41 research outputs found

    Corevalve vs. Sapien 3 transcatheter aortic valve replacement: A finite element analysis study

    Get PDF
    Aim: to investigate the factors implied in the development of postoperative complications in both self-expandable and balloon-expandable transcatheter heart valves by means of finite element analysis (FEA). Materials and methods: FEA was integrated into CT scans to investigate two cases of postoperative device failure for valve thrombosis after the successful implantation of a CoreValve and a Sapien 3 valve. Data were then compared with two patients who had undergone uncomplicated transcatheter heart valve replacement (TAVR) with the same types of valves. Results: Computational biomechanical modeling showed calcifications persisting after device expansion, not visible on the CT scan. These calcifications determined geometrical distortion and elliptical deformation of the valve predisposing to hemodynamic disturbances and potential thrombosis. Increased regional stress was also identified in correspondence to the areas of distortion with the associated paravalvular leak. Conclusion: the use of FEA as an adjunct to preoperative imaging might assist patient selection and procedure planning as well as help in the detection and prevention of TAVR complications

    A finite element analysis study from 3D CT to predict transcatheter heart valve thrombosis

    Get PDF
    Background: Transcatheter aortic valve replacement has proved its safety and effectiveness in intermediate- to high-risk and inoperable patients with severe aortic stenosis. However, despite current guideline recommendations, the use of transcatheter aortic valve replacement (TAVR) to treat severe aortic valve stenosis caused by degenerative leaflet thickening and calcification has not been widely adopted in low-risk patients. This reluctance among both cardiac surgeons and cardiologists could be due to concerns regarding clinical and subclinical valve thrombosis. Stent performance alongside increased aortic root and leaflet stresses in surgical bioprostheses has been correlated with complications such as thrombosis, migration and structural valve degeneration. Materials and Methods: Self-expandable catheter-based aortic valve replacement (Medtronic, Minneapolis, MN, USA), which was received by patients who developed transcatheter heart valve thrombosis, was investigated using high-resolution biomodelling from computed tomography scanning. Calcific blocks were extracted from a 250 CT multi-slice image for precise three-dimensional geometry image reconstruction of the root and leaflets. Results: Distortion of the stent was observed with incomplete cranial and caudal expansion of the device. The incomplete deployment of the stent was evident in the presence of uncrushed refractory bulky calcifications. This resulted in incomplete alignment of the device within the aortic root and potential dislodgment. Conclusion: A Finite Element Analysis (FEA) investigation can anticipate the presence of calcified refractory blocks, the deformation of the prosthetic stent and the development of paravalvular orifice, and it may prevent subclinical and clinical TAVR thrombosis. Here we clearly demonstrate that using exact geometry from high-resolution CT scans in association with FEA allows detection of persistent bulky calcifications that may contribute to thrombus formation after TAVR procedure

    The Lantern Vol. 50, No. 2, Spring 1984

    Get PDF
    ‱ The Storm ‱ Je ne sais pas ‱ The Ghetious Blastious ‱ An Empty Cradle ‱ The Playing Hands ‱ Battle Hymn ‱ A Limerick ‱ Parting Thoughts ‱ The River ‱ Miss You ‱ De la Tristeza ‱ Two So Special ‱ Time of the Unicorn ‱ The Absence ‱ Thru The Breeze ‱ Is the World Really a Round Ball? ‱ Brother ‱ To Michael ‱ Gravity ‱ Refuge ‱ Der Witwer ‱ Plastic Flowers Never Die ‱ Book on the Shelfhttps://digitalcommons.ursinus.edu/lantern/1124/thumbnail.jp

    Three-dimensional echocardiography using single-heartbeat modality decreases variability in measuring left ventricular volumes and function in comparison to four-beat technique in atrial fibrillation

    Get PDF
    BACKGROUND: Three dimensional echocardiography (3DE) approaches the accuracy of cardiac magnetic resonance in measuring left ventricular (LV) volumes and ejection fraction (EF). The multibeat modality in comparison to single-beat (SB) requires breath-hold technique and regular heart rhythm which could limit the use of this technique in patients with atrial fibrillation (AF) due to stitching artifact. The study aimed to investigate whether SB full volume 3DE acquisition reduces inter- and intraobserver variability in assessment of LV volumes and EF in comparison to four-beat (4B) ECG-gated full volume 3DE recording in patients with AF. METHODS: A total of 78 patients were included in this study. Fifty-five with sinus rhythm (group A) and 23 having AF (group B). 4B and SB 3DE was performed in all patients. LV volumes and EF was determined by these two modalities and inter- and intraobserver variability was analyzed. RESULTS: SB modality showed significantly lower inter- and intraobserver variability in group B in comparison to 4B when measuring LV volumes and EF, except for end-systolic volume (ESV) in intraobserver analysis. There were significant differences when calculating the LV volumes (p<0.001) and EF (p<0.05) with SB in comparison to 4B in group B. CONCLUSION: Single-beat three-dimensional full volume acquisition seems to be superior to four-beat ECG-gated acquisition in measuring left ventricular volumes and ejection fraction in patients having atrial fibrillation. The variability is significantly lower both for ejection fraction and left ventricular volumes

    Coronary computed tomography angiography for heart team decision-making in multivessel coronary artery disease

    Get PDF
    Aims Coronary computed tomography angiography (CTA) has emerged as a non-invasive diagnostic method for patients with suspected coronary artery disease, but its usefulness in patients with complex coronary artery disease remains to be investigated. The present study sought to determine the agreement between separate heart teams on treatment decision-making based on either coronary CTA or conventional angiography. Methods and results Separate heart teams composed of an interventional cardiologist, a cardiac surgeon, and a radiologist were randomized to assess the coronary artery disease with either coronary CTA or conventional angiography in patients with de novo left main or three-vessel coronary artery disease. Each heart team, blinded for the other imaging modality, quantified the anatomical complexity using the SYNTAX score and integrated clinical information using the SYNTAX Score II to provide a treatment recommendations based on mortality prediction at 4 years: coronary artery bypass grafting (CABG), percutaneous coronary intervention (PCI), or equipoise between CABG and PCI. The primary endpoint was the agreement between heart teams on the revascularization strategy. The secondary endpoint was the impact of fractional flow reserve derived from coronary CTA (FFRCT) on treatment decision and procedural planning. Overall, 223 patients were included. A treatment recommendation of CABG was made in 28% of the cases with coronary CTA and in 26% with conventional angiography. The agreement concerning treatment decision between coronary CTA and conventional angiography was high (Cohen's kappa 0.82, 95% confidence interval 0.74-0.91). The heart teams agreed on the coronary segments to be revascularized in 80% of the cases. FFRCT was available for 869/1108 lesions (196/223 patients). Fractional flow reserve derived from coronary CTA changed the treatment decision in 7% of the patients. Conclusion In patients with left main or three-vessel coronary artery disease, a heart team treatment decision-making based on coronary CTA showed high agreement with the decision derived from conventional coronary angiography suggesting the potential feasibility of a treatment decision-making and planning based solely on this non-invasive imaging modality and clinical information

    The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models

    Get PDF
    We study the ability of 24 ocean atmosphere global coupled models from the Coupled Model Intercomparison Project 5 (CMIP5) to reproduce the teleconnections between El Niño Southern Oscillation (ENSO) and Southern African rainfall in austral summer using historical forced simulations, with a focus on the atmospheric dynamic associated with El Niño. Overestimations of summer rainfall occur over Southern Africa in all CMIP5 models. Abnormal westward extensions of ENSO patterns are a common feature of all CMIP5 models, while the warming of the Indian Ocean that happens during El Niño is not correctly reproduced. This could impact the teleconnection between ENSO and Southern African rainfall which is represented with mixed success in CMIP5 models. Large-scale anomalies of suppressed deep-convection over the tropical maritime continent and enhanced convection from the central to eastern Pacific are correctly simulated. However, regional biases occur above Africa and the Indian Ocean, particularly in the position of the deep convection anomalies associated with El Niño, which can lead to the wrong sign in rainfall anomalies in the northwest part of South Africa. From the near-surface to mid-troposphere, CMIP5 models underestimate the observed anomalous pattern of pressure occurring over Southern Africa that leads to dry conditions during El Niño years

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
    corecore