks in the ~75 - 100 km/s range, where destruction is not complete, the PAH structure is likely to be severely denatured by the loss of an important fraction (20-40%) of the carbon atoms. We derive typical PAH lifetimes of the order of a few x10^8 yr for the Galaxy. These results are robust and independent of the uncertainties in some key parameters that have yet to be well-determined experimentally. Conclusions: The observation of PAH emission in shock regions implies that that emission either arises outside the shocked region or that those regions entrain denser clumps that, unless they are completely ablated and eroded in the shocked gas, allow dust and PAHs to survive in extreme environments.Comment: 19 pages, 11 figures, 3 tables, typos corrected and PAH acronym in the title substituted with full name to match version published in Astronomy and Astrophysic

    Polycyclic aromatic hydrocarbon processing in a hot gas

    Full text link
    Context: PAHs are thought to be a ubiquitous and important dust component of the interstellar medium. However, the effects of their immersion in a hot (post-shock) gas have never before been fully investigated. Aims: We study the effects of energetic ion and electron collisions on PAHs in the hot post-shock gas behind interstellar shock waves. Methods: We calculate the ion-PAH and electron-PAH nuclear and electronic interactions, above the carbon atom loss threshold, in H II regions and in the hot post-shock gas, for temperatures ranging from 10^3 to 10^8 K. Results: PAH destruction is dominated by He collisions at low temperatures (T < 3x10^4 K), and by electron collisions at higher temperatures. Smaller PAHs are destroyed faster for T < 10^6 K, but the destruction rates are roughly the same for all PAHs at higher temperatures. The PAH lifetime in a tenuous hot gas (n_H ~ 0.01 cm^-3, T ~ 10^7 K), typical of the coronal gas in galactic outflows, is found to be about thousand years, orders of magnitude shorter than the typical lifetime of such objects. Conclusions: In a hot gas, PAHs are principally destroyed by electron collisions and not by the absorption of X-ray photons from the hot gas. The resulting erosion of PAHs occurs via C_2 loss from the periphery of the molecule, thus preserving the aromatic structure. The observation of PAH emission from a million degree, or more, gas is only possible if the emitting PAHs are ablated from dense, entrained clumps that have not yet been exposed to the full effect of the hot gas.Comment: 16 pages, 11 figures, 3 tables, typos corrected and PAH acronym in the title substituted with full name to match version published in Astronomy and Astrophysic

    Panchromatic spectral energy distributions of Herschel sources

    Get PDF
    (abridged) Far-infrared Herschel photometry from the PEP and HerMES programs is combined with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields. Based on this rich dataset, we reproduce the restframe UV to FIR ten-colors distribution of galaxies using a superposition of multi-variate Gaussian modes. The median SED of each mode is then fitted with a modified version of the MAGPHYS code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an AGN. The defined Gaussian grouping is also used to identify rare sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z~1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eight other popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 micron detected sources in PEP GOODS fields. AGN appear to be distributed in the stellar mass (M*) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the "main sequence". The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the "off-sequence" region of the M*-SFR-z space.Comment: Accepted for publication in A&A. Some figures are presented in low resolution. The new galaxy templates are available for download at the address http://www.mpe.mpg.de/ir/Research/PEP/uvfir_temp
    • 

    corecore