147 research outputs found

    The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths

    Get PDF
    We present the Planck Sky Model (PSM), a parametric model for the generation of all-sky, few arcminute resolution maps of sky emission at submillimetre to centimetre wavelengths, in both intensity and polarisation. Several options are implemented to model the cosmic microwave background, Galactic diffuse emission (synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic Sunyaev-Zeldovich signals from clusters of galaxies. Each component is simulated by means of educated interpolations/extrapolations of data sets available at the time of the launch of the Planck mission, complemented by state-of-the-art models of the emission. Distinctive features of the simulations are: spatially varying spectral properties of synchrotron and dust; different spectral parameters for each point source; modeling of the clustering properties of extragalactic sources and of the power spectrum of fluctuations in the cosmic infrared background. The PSM enables the production of random realizations of the sky emission, constrained to match observational data within their uncertainties, and is implemented in a software package that is regularly updated with incoming information from observations. The model is expected to serve as a useful tool for optimizing planned microwave and sub-millimetre surveys and to test data processing and analysis pipelines. It is, in particular, used for the development and validation of data analysis pipelines within the planck collaboration. A version of the software that can be used for simulating the observations for a variety of experiments is made available on a dedicated website.Comment: 35 pages, 31 figure

    Constraining New Physics with a Positive or Negative Signal of Neutrino-less Double Beta Decay

    Full text link
    We investigate numerically how accurately one could constrain the strengths of different short-range contributions to neutrino-less double beta decay in effective field theory. Depending on the outcome of near-future experiments yielding information on the neutrino masses, the corresponding bounds or estimates can be stronger or weaker. A particularly interesting case, resulting in strong bounds, would be a positive signal of neutrino-less double beta decay that is consistent with complementary information from neutrino oscillation experiments, kinematical determinations of the neutrino mass, and measurements of the sum of light neutrino masses from cosmological observations. The keys to more robust bounds are improvements of the knowledge of the nuclear physics involved and a better experimental accuracy.Comment: 23 pages, 3 figures. Minor changes. Matches version published in JHE

    WIMP-nucleus scattering in chiral effective theory

    Full text link
    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.Comment: 23 pages, 6 figures, 1 tabl

    Future Directions in Parity Violation: From Quarks to the Cosmos

    Get PDF
    I discuss the prospects for future studies of parity-violating (PV) interactions at low energies and the insights they might provide about open questions in the Standard Model as well as physics that lies beyond it. I cover four types of parity-violating observables: PV electron scattering; PV hadronic interactions; PV correlations in weak decays; and searches for the permanent electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions, Milos, Greece (May, 2006); 10 page

    Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO

    Get PDF
    The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double beta decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double beta decay by measuring the decay half-life and the electron angular and energy distributions.Comment: 17 pages, 14 figures, to be published in E.P.J.

    Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources

    Get PDF
    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > 10310^3 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples

    Double Beta Decay

    Get PDF
    We review recent developments in double-beta decay, focusing on what can be learned about the three light neutrinos in future experiments. We examine the effects of uncertainties in already measured neutrino parameters and in calculated nuclear matrix elements on the interpretation of upcoming double-beta decay measurements. We then review a number of proposed experiments.Comment: Some typos corrected, references corrected and added. A less blurry version of figure 3 is available from authors. 41 pages, 5 figures, submitted to J. Phys.

    D1R/GluN1 complexes in the striatum integrate dopamine and glutamate signalling to control synaptic plasticity and cocaine-induced responses.

    Get PDF
    Convergent dopamine and glutamate signalling onto the extracellular signal-regulated kinase (ERK) pathway in medium spiny neurons (MSNs) of the striatum controls psychostimulant-initiated adaptive processes underlying long-lasting behavioural changes. We hypothesised that the physical proximity of dopamine D1 (D1R) and glutamate NMDA (NMDAR) receptors, achieved through the formation of D1R/NMDAR complexes, may act as a molecular bridge that controls the synergistic action of dopamine and glutamate on striatal plasticity and behavioural responses to drugs of abuse. We found that concomitant stimulation of D1R and NMDAR drove complex formation between endogenous D1R and the GluN1 subunit of NMDAR. Conversely, preventing D1R/GluN1 association with a cell-permeable peptide (TAT-GluN1C1) left individual D1R and NMDAR-dependent signalling intact, but prevented D1R-mediated facilitation of NMDAR-calcium influx and subsequent ERK activation. Electrophysiological recordings in striatal slices from mice revealed that D1R/GluN1 complexes control the D1R-dependent enhancement of NMDAR currents and long-term potentiation in D1R-MSN. Finally, intra-striatal delivery of TAT-GluN1C1 did not affect acute responses to cocaine but reduced behavioural sensitization. Our findings uncover D1R/GluN1 complexes as a major substrate for the dopamine-glutamate interaction in MSN that is usurped by addictive drugs to elicit persistent behavioural alterations. They also identify D1R/GluN1 complexes as molecular targets with a therapeutic potential for the vast spectrum of psychiatric diseases associated with an imbalance between dopamine and glutamate transmission
    • 

    corecore