52 research outputs found

    Gynaecological product development facilitated through RP and Rapid Tooling

    Get PDF
    Published ArticleAtkinson distinguishes between four types of prototypes, categorised through its end-use: •Design or aesthetic prototypes •Geometrical prototypes •Functional prototypes •Technological prototypes Shigley and Mitchell define the design process according to the following six phases: Recognition of need Definition of problem Synthesis Analysis and optimization Evaluation Presentation The Centre for Rapid Prototyping and Manufacture (CRPM) of the Central University of Technology, Free State was asked to assist in the development of a newly developed gynaecological cream applicator. Apart from needing a freeform fabrication system to give form fit and function to the very complex design, the product needed Rapid Tooling / Rapid Manufacturing support to enable a first batch production for medical trials and evaluation. The paper will describe the total product development process alongside prototype categories described by Atkinson and design phases defined by Shigley and Mitchell (including some iterations enabled through timeous prototyping, including various Rapid Prototyping (RP) Technologies, soft tooling and vacuum casting). More importantly, results from Rapid Tooling for limited run production (due to the complexity of the product the cycle time of the Prototype Tool is fairly long), as well as the economical impact made possible through the support of CAD / CAM and RP Technologies, will be discussed

    Parameters affecting spin casting of decorative and mechanical parts

    Get PDF
    Published ArticleSpin casting is widely used as a batch manufacturing process for decorative products. In the process, moulds are filled by taking advantage of the centrifugal effect, which is used to increase the pressure within the moulds, resulting in more detailed products. In this study, we analyse the different parameters that could affect the casting of mechanical parts through spin casting. Through this study, the user will be guided in the selection of parameters that will result in a certain degree of accuracy. The parameters were determined by performing numerous experiments using zinc alloy and tin-based pewter as casting materials. Results were obtained by casting approximately 15 000 parts in various positions, and at various clamping pressures, rotational speeds and temperatures in both the mould and the material. The experiments were undertaken by varying one parameter at a time, and with each set parameter repeated once, resulting in 100 test pieces per parameter for evaluation. From the results obtained, a series of critical factors and parameters, which are driven by part characteristics or features, has been studied. Contrary to following a modelling approach, the research was conducted following an action-research approach, with planned activities, but where actual results have defined the follow-up procedures. These guidelines will help industrial users ensure the accuracy of parts produced by spin casting. Also, since this project attempted to create a database of results that can be applied in future, it furthermore implies that the data created for the first time can be used in a numerical modelling approach in further / follow-up research. No such data was available from any previous research

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    Get PDF
    Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID

    Selfbeoordeling as 'n voorspeller van waargenome gesimuleerde bestuursvermoë, soos gemeet in 'n takseer-sentrum.

    No full text
    Self assessment as a predictor of perceived simulated managerial ability as measured by an assessment centre. The purpose of this study was to establish how accurately a person could assess his own managerial ability. With this in mind, a self-assessment questionnaire was developed. The questionnaire was completed by the participants both before and after participation in an assessment centre. It measured, per managerial dimension, the judgment of the participant that his managerial ability complies with that of a senior departmental manager in the organisation. The before-centre self-assessment scores correlate meaningfully with the after-centre self assessment scores. The selfassessment scores are, however, a poor predictor of the observed simulated managerial ability

    Anaesthetic Mouthpiece Development through QFD and Customer Interaction with Functional Prototypes

    No full text
    Published ArticleThe paper reflects on the development of a medical product using rapid prototyping technologies and customer interaction through a quality function deployment (QFD) approach to speed up the process, and to result in customer satisfaction. The purpose of the specific medical product was to develop a device for fixing an Endo‐tracheal (ET) tube in a patient during anaesthesia, as it is common for an ET tube to move and/or become dislodged due to various extraneous reasons. If the tube deviates from the correct position it can cause one or both lungs to collapse, which can be fatal. The paper reviews how the anaesthetist's idea, which was to develop a product that could hold an ET tube in place in a more secure manner than is possible with current technologies, was brought to fruition through customer interaction
    corecore