232 research outputs found

    The Kobayashi balls of C-convex domains

    Full text link
    A pure geometric description of the Kobayashi balls of C-convex domains is given in terms of the so-called minimal basis.Comment: v2: Proposition 3 (iii) is improved - the Lempert function is replaced by the Kobayashi metri

    Comparison of different stomatal conductance algorithms for ozone flux modelling

    Get PDF
    A multiplicative and a semi-mechanistic, BWB-type [Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatalconductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens, J. (Ed.), Progress in Photosynthesis Research, vol. IV. Martinus Nijhoff, Dordrecht, pp. 221–224.] algorithm for calculating stomatalconductance (gs) at the leaf level have been parameterised for two crop and two tree species to test their use in regional scale ozone deposition modelling. The algorithms were tested against measured, site-specific data for durum wheat, grapevine, beech and birch of different European provenances. A direct comparison of both algorithms showed a similar performance in predicting hourly means and daily time-courses of gs, whereas the multiplicative algorithm outperformed the BWB-type algorithm in modelling seasonal time-courses due to the inclusion of a phenology function. The re-parameterisation of the algorithms for local conditions in order to validate ozone deposition modelling on a European scale reveals the higher input requirements of the BWB-type algorithm as compared to the multiplicative algorithm because of the need of the former to model net photosynthesis (An

    Evidence of a Clear Atmosphere for WASP-62b: The Only Known Transiting Gas Giant in the JWST Continuous Viewing Zone

    Get PDF
    Exoplanets with cloud-free, haze-free atmospheres at the pressures probed by transmission spectroscopy represent a valuable opportunity for detailed atmospheric characterization and precise chemical abundance constraints. We present the first optical to infrared (0.3−5 μm) transmission spectrum of the hot Jupiter WASP-62b, measured with Hubble/STIS and Spitzer/IRAC. The spectrum is characterized by a 5.1σ detection of Na I absorption at 0.59 μm, in which the pressurebroadened wings of the Na D-lines are observed from space for the first time. A spectral feature at 0.4 μm is tentatively attributed to SiH at 2.1σ confidence. Our retrieval analyses are consistent with a cloud-free atmosphere without significant contamination from stellar heterogeneities. We simulate James Webb Space Telescope (JWST) observations, for a combination of instrument modes, to assess the atmospheric characterization potential of WASP-62b. We demonstrate that JWST can conclusively detect Na, H2O, FeH, NH3, CO, CO2, CH4, and SiH within the scope of its Early Release Science (ERS) program. As the only transiting giant planet currently known in the JWST Continuous Viewing Zone, WASP-62b could prove a benchmark giant exoplanet for detailed atmospheric characterization in the James Webb era

    Hubble PanCET: An isothermal day-side atmosphere for the bloated gas-giant HAT-P-32Ab

    Get PDF
    This is the author accepted manuscript. The final version is available from OUP via the DOI in this recordWe present a thermal emission spectrum of the bloated hot Jupiter HAT-P-32Ab from a single eclipse observation made in spatial scan mode with the Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST). The spectrum covers the wavelength regime from 1.123 to 1.644 microns which is binned into 14 eclipse depths measured to an averaged precision of 104 parts-per million. The spectrum is unaffected by a dilution from the close M-dwarf companion HAT-P-32B, which was fully resolved. We complemented our spectrum with literature results and performed a comparative forward and retrieval analysis with the 1D radiative-convective ATMO model. Assuming solar abundance of the planet atmosphere, we find that the measured spectrum can best be explained by the spectrum of a blackbody isothermal atmosphere with Tp = 1995 +/- 17K, but can equally-well be described by a spectrum with modest thermal inversion. The retrieved spectrum suggests emission from VO at the WFC3 wavelengths and no evidence of the 1.4 micron water feature. The emission models with temperature profiles decreasing with height are rejected at a high confidence. An isothermal or inverted spectrum can imply a clear atmosphere with an absorber, a dusty cloud deck or a combination of both. We find that the planet can have continuum of values for the albedo and recirculation, ranging from high albedo and poor recirculation to low albedo and efficient recirculation. Optical spectroscopy of the planet's day-side or thermal emission phase curves can potentially resolve the current albedo with recirculation degeneracy.NN, DKS and TME acknowledge funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 336792. JG acknowledges support from a Leverhulme Trust Research Project Grant. G.W.H. and M.H.W. acknowledge long-term support from Tennessee State University and the State of Tennessee through its Centers of Excellence program and from the Space Telescope Science Institue under HST-GO-14767. This work has been carried out in the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). DE and VB acknowledge the financial support of the SNSF. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (project FOUR ACES; grant agreement No 724427)

    An optical transmission spectrum for the ultra-hot Jupiter WASP-121b measured with the Hubble Space Telescope

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society / IOP Publishing via the DOI in this record.We present an atmospheric transmission spectrum for the ultra-hot Jupiter WASP-121b, measured using the Space Telescope Imaging Spectrograph (STIS) onboard the Hubble Space Telescope (HST). Across the 0.47-1 micron wavelength range, the data imply an atmospheric opacity comparable to - and in some spectroscopic channels exceeding - that previously measured at near-infrared wavelengths (1.15-1.65 micron). Wavelength-dependent variations in the opacity rule out a gray cloud deck at a confidence level of 3.8-sigma and may instead be explained by VO spectral bands. We find a cloud-free model assuming chemical equilibrium for a temperature of 1500K and metal enrichment of 10-30x solar matches these data well. Using a free-chemistry retrieval analysis, we estimate a VO abundance of -6.6(-0.3,+0.2) dex. We find no evidence for TiO and place a 3-sigma upper limit of -7.9 dex on its abundance, suggesting TiO may have condensed from the gas phase at the day-night limb. The opacity rises steeply at the shortest wavelengths, increasing by approximately five pressure scale heights from 0.47 to 0.3 micron in wavelength. If this feature is caused by Rayleigh scattering due to uniformly-distributed aerosols, it would imply an unphysically high temperature of 6810+/-1530K. One alternative explanation for the short-wavelength rise is absorption due to SH (mercapto radical), which has been predicted as an important product of non-equilibrium chemistry in hot Jupiter atmospheres. Irrespective of the identity of the NUV absorber, it likely captures a significant amount of incident stellar radiation at low pressures, thus playing a significant role in the overall energy budget, thermal structure, and circulation of the atmosphere.Support for program GO-14767 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. T.M.E., D.K.S., and N.N. acknowledge funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 336792. G.W.H. and M.H.W. acknowledge support from Tennessee State University and the State of Tennessee through its Centers of Excellence program. J.S.F. acknowledges funding by the Spanish MINECO grant AYA2016-79425-C3-2-P. J.K.B. is supported by a Royal Astronomical Society Research Fellowship. This work has been carried out in the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF). V.B. and D.E. have received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (project Four Aces; grant agreement no. 724427)

    Corporate cash holdings: causes and consequences

    Get PDF
    The considerable growth in corporate cash holdings around the world has prompted scholarly interest. Consequently, there is now a large academic literature examining cash holdings and their impact on corporate outcomes and firm values. This article reviews and synthesizes the literature to offer insight into two primary motives to hold cash: precautionary and agency. We first present a stylized model that explores the trade-off in holding cash between these two motives and then examine empirical studies to determine how existing theories are supported by evidence using data from a variety of countries. In addition, we examine the effectiveness of a variety of corporate governance devices in curtailing cash holdings and also the extent to which these devices offer investors' confidence that cash will not be wasted. Finally, we discuss methodological and measurement issues associated with empirical cash holdings studies

    Differential survival throughout the full annual cycle of a migratory bird presents a life-history trade-off.

    Get PDF
    Long-distance migrations are among the most physically demanding feats animals perform. Understanding the potential costs and benefits of such behaviour is a fundamental question in ecology and evolution. A hypothetical cost of migration should be outweighed by higher productivity and/or higher annual survival, but few studies on migratory species have been able to directly quantify patterns of survival throughout the full annual cycle and across the majority of a species' range. Here, we use telemetry data from 220 migratory Egyptian vultures Neophron percnopterus, tracked for 3,186 bird months and across approximately 70% of the species' global distribution, to test for differences in survival throughout the annual cycle. We estimated monthly survival probability relative to migration and latitude using a multi-event capture-recapture model in a Bayesian framework that accounted for age, origin, subpopulation and the uncertainty of classifying fates from tracking data. We found lower survival during migration compared to stationary periods (β = −0.816; 95% credible interval: −1.290 to −0.318) and higher survival on non-breeding grounds at southern latitudes (<25°N; β = 0.664; 0.076-1.319) compared to on breeding grounds. Survival was also higher for individuals originating from Western Europe (β = 0.664; 0.110-1.330) as compared to further east in Europe and Asia, and improved with age (β = 0.030; 0.020-0.042). Anthropogenic mortalities accounted for half of the mortalities with a known cause and occurred mainly in northern latitudes. Many juveniles drowned in the Mediterranean Sea on their first autumn migration while there were few confirmed mortalities in the Sahara Desert, indicating that migration barriers are likely species-specific. Our study advances the understanding of important fitness trade-offs associated with long-distance migration. We conclude that there is lower survival associated with migration, but that this may be offset by higher non-breeding survival at lower latitudes. We found more human-caused mortality farther north, and suggest that increasing anthropogenic mortality could disrupt the delicate migration trade-off balance. Research to investigate further potential benefits of migration (e.g. differential productivity across latitudes) could clarify how migration evolved and how migrants may persist in a rapidly changing world

    Detection of Carbon Monoxide in the Atmosphere of WASP-39b Applying Standard Cross-Correlation Techniques to JWST NIRSpec G395H Data

    Full text link
    Carbon monoxide was recently reported in the atmosphere of the hot Jupiter WASP-39b using the NIRSpec PRISM transit observation of this planet, collected as part of the JWST Transiting Exoplanet Community Early Release Science (JTEC ERS) Program. This detection, however, could not be confidently confirmed in the initial analysis of the higher resolution observations with NIRSpec G395H disperser. Here we confirm the detection of CO in the atmosphere of WASP-39b using the NIRSpec G395H data and cross-correlation techniques. We do this by searching for the CO signal in the unbinned transmission spectrum of the planet between 4.6 and 5.0 μ\mum, where the contribution of CO is expected to be higher than that of other anticipated molecules in the planet's atmosphere. Our search results in a detection of CO with a cross-correlation function (CCF) significance of 6.6σ6.6 \sigma when using a template with only 12C16O{\rm ^{12}C^{16}O} lines. The CCF significance of the CO signal increases to 7.5σ7.5 \sigma when including in the template lines from additional CO isotopologues, with the largest contribution being from 13C16O{\rm ^{13}C^{16}O}. Our results highlight how cross-correlation techniques can be a powerful tool for unveiling the chemical composition of exoplanetary atmospheres from medium-resolution transmission spectra, including the detection of isotopologues.Comment: Accepted for publication in The Astrophysical Journal Letter

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’)1–3, and thus the formation processes of the primary atmospheres of hot gas giants4–6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7–9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10–12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models
    corecore