267 research outputs found

    Assessing the conservation value of waterbodies: the example of the Loire floodplain (France)

    Get PDF
    In recent decades, two of the main management tools used to stem biodiversity erosion have been biodiversity monitoring and the conservation of natural areas. However, socio-economic pressure means that it is not usually possible to preserve the entire landscape, and so the rational prioritisation of sites has become a crucial issue. In this context, and because floodplains are one of the most threatened ecosystems, we propose a statistical strategy for evaluating conservation value, and used it to prioritise 46 waterbodies in the Loire floodplain (France). We began by determining a synthetic conservation index of fish communities (Q) for each waterbody. This synthetic index includes a conservation status index, an origin index, a rarity index and a richness index. We divided the waterbodies into 6 clusters with distinct structures of the basic indices. One of these clusters, with high Q median value, indicated that 4 waterbodies are important for fish biodiversity conservation. Conversely, two clusters with low Q median values included 11 waterbodies where restoration is called for. The results picked out high connectivity levels and low abundance of aquatic vegetation as the two main environmental characteristics of waterbodies with high conservation value. In addition, assessing the biodiversity and conservation value of territories using our multi-index approach plus an a posteriori hierarchical classification methodology reveals two major interests: (i) a possible geographical extension and (ii) a multi-taxa adaptation

    EFFECT OF SALINITY ON THE DIELECTRIC PROPERTIES OF GEOLOGICAL MATERIALS : IMPLICATION FOR SOIL MOISTURE DETECTION BY MEANS OF REMOTE SENSING

    No full text
    International audienceThis paper deals with the exploitation of dielectric properties of saline deposits for the detection and mapping of moisture in arid regions on both Earth and Mars. We then present a simulation and experimental study in order to assess the effect of salinity on the permittivity of geological materials and therefore on the radar backscattering coefficient in the [1-7GHz] frequency range. Dielectric mixing models were first calibrated by means of experimental measurements before being used as input parameters of analytical scattering models (IEM, SPM). Simulation results will finally be compared to field measurements (Pyla dune, Death Valley, Mojave Desert) and will be used for the interpretation of SAR data (AIRSAR, PALSAR)

    Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells

    Get PDF
    Diamond nanoparticles (nanodiamonds) have been recently proposed as new labels for cellular imaging. For small nanodiamonds (size <40 nm) resonant laser scattering and Raman scattering cross-sections are too small to allow single nanoparticle observation. Nanodiamonds can however be rendered photoluminescent with a perfect photostability at room temperature. Such a remarkable property allows easier single-particle tracking over long time-scales. In this work we use photoluminescent nanodiamonds of size <50 nm for intracellular labeling and investigate the mechanism of their uptake by living cells . By blocking selectively different uptake processes we show that nanodiamonds enter cells mainly by endocytosis and converging data indicate that it is clathrin mediated. We also examine nanodiamonds intracellular localization in endocytic vesicles using immunofluorescence and transmission electron microscopy. We find a high degree of colocalization between vesicles and the biggest nanoparticles or aggregates, while the smallest particles appear free in the cytosol. Our results pave the way for the use of photoluminescent nanodiamonds in targeted intracellular labeling or biomolecule deliver

    Gaia Data Release 3: G_RVS photometry from the RVS spectra

    Get PDF
    Gaia Data Release 3 (DR3) contains the first release of magnitudes estimated from the integration of Radial Velocity Spectrometer (RVS) spectra for a sample of about 32.2 million stars brighter than G_RVS~14 mag (or G~15 mag). In this paper, we describe the data used and the approach adopted to derive and validate the G_RVS magnitudes published in DR3. We also provide estimates of the G_RVS passband and associated G_RVS zero-point. We derived G_RVS photometry from the integration of RVS spectra over the wavelength range from 846 to 870 nm. We processed these spectra following a procedure similar to that used for DR2, but incorporating several improvements that allow a better estimation of G_RVS. These improvements pertain to the stray-light background estimation, the line spread function calibration, and the detection of spectra contaminated by nearby relatively bright sources. We calibrated the G_RVS zero-point every 30 hours based on the reference magnitudes of constant stars from the Hipparcos catalogue, and used them to transform the integrated flux of the cleaned and calibrated spectra into epoch magnitudes. The G_RVS magnitude of a star published in DR3 is the median of the epoch magnitudes for that star. We estimated the G_RVS passband by comparing the RVS spectra of 108 bright stars with their flux-calibrated spectra from external spectrophotometric libraries. The G_RVS magnitude provides information that is complementary to that obtained from the G, G_BP, and G_RP magnitudes, which is useful for constraining stellar metallicity and interstellar extinction. The median precision of G_RVS measurements ranges from about 0.006 mag for the brighter stars (i.e. with 3.5 < G_RVS < 6.5 mag) to 0.125 mag at the faint end. The derived G_RVS passband shows that the effective transmittance of the RVS is approximately 1.23 times better than the pre-launch estimate.Comment: 16 pages, 18 figures. Accepted for publication in A&

    Gaia Data Release 3

    Get PDF
    CONTEXT: Gaia Data Release 3 (Gaia DR3) contains the second release of the combined radial velocities. It is based on the spectra collected during the first 34 months of the nominal mission. The longer time baseline and the improvements of the pipeline made it possible to push the processing limit from GRVS = 12 in Gaia DR2 to GRVS = 14 mag. AIMS: We describe the new functionalities implemented for Gaia DR3, the quality filters applied during processing and post-processing, and the properties and performance of the published velocities. METHODS: For Gaia DR3, several functionalities were upgraded or added to the spectroscopic pipeline. The calibrations were improved in order to better model the temporal evolution of the straylight and of the instrumental point spread function (PSF). The overlapped spectra, which were mostly discarded in Gaia DR2, are now handled by a dedicated module. The hot star template mismatch, which prevented publication of hot stars in Gaia DR2, is largely mitigated now, down to GRVS = 12 mag. The combined radial velocity of stars brighter than or equal to GRVS = 12 mag is calculated in the same way as in Gaia DR2, that is, as the median of the epoch radial velocity time series. The combined radial velocity of the fainter stars is measured from the average of the cross-correlation functions. RESULTS: Gaia DR3 contains the combined radial velocities of 33 812 183 stars. With respect to Gaia DR2, the temperature interval has been expanded from Teff ∈ [3600, 6750] K to Teff ∈ [3100, 14 500] K for the bright stars (GRVS ≀ 12 mag) and [3100, 6750] K for the fainter stars. The radial velocities sample a significant part of the Milky Way: they reach a few kiloparsecs beyond the Galactic centre in the disc and up to about 10−15 kpc vertically into the inner halo. The median formal precision of the velocities is 1.3 km s−1 at GRVS = 12 and 6.4 km s−1 at GRVS = 14 mag. The velocity zeropoint exhibits a small systematic trend with magnitude that starts around GRVS = 11 mag and reaches about 400 m s−1 at GRVS = 14 mag. A correction formula is provided that can be applied to the published data. The Gaia DR3 velocity scale agrees satisfactorily with APOGEE, GALAH, GES, and RAVE; the systematic differences mostly remain below a few hundred m s−1. The properties of the radial velocities are also illustrated with specific objects: open clusters, globular clusters, and the Large Magellanic Cloud. For example, the precision of the data allows mapping the line-of-sight rotational velocities of the globular cluster 47 Tuc and of the Large Magellanic Cloud

    Metal nanoparticles for microscopy and spectroscopy

    Get PDF
    Metal nanoparticles interact strongly with light due to a resonant response of their free electrons. These ‘plasmon’ resonances appear as very strong extinction and scattering for particular wavelengths, and result in high enhancements of the local field compared to the incident electric field. In this chapter we introduce the reader to the optical properties of single plasmon particles as well as finite clusters and periodic lattices, and discuss several applications

    Gaia Early Data Release 3: Summary of the contents and survey properties

    Get PDF
    ABSTRACT: Context. We present the early installment of the third Gaia data release, Gaia EDR3, consisting of astrometry and photometry for 1.8 billion sources brighter than magnitude 21, complemented with the list of radial velocities from Gaia DR2. Aims. A summary of the contents of Gaia EDR3 is presented, accompanied by a discussion on the differences with respect to Gaia DR2 and an overview of the main limitations which are present in the survey. Recommendations are made on the responsible use of Gaia EDR3 results. Methods. The raw data collected with the Gaia instruments during the first 34 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium and turned into this early third data release, which represents a major advance with respect to Gaia DR2 in terms of astrometric and photometric precision, accuracy, and homogeneity. Results. Gaia EDR3 contains celestial positions and the apparent brightness in G for approximately 1.8 billion sources. For 1.5 billion of those sources, parallaxes, proper motions, and the (GBP ? GRP) colour are also available. The passbands for G, GBP, and GRP are provided as part of the release. For ease of use, the 7 million radial velocities from Gaia DR2 are included in this release, after the removal of a small number of spurious values. New radial velocities will appear as part of Gaia DR3. Finally, Gaia EDR3 represents an updated materialisation of the celestial reference frame (CRF) in the optical, the Gaia-CRF3, which is based solely on extragalactic sources. The creation of the source list for Gaia EDR3 includes enhancements that make it more robust with respect to high proper motion stars, and the disturbing effects of spurious and partially resolved sources. The source list is largely the same as that for Gaia DR2, but it does feature new sources and there are some notable changes. The source list will not change for Gaia DR3. Conclusions. Gaia EDR3 represents a significant advance over Gaia DR2, with parallax precisions increased by 30 per cent, proper motion precisions increased by a factor of 2, and the systematic errors in the astrometry suppressed by 30-40% for the parallaxes and by a factor ~2.5 for the proper motions. The photometry also features increased precision, but above all much better homogeneity across colour, magnitude, and celestial position. A single passband for G, GBP, and GRP is valid over the entire magnitude and colour range, with no systematics above the 1% levelThe Gaia mission and data processing have financially been supported by ; the Spanish Ministry of Economy (MINECO/FEDER, UE) through grants ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, RTI2018-095076-B-C21, RTI2018-095076-B-C22, BES-2016-078499, and BES-2017-083126 and the Juan de la Cierva formación 2015 grant FJCI-2015-2671, the Spanish Ministry of Education, Culture, and Sports through grant FPU16/03827, the Spanish Ministry of Science and Innovation (MICINN) through grant AYA2017-89841P for project “Estudio de las propiedades de los fósiles estelares en el entorno del Grupo Local” and through grant TIN2015-65316-P for project “Computación de Altas Prestaciones VII

    Gaia Early Data Release 3 Acceleration of the Solar System from Gaia astrometry

    Get PDF
    Context. Gaia Early Data Release 3 (Gaia EDR3) provides accurate astrometry for about 1.6 million compact (QSO-like) extragalactic sources, 1.2 million of which have the best-quality five-parameter astrometric solutions. Aims. The proper motions of QSO-like sources are used to reveal a systematic pattern due to the acceleration of the solar systembarycentre with respect to the rest frame of the Universe. Apart from being an important scientific result by itself, the acceleration measured in this way is a good quality indicator of the Gaia astrometric solution. Methods. Theeffect of the acceleration was obtained as a part of the general expansion of the vector field of proper motions in vector spherical harmonics (VSH). Various versions of the VSH fit and various subsets of the sources were tried and compared to get the most consistent result and a realistic estimate of its uncertainty. Additional tests with the Gaia astrometric solution were used to get a better idea of the possible systematic errors in the estimate. Results. Our best estimate of the acceleration based on Gaia EDR3 is (2.32 +/- 0.16) x 10(-10) m s(-2) (or 7.33 +/- 0.51 km s(-1) Myr-1) towards alpha = 269.1 degrees +/- 5.4 degrees, delta = -31.6 degrees +/- 4.1 degrees, corresponding to a proper motion amplitude of 5.05 +/- 0.35 mu as yr(-1). This is in good agreement with the acceleration expected from current models of the Galactic gravitational potential. We expect that future Gaia data releases will provide estimates of the acceleration with uncertainties substantially below 0.1 mu as yr(-1).Peer reviewe

    Pulsations in main sequence OBAF-type stars

    Get PDF
    CONTEXT: The third Gaia data release provides photometric time series covering 34 months for about 10 million stars. For many of those stars, a characterisation in Fourier space and their variability classification are also provided. This paper focuses on intermediate- to high-mass (IHM) main sequence pulsators (M ≄  1.3 M⊙) of spectral types O, B, A, or F, known as ÎČ Cep, slowly pulsating B (SPB), ÎŽ Sct, and Îł Dor stars. These stars are often multi-periodic and display low amplitudes, making them challenging targets to analyse with sparse time series. AIMS: We investigate the extent to which the sparse Gaia DR3 data can be used to detect OBAF-type pulsators and discriminate them from other types of variables. We aim to probe the empirical instability strips and compare them with theoretical predictions. The most populated variability class is that of the ÎŽ Sct variables. For these stars, we aim to confirm their empirical period-luminosity (PL) relation, and verify the relation between their oscillation amplitude and rotation. METHODS: All datasets used in this analysis are part of the Gaia DR3 data release. The photometric time series were used to perform a Fourier analysis, while the global astrophysical parameters necessary for the empirical instability strips were taken from the Gaia DR3 gspphot tables, and the v sin i data were taken from the Gaia DR3 esphs tables. The ή Sct PL relation was derived using the same photometric parallax method as the one recently used to establish the PL relation for classical Cepheids using Gaia data. RESULTS: We show that for nearby OBAF-type pulsators, the Gaia DR3 data are precise and accurate enough to pinpoint them in the Hertzsprung-Russell (HR) diagram. We find empirical instability strips covering broader regions than theoretically predicted. In particular, our study reveals the presence of fast rotating gravity-mode pulsators outside the strips, as well as the co-existence of rotationally modulated variables inside the strips as reported before in the literature. We derive an extensive period–luminosity relation for ÎŽ Sct stars and provide evidence that the relation features different regimes depending on the oscillation period. We demonstrate how stellar rotation attenuates the amplitude of the dominant oscillation mode of ÎŽ Sct stars. CONCLUSIONS: The Gaia DR3 time-series photometry already allows for the detection of the dominant (non-)radial oscillation mode in about 100 000 intermediate- and high-mass dwarfs across the entire sky. This detection capability will increase as the time series becomes longer, allowing the additional delivery of frequencies and amplitudes of secondary pulsation modes
    • 

    corecore