51 research outputs found
On the nonlinear NMR and magnon BEC in antiferromagnetic materials with coupled electron-nuclear spin precession
We present a new study of nonlinear NMR and Bose-Einstein Condensation (BEC)
of nuclear spin waves in antiferromagnetic MnCO3 with coupled electron and
nuclear spins. In particular, we show that the observed behaviour of NMR
signals strongly contradicts the conventional description of paramagnetic
ensembles of noninteracting spins based on the phenomenological Bloch
equations. We present a new theoretical description of the coupled
electron-nuclear spin precession, which takes into account an indirect
relaxation of nuclear spins via the electron subsystem. We show that the
magnitude of the nuclear magnetization is conserved for arbitrary large
excitation powers, which is drastically different from the conventional heating
scenario derived from the Bloch equations. This provides strong evidence that
the coherent precession of macroscopic nuclear magnetization observed
experimentally can be identified with BEC of nuclear spin waves with k=0.Comment: 12 pages, 8 figure
Magnon-photon coupling in the noncollinear magnetic insulator Cu 2 OSeO 3
Anticrossing behavior between magnons in the noncollinear chiral magnet Cu2OSeO3 and a two-mode X-band microwave resonator was studied in the temperature range 5–100 K. In the field-induced ferrimagnetic phase, we observed a strong-coupling regime between magnons and two microwave cavity modes with a cooperativity reaching 3600. In the conical phase, cavity modes are dispersively coupled to a fundamental helimagnon mode, and we demonstrate that the magnetic phase diagram of Cu2OSeO3 can be reconstructed from the measurements of the cavity resonance frequency. In the helical phase, a hybridized state of a higher-order helimagnon mode and a cavity mode—a helimagnon polariton—was found. Our results reveal a class of magnetic systems where strong coupling of microwave photons to nontrivial spin textures can be observed
One-dimensional Bose chemistry: effects of non-integrability
Three-body collisions of ultracold identical Bose atoms under tight
cylindrical confinement are analyzed. A Feshbach resonance in two-body
collisions is described by a two-channel zero-range interaction. Elimination of
the closed channel in the three-body problem reduces the interaction to a
one-channel zero-range one with an energy dependent strength. The related
problem with an energy independent strength (the Lieb-Liniger-McGuire model)
has an exact solution and forbids all chemical processes, such as three-atom
association and diatom dissociation, as well as reflection in atom-diatom
collisions. The resonant case is analyzed by a numerical solution of the
Faddeev-Lovelace equations. The results demonstrate that as the internal
symmetry of the Lieb-Liniger-McGuire model is lifted, the reflection and
chemical reactions become allowed and may be observed in experiments.Comment: 5 pages, 4 figure
Spin resonance linewidths of bismuth donors in silicon coupled to planar microresonators
Ensembles of bismuth donor spins in silicon are promising storage elements
for microwave quantum memories due to their long coherence times which exceed
seconds. Operating an efficient quantum memory requires achieving critical
coupling between the spin ensemble and a suitable high-quality factor resonator
-- this in turn requires a thorough understanding of the lineshapes for the
relevant spin resonance transitions, particularly considering the influence of
the resonator itself on line broadening. Here, we present pulsed electron spin
resonance measurements of ensembles of bismuth donors in natural silicon, above
which niobium superconducting resonators have been patterned. By studying spin
transitions across a range of frequencies and fields we identify distinct line
broadening mechanisms, and in particular those which can be suppressed by
operating at magnetic-field-insensitive `clock transitions'. Given the donor
concentrations and resonator used here, we measure a cooperativity
and based on our findings we discuss a route to achieve unit cooperativity, as
required for a quantum memory
Atmospheric neutrino flux from 3-dimensional simulation
The atmospheric muon and neutrino flux have been simulated using the same
approach which successfully accounted for the recent secondary proton, electron
and positron flux measurements in orbit by the AMS experiment. For the muon
flux, a good agreement is obtained with the CAPRICE and HEAT data for altitudes
ranging from sea level up to about 38 km. The general features of the
calculated atmospheric neutrino flux are reported and discussed. The flux
obtained at the Super-Kamiokande experiment location are reported and compared
with other calculations. For low neutrino energies the flux obtained is
significantly smaller than that used in the data analysis of underground
experiment. The simulation results for the SOUDAN experiment site are also
reported.Comment: 33 pages, 27 figures, 12 tables, final version for Phys. Rev.
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
- …