78 research outputs found

    Targeting lipid metabolism in metastatic prostate cancer

    Get PDF
    Despite key advances in the treatment of prostate cancer (PCa), a proportion of men have de novo resistance, and all will develop resistance to current therapeutics over time. Aberrant lipid metabolism has long been associated with prostate carcinogenesis and progression, but more recently there has been an explosion of preclinical and clinical data which is informing new clinical trials. This review explores the epidemiological links between obesity and metabolic syndrome and PCa, the evidence for altered circulating lipids in PCa and their potential role as biomarkers, as well as novel therapeutic strategies for targeting lipids in men with PCa, including therapies widely used in cardiovascular disease such as statins, metformin and lifestyle modification, as well as novel targeted agents such as sphingosine kinase inhibitors, DES1 inhibitors and agents targeting FASN and beta oxidation.Tahlia Scheinberg, Blossom Mak, Lisa Butler, Luke Selth and Lisa G. Horvat

    Proteomic characterisation of prostate cancer intercellular communication reveals cell type-selective signalling and TMSB4X-dependent fibroblast reprogramming

    Get PDF
    Background: In prostate cancer, the tumour microenvironment (TME) represents an important regulator of disease progression and response to treatment. In the TME, cancer-associated fbroblasts (CAFs) play a key role in tumour progression, however the mechanisms underpinning fbroblast-cancer cell interactions are incompletely resolved. Here, we address this by applying cell type-specifc labelling with amino acid precursors (CTAP) and mass spectrometry (MS)-based (phospho) proteomics to prostate cancer for the frst time. Methods: Reciprocal interactions between PC3 prostate cancer cells co-cultured with WPMY-1 prostatic fbroblasts were characterised using CTAP-MS. Signalling network changes were determined using Metascape and Enrichr and visualised using Cytoscape. Thymosin ÎČ4 (TMSB4X) overexpression was achieved via retroviral transduction and assayed by ELISA. Cell motility was determined using Transwell and random cell migration assays and expression of CAF markers by indirect immunofuorescence. Results: WPMY-1 cells co-cultured with PC3s demonstrated a CAF-like phenotype, characterised by enhanced PDGFRB expression and alterations in signalling pathways regulating epithelial-mesenchymal transition, cytoskeletal organisation and cell polarisation. In contrast, co-cultured PC3 cells exhibited more modest network changes, with alterations in mTORC1 signalling and regulation of the actin cytoskeleton. The expression of the actin binding protein TMSB4X was signifcantly decreased in co-cultured WPMY-1 fbroblasts, and overexpression of TMSB4X in fbroblasts decreased migration of cocultured PC3 cells, reduced fbroblast motility, and protected the fbroblasts from being educated to a CAF-like phenotype by prostate cancer cells. Conclusions: This study highlights the potential of CTAP-MS to characterise intercellular communication within the prostate TME and identify regulators of cellular crosstalk such as TMSB4X.Yunjian Wu, Kimberley C. Clark, Elizabeth V. Nguyen, Birunthi Niranjan, Lisa G. Horvath, Renea A. Taylor, Roger J. Dal

    Integrative characterisation of secreted factors involved in intercellular communication between prostate epithelial or cancer cells and fibroblasts

    Get PDF
    Reciprocal interactions between prostate cancer cells and carcinomaassociated fibroblasts (CAFs) mediate cancer development and progression; however, our understanding of the signalling pathways mediating these cellular interactions remains incomplete. To address this, we defined secretome changes upon co-culture of prostate epithelial or cancer cells with fibroblasts that mimic bi-directional communication in tumours. Using antibody arrays, we profiled conditioned media from mono- and cocultures of prostate fibroblasts, epithelial and cancer cells, identifying secreted proteins that are upregulated in co-culture compared to monoculture. Six of these (CXCL10, CXCL16, CXCL6, FST, PDGFAA, IL17B) were functionally screened by siRNA knockdown in prostate cancer cell/fibroblast co-cultures, revealing a key role for follistatin (FST), a secreted glycoprotein that binds and bioneutralises specific members of the TGF-b superfamily, including activin A. Expression of FST by both cell types was required for the fibroblasts to enhance prostate cancer cell proliferation and migration, whereas FST knockdown in co-culture grafts decreased tumour growth in mouse xenografts. This study highlights the complexity of prostate cancer cell–fibroblast communication, demonstrates that co-culture secretomes cannot be predicted from individual cultures, and identifies FST as a tumour-microenvironment-derived secreted factor that represents a candidate therapeutic target.Yunjian Wu, Kimberley C. Clark, Birunthi Niranjan, Anderly C. Chueh, Lisa G. Horvath, Renea A. Taylor, and Roger J. Dal

    Harnessing the Heterogeneity of Prostate Cancer for Target Discovery Using Patient-Derived Explants

    Get PDF
    Prostate cancer is a complex and heterogeneous disease, but a small number of cell lines have dominated basic prostate cancer research, representing a major obstacle in the field of drug and biomarker discovery. A growing lack of confidence in cell lines has seen a shift toward more sophisticated pre-clinical cancer models that incorporate patient-derived tumors as xenografts or explants, to more accurately reflect clinical disease. Not only do these models retain critical features of the original tumor, and account for the molecular diversity and cellular heterogeneity of prostate cancer, but they provide a unique opportunity to conduct research in matched tumor samples. The challenge that accompanies these complex tissue models is increased complexity of analysis. With over 10 years of experience working with patient-derived explants (PDEs) of prostate cancer, this study provides guidance on the PDE method, its limitations, and considerations for addressing the heterogeneity of prostate cancer PDEs that are based on statistical modeling. Using inhibitors of the molecular chaperone heat shock protein 90 (Hsp90) as an example of a drug that induces robust proliferative response, we demonstrate how multi-omics analysis in prostate cancer PDEs is both feasible and essential for identification of key biological pathways, with significant potential for novel drug target and biomarker discovery.Margaret M. Centenera, Andrew D. Vincent, Max Moldovan, Hui-Ming Lin, David J. Lynn, Lisa G. Horvath, and Lisa M. Butle

    Pharmacodynamics effects of CDK4/6 inhibitor LEE011 (ribociclib) in high-risk, localised prostate cancer: a study protocol for a randomised controlled phase II trial (LEEP study: LEE011 in high-risk, localised Prostate cancer)

    Get PDF
    INTRODUCTION: Despite the development of new therapies for advanced prostate cancer, it remains the most common cause of cancer and the second leading cause of cancer death in men. It is critical to develop novel agents for the treatment of prostate cancer, particularly those that target aspects of androgen receptor (AR) signalling or prostate biology other than inhibition of androgen synthesis or AR binding. Neoadjuvant pharmacodynamic studies allow for a rational approach to the decisions regarding which targeted therapies should progress to phase II/III trials. CDK4/6 inhibitors have evidence of efficacy in breast cancer, and have been shown to have activity in preclinical models of hormone sensitive and castrate resistant prostate cancer. The LEEP trial aims to assess the pharmacodynamic effects of LEE011 (ribociclib), an orally bioavailable and highly selective CDK4/6 inhibitor, in men undergoing radical prostatectomy for high-risk, localised prostate cancer. METHODS AND ANALYSIS: The multicentre randomised, controlled 4:1 two-arm, phase II, open label pharmacodynamic study will recruit 47 men with high risk, localised prostate cancer who are planned to undergo radical prostatectomy. Participants who are randomised to receive the study treatment will be treated with LEE011 400 mg daily for 21 days for one cycle. The primary endpoint is the frequency of a 50% reduction in Ki-67 proliferation index from the pretreatment prostate biopsy compared to that present in prostate cancer tissue from radical prostatectomy. Secondary and tertiary endpoints include pharmacodynamic assessment of CDK4/6 cell cycle progression via E2F levels, apoptotic cell death by cleaved caspase-3, changes in serum and tumour levels of Prostate Specific Antigen (PSA), pathological regression, safety via incidence of adverse events and exploratory biomarker analysis. ETHICS AND DISSEMINATION: The protocol was approved by a central ethics review committee (St Vincent's Hospital HREC) for all participating sites (HREC/17/SVH/294). Results will be disseminated in peer-reviewed journals and at scientific conferences. DRUG SUPPLY: Novartis. PROTOCOL VERSION: 2.0, 30 May 2019 TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry (ACTRN12618000354280).Tahlia Scheinberg, James Kench, Martin Stockler, Kate L Mahon, Lucille Sebastian, Phillip Stricker, Anthony M Joshua, H Woo, Ruban Thanigasalam, Nariman Ahmadi, Margaret M Centenera, Lisa M Butler, Lisa G Horvat

    Modulation of Plasma Lipidomic Profiles in Metastatic Castration-Resistant Prostate Cancer by Simvastatin

    Get PDF
    Elevated circulating sphingolipids are associated with shorter overall survival and therapeutic resistance in metastatic castration-resistant prostate cancer (mCRPC), suggesting that perturbations in sphingolipid metabolism promotes prostate cancer growth. This study assessed whether addition of simvastatin to standard treatment for mCRPC can modify a poor prognostic circulating lipidomic profile represented by a validated 3-lipid signature (3LS). Men with mCRPC (n = 27) who were not on a lipid-lowering agent, were given simvastatin for 12 weeks (40 mg orally, once daily) with commencement of standard treatment. Lipidomic profiling was performed on their plasma sampled at baseline and after 12 weeks of treatment. Only 11 men had the poor prognostic 3LS at baseline, of whom five (45%) did not retain the 3LS after simvastatin treatment (expected conversion rate with standard treatment = 19%). At baseline, the plasma profiles of men with the 3LS displayed higher levels (p < 0.05) of sphingolipids (ceramides, hexosylceramides and sphingomyelins) than those of men without the 3LS. These plasma sphingolipids were reduced after statin treatment in men who lost the 3LS (mean decrease: 23–52%, p < 0.05), but not in men with persistent 3LS, and were independent of changes to plasma cholesterol, LDL-C or triacylglycerol. In conclusion, simvastatin in addition to standard treatment can modify the poor prognostic circulating lipidomic profile in mCRPC into a more favourable profile at twice the expected conversion rate.Blossom Mak, Hui-Ming Lin, Thy Duong, Kate L. Mahon, Anthony M. Joshua, Martin R. Stockler, Howard Gurney, Francis Parnis, Alison Zhang, Tahlia Scheinberg, Gary Wittert, Lisa M. Butler, David Sullivan, Andrew J. Hoy, Peter J. Meikle, and Lisa G. Horvat

    Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis

    Get PDF
    Fatty acid ÎČ-oxidation (FAO) is the main bioenergetic pathway in human prostate cancer (PCa) and a promising novel therapeutic vulnerability. Here we demonstrate therapeutic efficacy of targeting FAO in clinical prostate tumors cultured ex vivo, and identify DECR1, encoding the rate-limiting enzyme for oxidation of polyunsaturated fatty acids (PUFAs), as robustly overexpressed in PCa tissues and associated with shorter relapse-free survival. DECR1 is a negatively-regulated androgen receptor (AR) target gene and, therefore, may promote PCa cell survival and resistance to AR targeting therapeutics. DECR1 knockdown selectively inhibited ÎČ-oxidation of PUFAs, inhibited proliferation and migration of PCa cells, including treatment resistant lines, and suppressed tumor cell proliferation and metastasis in mouse xenograft models. Mechanistically, targeting of DECR1 caused cellular accumulation of PUFAs, enhanced mitochondrial oxidative stress and lipid peroxidation, and induced ferroptosis. These findings implicate PUFA oxidation via DECR1 as an unexplored facet of FAO that promotes survival of PCa cells.Zeyad D Nassar, Chui Yan Mah, Jonas Dehairs, Ingrid JG Burvenich ... Lisa M Butler ... Luke Selth ... et al

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Earth as a Tool for Astrobiology—A European Perspective

    Get PDF
    • 

    corecore