312 research outputs found

    Direct sequencing of hepatitis A virus strains isolated during an epidemic in France

    Get PDF
    Direct sequencing of PCR products was used to study the VP1 region of the hepatitis A virus (HAV) genome (position 2199 to 2356) of nine strains isolated from human stools collected during a hepatitis A epidemic (western France, 1992), three strains from environmental samples (1990, 1991, and 1992), and two HAV cell culture isolates (the French strain CF53/Lyon and strain CLF). These viruses differed from CF53/Lyon (genotype I) by between 1 and 10.3%, and results indicated the existence of two groups of strains belonging to two different subgenotypes (IA and IB). With this sequencing technique it was possible to monitor the epidemiology of HAV and study its relations

    Distinct Roles of Endothelial and Adipocyte Caveolin-1 in Macrophage Infiltration and Adipose Tissue Metabolic Activity

    Get PDF
    OBJECTIVE: Defective caveolin-1 expression is now recognized as a cause of lipoatrophic diabetes in patients, due to primary caveolin gene mutations or secondary caveolin deficiency caused by PTRF/cavin gene defects. The goal of this study was to establish the relative contribution of endothelial cells and adipocytes, both highly expressing caveolin-1 to the lipoatrophic phenotype of mice with global caveolin-1 gene invalidation (Cav1-KO). RESEARCH DESIGN AND METHODS: We compared adipose tissue development and metabolic phenotype of wild-type (WT), lipoatrophic Cav1-KO, and a murine model with specific rescue of caveolin-1 expression in endothelial cells (caveolin-1-reconstituted [Cav1-RC]). RESULTS: Defective adipose tissue development, reduced adipocyte size, and global alteration in adipose tissue gene expression that characterize lipoatrophic caveolin-1 null mice were still observed in Cav1-RC, indicating a prominent role of adipocyte-derived caveolin in lipoatrophy. We also observed that Cav1-KO adipose tissue contained an increased proportion of infiltrated macrophages compared with control mice, mostly with an alternate activation M2 phenotype. In contrast with defective lipid storage and lipoatrophy, macrophage infiltration was normalized in Cav1-RC mice, pointing to caveolin-1-dependent endothelium permeability as the causing factor for adipose tissue macrophage infiltration in this model. CONCLUSIONS: This is the first report of a specific role for adipocyte caveolin expression in lipid storage. Our study also shows that endothelium caveolin critically participates in the control of macrophage extravasation from the blood into adipose tissue, therefore establishing distinct roles depending on topology of caveolin expression in different cell types of adipose tissue

    An emerging role of mTOR in lipid biosynthesis

    Get PDF
    Lipid biosynthesis is essential for the maintenance of cellular homeostasis. The lipids produced by cells (glycerolipids, fatty acids, phospholipids, cholesterol, and sphingolipids) are used as an energy source/reserve, as building blocks for membrane biosynthesis, as precursor molecules for the synthesis of various cellular products, and as signaling molecules. Defects in lipid synthesis or processing contribute to the development of many diseases, including obesity, insulin resistance, type 2 diabetes, non-alcoholic fatty liver disease, and cancer. Studies published over the last few years have shown that the target of rapamycin (TOR), a conserved serine/threonine kinase with an important role in regulating cell growth, controls lipid biosynthesis through various mechanisms. Here, we review these findings and briefly discuss their potential relevance for human health and disease

    A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01

    Get PDF
    Affinity and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are important factors in presentation of peptides to cytotoxic T lymphocytes (CTLs). In silico prediction methods of peptide-MHC binding followed by experimental analysis of peptide-MHC interactions constitute an attractive protocol to select target peptides from the vast pool of viral proteome peptides. We have earlier reported the peptide binding motif of the porcine MHC-I molecules SLA-1*04:01 and SLA-2*04:01, identified by an ELISA affinity-based positional scanning combinatorial peptide library (PSCPL) approach. Here, we report the peptide binding motif of SLA-3*04:01 and combine two prediction methods and analysis of both peptide binding affinity and stability of peptide-MHC complexes to improve rational peptide selection. Using a peptide prediction strategy combining PSCPL binding matrices and in silico prediction algorithms (NetMHCpan), peptide ligands from a repository of 8900 peptides were predicted for binding to SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01 and validated by affinity and stability assays. From the pool of predicted peptides for SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01, a total of 71, 28, and 38 % were binders with affinities below 500 nM, respectively. Comparison of peptide-SLA binding affinity and complex stability showed that peptides of high affinity generally, but not always, produce complexes of high stability. In conclusion, we demonstrate how state-of-the-art prediction and in vitro immunology tools in combination can be used for accurate selection of peptides for MHC class I binding, hence providing an expansion of the field of peptide-MHC analysis also to include pigs as a livestock experimental model.Fil: Pedersen, Lasse Eggers. Technical University of Denmark; DinamarcaFil: Rasmussen, Michael. Universidad de Copenhagen; DinamarcaFil: Harndahl, Mikkel. Universidad de Copenhagen; DinamarcaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas (subsede Chascomús) | Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas (subsede Chascomús); ArgentinaFil: Buus, Søren. Universidad de Copenhagen; DinamarcaFil: Jungersen, Gregers. Technical University of Denmark; Dinamarc

    The path to a better biomarker: Application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice

    Get PDF
    Immune checkpoint inhibitor therapies targeting PD-1/PD-L1 are now the standard of care in oncology across several hematologic and solid tumor types, including triple negative breast cancer (TNBC). Patients with metastatic or locally advanced TNBC with PD-L1 expression on immune cells occupying 651% of tumor area demonstrated survival benefit with the addition of atezolizumab to nab-paclitaxel. However, concerns regarding variability between immunohistochemical PD-L1 assay performance and inter-reader reproducibility have been raised. High tumor-infiltrating lymphocytes (TILs) have also been associated with response to PD-1/PD-L1 inhibitors in patients with breast cancer (BC). TILs can be easily assessed on hematoxylin and eosin\u2013stained slides and have shown reliable inter-reader reproducibility. As an established prognostic factor in early stage TNBC, TILs are soon anticipated to be reported in daily practice in many pathology laboratories worldwide. Because TILs and PD-L1 are parts of an immunological spectrum in BC, we propose the systematic implementation of combined PD-L1 and TIL analyses as a more comprehensive immuno-oncological biomarker for patient selection for PD-1/PD-L1 inhibition-based therapy in patients with BC. Although practical and regulatory considerations differ by jurisdiction, the pathology community has the responsibility to patients to implement assays that lead to optimal patient selection. We propose herewith a risk-management framework that may help mitigate the risks of suboptimal patient selection for immuno-therapeutic approaches in clinical trials and daily practice based on combined TILs/PD-L1 assessment in BC. \ua9 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

    Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis

    Get PDF
    Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests

    The Influence of Bioactive Oxylipins from Marine Diatoms on Invertebrate Reproduction and Development

    Get PDF
    Diatoms are one of the main primary producers in aquatic ecosystems and occupy a vital link in the transfer of photosynthetically-fixed carbon through aquatic food webs. Diatoms produce an array of biologically-active metabolites, many of which have been attributed as a form of chemical defence and may offer potential as candidate marine drugs. Of considerable interest are molecules belonging to the oxylipin family which are broadly disruptive to reproductive and developmental processes. The range of reproductive impacts includes; oocyte maturation; sperm motility; fertilization; embryogenesis and larval competence. Much of the observed bioactivity may be ascribed to disruption of intracellular calcium signalling, induction of cytoskeletal instability and promotion of apoptotic pathways. From an ecological perspective, the primary interest in diatom-oxylipins is in relation to the potential impact on energy flow in planktonic systems whereby the reproductive success of copepods (the main grazers of diatoms) is compromised. Much data exists providing evidence for and against diatom reproductive effects; however detailed knowledge of the physiological and molecular processes involved remains poor. This paper provides a review of the current state of knowledge of the mechanistic impacts of diatom-oxylipins on marine invertebrate reproduction and development
    corecore