159 research outputs found

    Correlated Anisotropies in the Cosmic Far-Infrared Background Detected by MIPS/Spitzer: Constraint on the Bias

    Full text link
    We report the detection of correlated anisotropies in the Cosmic Far-Infrared Background at 160 microns. We measure the power spectrum in the Spitzer/SWIRE Lockman Hole field. It reveals unambiguously a strong excess above cirrus and Poisson contributions, at spatial scales between 5 and 30 arcminutes, interpreted as the signature of infrared galaxy clustering. Using our model of infrared galaxy evolution we derive a linear bias b=1.74 \pm 0.16. It is a factor 2 higher than the bias measured for the local IRAS galaxies. Our model indicates that galaxies dominating the 160 microns correlated anisotropies are at z~1. This implies that infrared galaxies at high redshifts are biased tracers of mass, unlike in the local Universe.Comment: ApJ Letters, in pres

    Optical performance of the JWST MIRI flight model: characterization of the point spread function at high-resolution

    Get PDF
    The Mid Infra Red Instrument (MIRI) is one of the four instruments onboard the James Webb Space Telescope (JWST), providing imaging, coronagraphy and spectroscopy over the 5-28 microns band. To verify the optical performance of the instrument, extensive tests were performed at CEA on the flight model (FM) of the Mid-InfraRed IMager (MIRIM) at cryogenic temperatures and in the infrared. This paper reports on the point spread function (PSF) measurements at 5.6 microns, the shortest operating wavelength for imaging. At 5.6 microns the PSF is not Nyquist-sampled, so we use am original technique that combines a microscanning measurement strategy with a deconvolution algorithm to obtain an over-resolved MIRIM PSF. The microscanning consists in a sub-pixel scan of a point source on the focal plane. A data inversion method is used to reconstruct PSF images that are over-resolved by a factor of 7 compared to the native resolution of MIRI. We show that the FWHM of the high-resolution PSFs were 5-10% wider than that obtained with Zemax simulations. The main cause was identified as an out-of-specification tilt of the M4 mirror. After correction, two additional test campaigns were carried out, and we show that the shape of the PSF is conform to expectations. The FWHM of the PSFs are 0.18-0.20 arcsec, in agreement with simulations. 56.1-59.2% of the total encircled energy (normalized to a 5 arcsec radius) is contained within the first dark Airy ring, over the whole field of view. At longer wavelengths (7.7-25.5 microns), this percentage is 57-68%. MIRIM is thus compliant with the optical quality requirements. This characterization of the MIRIM PSF, as well as the deconvolution method presented here, are of particular importance, not only for the verification of the optical quality and the MIRI calibration, but also for scientific applications.Comment: 13 pages, submitted to SPIE Proceedings vol. 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wav

    Peering into the Young Planetary System AB Pic. Atmosphere, Orbit, Obliquity & Second Planetary Candidate

    Get PDF
    We aim to revisit the system AB Pic which has a known companion at the exoplanet/ brown-dwarf boundary. We based this study on a rich set of observations to investigate the companion's orbit and atmosphere. We composed a spectrum of AB Pic b merging archival VLT/SINFONI K-band data, with published spectra at J and H-band (SINFONI) and Lp-band (Magellan-AO), and photometric measurements (HST and Spitzer). We modeled the spectrum with ForMoSA, based on two atmospheric models: ExoREM and BT-SETTL13. We determined the orbital properties of b fitting the astrometric measurements from NaCo (2003 and 2004) and SPHERE (2015). The orbital solutions favor a semi-major axis of \sim190au viewed edge-on. With Exo-REM, we derive a Teff_{eff} of 1700±\pm50K and surface gravity of 4.5±\pm0.3dex, consistent with previous works, and we report for the first time a C/O ratio of 0.58±\pm0.08 (\simsolar). The posteriors are sensitive to the wavelength interval and the family of models used. Given the 2.1hr rotation period and our vsin(i) of \sim73km/s, we estimate for the first time the true obliquity to be \sim45 or \sim135deg, indicating a significant misalignment between the planet's spin and orbit orientations. Finally, the existence of a proper motion anomaly between the Hipparcos and Gaia eDR3 compared to our SPHERE detection limits and adapted radial velocity limits indicate the existence of a \sim6MJup_{Jup} inner planet orbiting from 2 to 10au (40-200mas). The possible existence of an inner companion, together with the likely miss-alignment of the spin axis orientation, strongly favor a formation path by gravitational instability or core accretion within a disk closer inside followed by dynamical interactions. Confirmation and characterization of planet c and access to a broader wavelength coverage for planet b will be essential to probe the uncertainties associated with the parameters.Comment: 17 pages, 13 Figures, 6 Tables. Accepted for publication in A&A (31 of October

    In-depth study of moderately young but extremely red, very dusty substellar companion HD206893B

    Get PDF
    Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The substellar companion HD206893b has recently been discovered by direct imaging of its disc-bearing host star with the SPHERE instrument. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multiinstrument follow-up of its host star. We obtain a R=30 spectrum from 0.95 to 1.64 micron of the companion and additional photometry at 2.11 and 2.25 micron. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6MJup (2MJup) at 0.5" for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf...Peer reviewedFinal Accepted Versio

    Direct Discovery of the Inner Exoplanet in the Hd 206893 System: Evidence for Deuterium Burning in a Planetary-Mass Companion

    Get PDF
    Aims. HD 206893 is a nearby debris disk star that hosts a previously identified brown dwarf companion with an orbital separation of ~ 10 au. Long-Term precise radial velocity (RV) monitoring, as well as anomalies in the system proper motion, has suggested the presence of an additional, inner companion in the system. Methods. Using information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we have undertaken a multi-epoch search for the purported additional planet using the VLTI/GRAVITY instrument. Results. We report a high-significance detection over three epochs of the companion HD 206893c, which shows clear evidence for Keplerian orbital motion. Our astrometry with ~ 50-100 µarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7+1.21.0 {+1.2}_{-1.0} MJup and an orbital separation of 3.53+0.080.06 {+0.08}_{-0.06} au for HD 206893c. Our fits to the orbits of both companions in the system use both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore allow us to derive an age of 155 ± 15 Myr for the system. We find that theoretical atmospheric and evolutionary models that incorporate deuterium burning for HD 206893c, parameterized by cloudy atmosphere models as well as a hybrid sequence (encompassing a transition from cloudy to cloud-free), provide a good simultaneous fit to the luminosity of both HD 206893B and c. Thus, accounting for both deuterium burning and clouds is crucial to understanding the luminosity evolution of HD 206893c. Conclusions. In addition to using long-Term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part by Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward for identifying and characterizing additional directly imaged planets. In addition, HD 206893c is an example of an object narrowly straddling the deuterium-burning limit but unambiguously undergoing deuterium burning. Additional discoveries like this may therefore help clarify the discrimination between a brown dwarf and an extrasolar planet. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form, at ice-line orbital separations of 2-4 au

    The Mass of β Pictoris C from β Pictoris b Orbital Motion

    Get PDF
    Aims. We aim to demonstrate that the presence and mass of an exoplanet can now be effectively derived from the astrometry of another exoplanet. Methods. We combined previous astrometry of β Pictoris b with a new set of observations from the GRAVITY interferometer. The orbital motion of β Pictoris b is fit using Markov chain Monte Carlo simulations in Jacobi coordinates. The inner planet, β Pictoris c, was also reobserved at a separation of 96 mas, confirming the previous orbital estimations. Results. From the astrometry of planet b only, we can (i) detect the presence of β Pictoris c and (ii) constrain its mass to 10.04-3.10+4.53 MJup. If one adds the astrometry of β Pictoris c, the mass is narrowed down to 9.15-1.06+1.08 MJup. The inclusion of radial velocity measurements does not affect the orbital parameters significantly, but it does slightly decrease the mass estimate to 8.89-0.75+0.75 MJup. With a semimajor axis of 2.68 ± 0.02 au, a period of 1221 ± 15 days, and an eccentricity of 0.32 ± 0.02, the orbital parameters of β Pictoris c are now constrained as precisely as those of β Pictoris b. The orbital configuration is compatible with a high-order mean-motion resonance (7:1). The impact of the resonance on the planets\u27 dynamics would then be negligible with respect to the secular perturbations, which might have played an important role in the eccentricity excitation of the outer planet

    The high-albedo, low polarization disk around HD 114082 harbouring a Jupiter-sized transiting planet

    Full text link
    We present new optical and near-IR images of debris disk around the F-type star HD 114082. We obtained direct imaging observations and analysed the TESS photometric time series data of this target with a goal to search for planetary companions and to characterise the morphology of the debris disk and the scattering properties of dust particles. HD 114082 was observed with the VLT/SPHERE instrument: the IRDIS camera in the K band together with the IFS in the Y, J and H band using the ADI technique as well as IRDIS in the H band and ZIMPOL in the I_PRIME band using the PDI technique. The scattered light images were fitted with a 3D model for single scattering in an optically thin dust disk. We performed aperture photometry in order to derive the scattering and polarized phase functions, polarization fraction and spectral scattering albedo for the dust particles in the disk. This method was also used to obtain the reflectance spectrum of the disk to retrieve the disk color and study the dust reflectivity in comparison to the debris disk HD 117214. We also performed the modeling of the HD 114082 light curve measured by TESS using the models for planet transit and stellar activity to put constraints on radius of the detected planet and its orbit. The debris disk appears as an axisymmetric debris belt with a radius of ~0.37"" (35 au), inclination of ~83^\circ and a wide inner cavity. Dust particles in HD 114082 have a maximum polarization fraction of ~17% and a high reflectivity which results in a spectral scattering albedo of 0.65. The analysis of TESS photometric data reveals a transiting planetary companion to HD 114082 with a radius of \sim1~RJ\rm R_{J} on an orbit with a semi-major axis of 0.7±0.40.7 \pm 0.4 au. Combining different data, we reach deep sensitivity limits in terms of companion masses down to ~5MJupM_{\rm Jup} at 50 au, and ~10 MJupM_{\rm Jup} at 30 au from the central star.Comment: 27 page

    Direct discovery of the inner exoplanet in the HD 206893 system : Evidence for deuterium burning in a planetary-mass companion

    Get PDF
    Aims. HD 206893 is a nearby debris disk star that hosts a previously identified brown dwarf companion with an orbital separation of ∼10 au. Long-term precise radial velocity (RV) monitoring, as well as anomalies in the system proper motion, has suggested the presence of an additional, inner companion in the system. Methods. Using information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we have undertaken a multi-epoch search for the purported additional planet using the VLTI/GRAVITY instrument. Results. We report a high-significance detection over three epochs of the companion HD 206893c, which shows clear evidence for Keplerian orbital motion. Our astrometry with ∼50−100 μarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7MJup and an orbital separation of 3.53 au for HD 206893c. Our fits to the orbits of both companions in the system use both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore allow us to derive an age of 155 ± 15 Myr for the system. We find that theoretical atmospheric and evolutionary models that incorporate deuterium burning for HD 206893c, parameterized by cloudy atmosphere models as well as a “hybrid sequence” (encompassing a transition from cloudy to cloud-free), provide a good simultaneous fit to the luminosity of both HD 206893B and c. Thus, accounting for both deuterium burning and clouds is crucial to understanding the luminosity evolution of HD 206893c. Conclusions. In addition to using long-term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part by Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward for identifying and characterizing additional directly imaged planets. In addition, HD 206893c is an example of an object narrowly straddling the deuterium-burning limit but unambiguously undergoing deuterium burning. Additional discoveries like this may therefore help clarify the discrimination between a brown dwarf and an extrasolar planet. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form, at ice-line orbital separations of 2−4 au
    corecore