165 research outputs found

    Effectiveness of electric harps in reducing Vespa velutina predation pressure and consequences for honey bee colony development

    Get PDF
    BACKGROUND: Vespa velutinahas become a species of concern in invaded regions of Europe and Asia, due to its impacts onbiodiversity, apiculture and society. This hornet, a ferocious hunter of pollinating insects, poses a serious threat to biodiversityand pollination services. Despite ongoing efforts, its extermination in continental Europe is hampered by a lack of effective con-trol methods, thus effective mitigation measures are primary concerns. The aims of this work were: (i) to study the effects of V. velutina predating on honey bee colonies, and (ii) to assess the effectiveness of electric harps in reducing hunting pressureand predation. We assessed the predation pressure and compared honey bee colony performance, body weight of workers, andwinter survivorship for protectedversusunprotected colonies in 36 experimental hives across three apiaries. RESULTS: Electric harps protected honey bees by reducing predation pressure and therefore mitigating foraging paralysis. Consequently, foraging activity, pollen income, brood production and worker body weight were higher in protected colonies whichin turn showed greater winter survivorship than those that were unprotected, especially at sites with intermediate to highlevels of predation. CONCLUSION: The predation of V. velutina affects foraging activity, breeding, body weight and colony survivorship of Apis mellifera. Electric harps contribute significantly to mitigate the impact of this invasive hornet on apiaries; however, they should bedeployed in tandem with additional measures to preserve honey bee colony stocks, such as facilitating access to food sourcesfor colonies during the periods of highest predation pressure.Programa Interreg Atlantic Area (Fondo Europeo de Desarrollo Regional, Unión Europea) | Ref. EAPA_800/2018–Atlantic-PositiveUniversidade de Vigo/CISU

    Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages

    Get PDF
    Pathogenic ESBL-producing E. coli lineages occur frequently worldwide, not only in a human health context but in animals and the environment, also in settings with low antimicrobial pressures. This study investigated the fitness costs of ESBL-plasmids and their influence on chromosomally encoded features associated with virulence, such as those involved in the planktonic and sessile behaviors of ST131 and ST648 E. coli. ESBL-plasmid-carrying wild-type E. coli strains, their corresponding ESBL-plasmid-"cured" variants (PCV), and complementary ESBL-carrying transformants were comparatively analyzed using growth curves, Omnilog® phenotype microarray (PM) assays, macrocolony and biofilm formation, swimming motility, and RNA sequence analysis. Growth curves and PM results pointed toward similar growth and metabolic behaviors among the strains. Phenotypic differences in some strains were detected, including enhanced curli fimbriae and/or cellulose production as well as a reduced swimming capacity of some ESBL-carrying strains, as compared to their respective PCVs. RNA sequencing mostly confirmed the phenotypic results, suggesting that the chromosomally encoded csgD pathway is a key factor involved. These results contradict the hypothesis that ESBL-plasmid-carriage leads to a fitness loss in ESBL-carrying strains. Instead, the results indicate an influence of some ESBL-plasmids on chromosomally encoded features associated with virulence in some E. coli strains. In conclusion, apart from antibiotic resistance selective advantages, ESBL-plasmid-carriage may also lead to enhanced virulence or adaption to specific habitats in some strains of pandemic ESBL-producing E. coli lineages

    Antibodies Targeted to the Brain with Image-Guided Focused Ultrasound Reduces Amyloid-β Plaque Load in the TgCRND8 Mouse Model of Alzheimer's Disease

    Get PDF
    Immunotherapy for Alzheimer's disease (AD) relies on antibodies directed against toxic amyloid-beta peptide (Aβ), which circulate in the bloodstream and remove Aβ from the brain [1], [2]. In mouse models of AD, the administration of anti-Aβ antibodies directly into the brain, in comparison to the bloodstream, was shown to be more efficient at reducing Aβ plaque pathology [3], [4]. Therefore, delivering anti-Aβ antibodies to the brain of AD patients may also improve treatment efficiency. Transcranial focused ultrasound (FUS) is known to transiently-enhance the permeability of the blood-brain barrier (BBB) [5], allowing intravenously administered therapeutics to enter the brain [6]–[8]. Our goal was to establish that anti-Aβ antibodies delivered to the brain using magnetic resonance imaging-guided FUS (MRIgFUS) [9] can reduce plaque pathology. To test this, TgCRND8 mice [10] received intravenous injections of MRI and FUS contrast agents, as well as anti-Aβ antibody, BAM-10. MRIgFUS was then applied transcranially. Within minutes, the MRI contrast agent entered the brain, and BAM-10 was later found bound to Aβ plaques in targeted cortical areas. Four days post-treatment, Aβ pathology was significantly reduced in TgCRND8 mice. In conclusion, this is the first report to demonstrate that MRIgFUS delivery of anti-Aβ antibodies provides the combined advantages of using a low dose of antibody and rapidly reducing plaque pathology

    Creatine Fails to Augment the Benefits from Resistance Training in Patients with HIV Infection: A Randomized, Double-Blind, Placebo-Controlled Study

    Get PDF
    Progressive resistance exercise training (PRT) improves physical functioning in patients with HIV infection. Creatine supplementation can augment the benefits derived from training in athletes and improve muscle function in patients with muscle wasting. The objective of this study was to determine whether creatine supplementation augments the effects of PRT on muscle strength, energetics, and body composition in HIV-infected patients.This is a randomized, double blind, placebo-controlled, clinical research center-based, outpatient study in San Francisco. 40 HIV-positive men (20 creatine, 20 placebo) enrolled in a 14-week study. Subjects were randomly assigned to receive creatine monohydrate or placebo for 14 weeks. Treatment began with a loading dose of 20 g/day or an equivalent number of placebo capsules for 5 days, followed by maintenance dosing of 4.8 g/day or placebo. Beginning at week 2 and continuing to week 14, all subjects underwent thrice-weekly supervised resistance exercise while continuing on the assigned study medication (with repeated 6-week cycles of loading and maintenance). The main outcome measurements included muscle strength (one repetition maximum), energetics ((31)P magnetic resonance spectroscopy), composition and size (magnetic resonance imaging), as well as total body composition (dual-energy X-ray absorptiometry). Thirty-three subjects completed the study (17 creatine, 16 placebo). Strength increased in all 8 muscle groups studied following PRT, but this increase was not augmented by creatine supplementation (average increase 44 vs. 42%, difference 2%, 95% CI -9.5% to 13.9%) in creatine and placebo, respectively). There were no differences between groups in changes in muscle energetics. Thigh muscle cross-sectional area increased following resistance exercise, with no additive effect of creatine. Lean body mass (LBM) increased to a significantly greater extent with creatine. CONCLUSIONS / SIGNIFICANCE: Resistance exercise improved muscle size, strength and function in HIV-infected men. While creatine supplementation produced a greater increase in LBM, it did not augment the robust increase in strength derived from PRT.ClinicalTrials.gov NCT00484627

    Multigene Phylogeny of Choanozoa and the Origin of Animals

    Get PDF
    Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling or cell adhesion (cadherin). Phylogenetic trees using 78 proteins show that Ministeria is not sister to animals or choanoflagellates (themselves sisters to animals), but to Capsaspora, another protozoan with thread-like (filose) tentacles. The Ministeria/Capsaspora clade (new class Filasterea) is sister to animals and choanoflagellates, these three groups forming a novel clade (filozoa) whose ancestor presumably evolved filose tentacles well before they aggregated as a periciliary collar in the choanoflagellate/sponge common ancestor. Our trees show ichthyosporean choanozoans as sisters to filozoa; a fusion between ubiquitin and ribosomal small subunit S30 protein genes unifies all holozoa (filozoa plus Ichthyosporea), being absent in earlier branching eukaryotes. Thus, several successive evolutionary innovations occurred among their unicellular closest relatives prior to the origin of the multicellular body-plan of animals

    Dietary Profile of Rhinopithecus bieti and Its Socioecological Implications

    Get PDF
    To enhance our understanding of dietary adaptations and socioecological correlates in colobines, we conducted a 20-mo study of a wild group of Rhinopithecus bieti (Yunnan snub-nosed monkeys) in the montane Samage Forest. This forest supports a patchwork of evergreen broadleaved, evergreen coniferous, and mixed deciduous broadleaved/coniferous forest assemblages with a total of 80 tree species in 23 families. The most common plant families by basal area are the predominantly evergreen Pinaceae and Fagaceae, comprising 69% of the total tree biomass. Previous work has shown that lichens formed a consistent component in the monkeys’ diet year-round (67%), seasonally complemented with fruits and young leaves. Our study showed that although the majority of the diet was provided by 6 plant genera (Acanthopanax, Sorbus, Acer, Fargesia, Pterocarya, and Cornus), the monkeys fed on 94 plant species and on 150 specific food items. The subjects expressed high selectivity for uncommon angiosperm tree species. The average number of plant species used per month was 16. Dietary diversity varied seasonally, being lowest during the winter and rising dramatically in the spring. The monkeys consumed bamboo shoots in the summer and bamboo leaves throughout the year. The monkeys also foraged on terrestrial herbs and mushrooms, dug up tubers, and consumed the flesh of a mammal (flying squirrel). We also provide a preliminary evaluation of feeding competition in Rhinopithecus bieti and find that the high selectivity for uncommon seasonal plant food items distributed in clumped patches might create the potential for food competition. The finding is corroborated by observations that the subjects occasionally depleted leafy food patches and stayed at a greater distance from neighboring conspecifics while feeding than while resting. Key findings of this work are that Yunnan snub-nosed monkeys have a much more species-rich plant diet than was previously believed and are probably subject to moderate feeding competition

    Characterisation of the Nematode Community of a Low-Activity Cold Seep in the Recently Ice-Shelf Free Larsen B Area, Eastern Antarctic Peninsula

    Get PDF
    Background: Recent climate-induced ice-shelf disintegration in the Larsen A (1995) and B (2002) areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely toinfluence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well as cold-seep ecosystems world-wide.Principal Findings: The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (.2000 individuals per 10 cm2) and showed below-surface maxima at a sediment depth of 2–3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable 13C isotopic signals (ranging between 221.9760.86% and 224.8561.89%) were indicative of a phytoplankton-derived food source.Conclusion: The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual for marine nematodes and may be responsible for the successful colonisation by this single species

    Identification of critical paralog groups with indispensable roles in the regulation of signaling flow

    Get PDF
    Extensive cross-talk between signaling pathways is required to integrate the myriad of extracellular signal combinations at the cellular level. Gene duplication events may lead to the emergence of novel functions, leaving groups of similar genes - termed paralogs - in the genome. To distinguish critical paralog groups (CPGs) from other paralogs in human signaling networks, we developed a signaling network-based method using cross-talk annotation and tissue-specific signaling flow analysis. 75 CPGs were found with higher degree, betweenness centrality, closeness, and ‘bowtieness’ when compared to other paralogs or other proteins in the signaling network. CPGs had higher diversity in all these measures, with more varied biological functions and more specific post-transcriptional regulation than non-critical paralog groups (non-CPG). Using TGF-beta, Notch and MAPK pathways as examples, SMAD2/3, NOTCH1/2/3 and MEK3/6-p38 CPGs were found to regulate the signaling flow of their respective pathways. Additionally, CPGs showed a higher mutation rate in both inherited diseases and cancer, and were enriched in drug targets. In conclusion, the results revealed two distinct types of paralog groups in the signaling network: CPGs and non-CPGs. Thus highlighting the importance of CPGs as compared to non-CPGs in drug discovery and disease pathogenesis

    Tempo and Mode in Evolution of Transcriptional Regulation

    Get PDF
    Perennial questions of evolutionary biology can be applied to gene regulatory systems using the abundance of experimental data addressing gene regulation in a comparative context. What is the tempo (frequency, rate) and mode (way, mechanism) of transcriptional regulatory evolution? Here we synthesize the results of 230 experiments performed on insects and nematodes in which regulatory DNA from one species was used to drive gene expression in another species. General principles of regulatory evolution emerge. Gene regulatory evolution is widespread and accumulates with genetic divergence in both insects and nematodes. Divergence in cis is more common than divergence in trans. Coevolution between cis and trans shows a particular increase over greater evolutionary timespans, especially in sex-specific gene regulation. Despite these generalities, the evolution of gene regulation is gene- and taxon-specific. The congruence of these conclusions with evidence from other types of experiments suggests that general principles are discoverable, and a unified view of the tempo and mode of regulatory evolution may be achievable
    corecore