2,187 research outputs found

    Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)

    Get PDF
    Background: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. Methods: We have genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach. Results: We found no evidence of association with breast cancer risk for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93–1.04, P=0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89–1.06, P=0.5) mutation carriers. Conclusion: This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out. A Osorio1, R L Milne2, G Pita3, P Peterlongo4,5, T Heikkinen6, J Simard7, G Chenevix-Trench8, A B Spurdle8, J Beesley8, X Chen8, S Healey8, KConFab9, S L Neuhausen10, Y C Ding10, F J Couch11,12, X Wang11, N Lindor13, S Manoukian4, M Barile14, A Viel15, L Tizzoni5,16, C I Szabo17, L Foretova18, M Zikan19, K Claes20, M H Greene21, P Mai21, G Rennert22, F Lejbkowicz22, O Barnett-Griness22, I L Andrulis23,24, H Ozcelik24, N Weerasooriya23, OCGN23, A-M Gerdes25, M Thomassen25, D G Cruger26, M A Caligo27, E Friedman28,29, B Kaufman28,29, Y Laitman28, S Cohen28, T Kontorovich28, R Gershoni-Baruch30, E Dagan31,32, H Jernström33, M S Askmalm34, B Arver35, B Malmer36, SWE-BRCA37, S M Domchek38, K L Nathanson38, J Brunet39, T Ramón y Cajal40, D Yannoukakos41, U Hamann42, HEBON37, F B L Hogervorst43, S Verhoef43, EB Gómez García44,45, J T Wijnen46,47, A van den Ouweland48, EMBRACE37, D F Easton49, S Peock49, M Cook49, C T Oliver49, D Frost49, C Luccarini50, D G Evans51, F Lalloo51, R Eeles52, G Pichert53, J Cook54, S Hodgson55, P J Morrison56, F Douglas57, A K Godwin58, GEMO59,60,61, O M Sinilnikova59,60, L Barjhoux59,60, D Stoppa-Lyonnet61, V Moncoutier61, S Giraud59, C Cassini62,63, L Olivier-Faivre62,63, F Révillion64, J-P Peyrat64, D Muller65, J-P Fricker65, H T Lynch66, E M John67, S Buys68, M Daly69, J L Hopper70, M B Terry71, A Miron72, Y Yassin72, D Goldgar73, Breast Cancer Family Registry37, C F Singer74, D Gschwantler-Kaulich74, G Pfeiler74, A-C Spiess74, Thomas v O Hansen75, O T Johannsson76, T Kirchhoff77, K Offit77, K Kosarin77, M Piedmonte78, G C Rodriguez79, K Wakeley80, J F Boggess81, J Basil82, P E Schwartz83, S V Blank84, A E Toland85, M Montagna86, C Casella87, E N Imyanitov88, A Allavena89, R K Schmutzler90, B Versmold90, C Engel91, A Meindl92, N Ditsch93, N Arnold94, D Niederacher95, H Deißler96, B Fiebig97, R Varon-Mateeva98, D Schaefer99, U G Froster100, T Caldes101, M de la Hoya101, L McGuffog49, A C Antoniou49, H Nevanlinna6, P Radice4,5 and J Benítez1,3 on behalf of CIMB

    Diagenetic Features Analyzed by ChemCam/Curiosity at Pahrump Hills, Gale Crater, Mars

    Get PDF
    Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of : (1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of targets and (2) a Remote Micro Imager (RMI), which provides imaging context for the LIBS. The LIBS/ChemCam performs analysis typically of spot sizes 350-550 micrometers in diameter, up to 7 meters from the rover. Within Gale crater, Curiosity traveled from Bradbury Landing toward the base of Mount Sharp, reaching Pahrump Hills outcrop circa sol 750. This region, as seen from orbit, represents the first exposures of lower Mount Sharp. In this abstract we focus on two types of features present within the Pahrump Hills outcrop: concretion features and light-toned veins

    Optimizing Training for Human-Robot Collaboration in Learning Factories:An Employee-Centered Perspective

    Get PDF
    With the introduction of robots in manufacturing, the imperative of continuous workplace learning emerges as a cornerstone for acquiring new knowledge and skills. While technical competence development plays a crucial role in understanding how the robot works and mastering skills like (re)programming the robot, this is not enough to create effective Human-Robot Collaboration (HRC). Organizational change frameworks emphasize the importance of preparing employees for change by increasing their readiness. However, current training practices frequently overlook this step. By combining different literature streams, we develop three propositions to guide the design of employee-centered HRC training. We propose that, in addition to training technical competencies (e.g., knowledge about robots), incorporating employee-centered components (e.g., fostering employee readiness) and promoting HRC skills (e.g., coordination) are essential for effective HRC training. Further, the implementation of robots in the workplace is a process in which training should be provided to employees throughout the different phases. This challenges current practices in which training is seen as a one-time event. The present paper aims to advance our understanding of HRC training and encourages the integration of technical and employee-centered elements when designing training for HRC. This will help design successful training initiatives and, thereby, support employee adaptation and organizational functioning when introducing robots in the workplace

    Prevention of Hip Fractures: Trade-off between Minor Benefits to Individuals and Large Benefits to the Community.

    Get PDF
    Goeffrey Rose postulated that a population-based measure bringing a small benefit to each individual can yield large benefits to the community. We aimed to test this axiom by quantifying the relationship between change in bone mineral density (BMD) and hip fracture incidence between two prospective cohorts separated by ~10 years. In this prospective population-based Dubbo Osteoporosis Epidemiology Study (DOES), the participants aged 60+ were recruited in two waves: the initial cohort (1311 women, 842 men) in 1989 to 1992 and the second cohort (974 women, 544 men) in 1999 to 2001. The incident hip fracture was radiologically ascertained. Femoral neck BMD was measured biannually. Multivariable-adjusted Cox's proportional hazards models were adjusted for the predefined covariates such as age, BMI, lifestyle factors, falls, and prior fracture. Compared with the initial cohort, the second cohort had a higher femoral neck BMD by ~0.04 g/cm2 in women and 0.03 g/cm2 in men. However, the prevalence of osteoporosis in the second cohort was halved (prevalence ratio 0.51, 95% CI 0.36 to 0.73 in women; 0.45, 0.24 to 0.84 in men), and its hip fracture incidence was significantly reduced (hazard ratio 0.54, 95% CI, 0.38 to 0.78 in women; 0.39, 0.19 to 0.80 in men). Sensitivity analyses indicated that the "effect" was unlikely due to unmeasured confounders. These findings suggest that a population-wide strategy aimed at enhancing BMD across the entire population could lead to a substantial decrease in the incidence of hip fractures. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)

    Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: Insights from a frequency domain analysis

    No full text
    International audienceQuantification of the recharge in fractured aquifers is particularly challenging because of the multiscale heterogeneity and the range of temporal scales involved. Here we investigate the hydraulic response to recharge of a fractured aquifer, using a frequency domain approach. Transfer functions are calculated in a range of temporal scales from 1 day up to a few years, for a fractured crystalline-rock aquifer located in Ploemeur (S Brittany, France), using recharge and groundwater level fluctuations as input and output respectively. The spatial variability of the response to recharge (characteristic response time, amplitude, temporal scaling) is analyzed for 10 wells sampling the different compartments of the aquifer. Some of the transfer functions follow the linear reservoir model behavior. On the contrary, others display a temporal scaling at high frequency that cannot be represented by classic models. Large-scale hydraulic parameters, estimated from the low-frequency response, are compared with those estimated from hydraulic tests at different scales. The variability of transmissivity and storage coefficient tends to decrease with scale, and the average estimates converge toward the highest values at large scale. The small-scale variability of diffusivities, which implies the existence of a range of characteristic temporal scales associated with different pathways, is suggested to be at the origin of the unconventional temporal scaling of the hydraulic response to recharge at high frequenc

    Causal Pathways from Enteropathogens to Environmental Enteropathy: Findings from the MAL-ED Birth Cohort Study

    Get PDF
    Background Environmental enteropathy (EE), the adverse impact of frequent and numerous enteric infections on the gut resulting in a state of persistent immune activation and altered permeability, has been proposed as a key determinant of growth failure in children in low- and middle-income populations. A theory-driven systems model to critically evaluate pathways through which enteropathogens, gut permeability, and intestinal and systemic inflammation affect child growth was conducted within the framework of the Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) birth cohort study that included children from eight countries. Methods Non-diarrheal stool samples (N = 22,846) from 1253 children from multiple sites were evaluated for a panel of 40 enteropathogens and fecal concentrations of myeloperoxidase, alpha-1-antitrypsin, and neopterin. Among these same children, urinary lactulose:mannitol (L:M) (N = 6363) and plasma alpha-1-acid glycoprotein (AGP) (N = 2797) were also measured. The temporal sampling design was used to create a directed acyclic graph of proposed mechanistic pathways between enteropathogen detection in non-diarrheal stools, biomarkers of intestinal permeability and inflammation, systemic inflammation and change in length- and weight- for age in children 0–2 years of age. Findings Children in these populations had frequent enteric infections and high levels of both intestinal and systemic inflammation. Higher burdens of enteropathogens, especially those categorized as being enteroinvasive or causing mucosal disruption, were associated with elevated biomarker concentrations of gut and systemic inflammation and, via these associations, indirectly associated with both reduced linear and ponderal growth. Evidence for the association with reduced linear growth was stronger for systemic inflammation than for gut inflammation; the opposite was true of reduced ponderal growth. Although Giardia was associated with reduced growth, the association was not mediated by any of the biomarkers evaluated. Interpretation The large quantity of empirical evidence contributing to this analysis supports the conceptual model of EE. The effects of EE on growth faltering in young children were small, but multiple mechanistic pathways underlying the attribution of growth failure to asymptomatic enteric infections had statistical support in the analysis. The strongest evidence for EE was the association between enteropathogens and linear growth mediated through systemic inflammation

    A STAT3-inhibitory hairpin decoy oligodeoxynucleotide discriminates between STAT1 and STAT3 and induces death in a human colon carcinoma cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Signal Transducer and Activator of Transcription 3 (STAT3) is activated in tumor cells, and STAT3-inhibitors are able to induce the death of those cells. Decoy oligodeoxynucleotides (dODNs), which bind to the DNA Binding Domain (DBD) of STAT3, are efficient inhibitors. However, they also inhibit STAT1, whose activity is essential not only to resistance to pathogens, but also to cell growth inhibition and programmed cell death processes. The aim of this study was to design STAT3-specific dODNs which do not affect STAT1-mediated processes.</p> <p>Results</p> <p>New dODNs with a hairpin (hpdODNs) were designed. Modifications were introduced, based on the comparison of STAT3- and STAT1-DBD interactions with DNA using 3D structural analyses. The designed hpdODNs were tested for their ability to inhibit STAT3 but not STAT1 by determining: i) cell death in the active STAT3-dependent SW480 colon carcinoma cell line, ii) absence of inhibition of interferon (IFN) γ-dependent cell death, iii) expression of STAT1 targets, and iv) nuclear location of STAT3 and STAT1. One hpdODN was found to efficiently induce the death of SW480 cells without interfering with IFNγ-activated STAT1. This hpdODN was found in a complex with STAT3 but not with STAT1 using an original in-cell pull-down assay; this hpdODN also did not inhibit IFNγ-induced STAT1 phosphorylation, nor did it inhibit the expression of the STAT1-target IRF1. Furthermore, it prevented the nuclear transfer of STAT3 but not that of IFNγ-activated STAT1.</p> <p>Conclusions</p> <p>Comparative analyses at the atomic level revealed slight differences in STAT3 and STAT1 DBDs' interaction with their DNA target. These were sufficient to design a new discriminating hpdODN that inhibits STAT3 and not STAT1, thereby inducing tumor cell death without interfering with STAT1-dependent processes. Preferential interaction with STAT3 depends on oligodeoxynucleotide sequence modifications but might also result from DNA shape changes, known to modulate protein/DNA interactions. The finding of a STAT3-specific hpdODN establishes the first rational basis for designing STAT3 DBD-specific inhibitors.</p

    Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence

    Get PDF
    Additional file 3: Figure S3. Regulation of genes of Arrhythmogenic right ventricular cardiomyopathy pathway during senescence induction in HFF strains Genes of the “Arrhythmogenic right ventricular cardiomyopathy” pathway which are significantly up- (green) and down- (red) regulated (log2 fold change >1) during irradiation induced senescence (120 h after 20 Gy irradiation) in HFF strains. Orange color signifies genes which are commonly up-regulated during both, irradiation induced and replicative senescence

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
    corecore