30 research outputs found

    Dissociable Roles for the Ventromedial Prefrontal Cortex and Amygdala in Fear Extinction: NR2B Contribution

    No full text
    Fear extinction, which involves learning to suppress the expression of previously learned fear, requires N-methyl-D-aspartate receptors (NMDARs) and is mediated by the amygdala and ventromedial prefrontal cortex (vmPFC). Like other types of learning, extinction involves acquisition and consolidation phases. We recently demonstrated that NR2B-containing NMDARs (NR2Bs) in the lateral amygdala (LA) are required for extinction acquisition, but whether they are involved in consolidation is not known. Further, although it has been shown that NMDARs in the vmPFC are required for extinction consolidation, whether NR2Bs in vmPFC are involved in consolidation is not known. In this report, we investigated the possible role of LA and vmPFC NR2Bs in the consolidation of fear extinction using the NR2B-selective antagonist ifenprodil. We show that systemic treatment with ifenprodil immediately after extinction training disrupts extinction consolidation. Ifenprodil infusion into vmPFC, but not the LA, immediately after extinction training also disrupts extinction consolidation. In contrast, we also show pre-extinction training infusions into vmPFC has no effect. These results, together with our previous findings showing that LA NR2Bs are required during the acquisition phase in extinction, indicate a double dissociation for the phase-dependent role of NR2Bs in the LA (acquisition, not consolidation) and vmPFC (consolidation, not acquisition)

    Development of CNS multi-receptor ligands: Modification of known D2 pharmacophores

    No full text
    Several known D2pharmacophores have been explored as templates for identifying ligands with multiple binding affinities at dopamine and serotonin receptors considered as clinically relevant receptors in the treatment of neuropsychiatric diseases. This approach has resulted in the identification of ligands that target multiple CNS receptors while avoiding others associated with deleterious effects. In particular, compounds 11, 15 and 22 may have potential for further development as antipsychotic agents as they favorably interact with the clinically relevant receptors including D2R, 5-HT1AR, and 5-HT7R. We have also identified the pair of compounds 11 and 10 as high affinity D2R ligands with and without SERT binding affinities, respectively. These differential binding profiles endow the pair with the potential for evaluating SERT contributions to antipsychotic drug activity in animal behavioral models. In addition, compound 11 has no significant affinity for 5-HT2CR and binds only moderately to the H1R, suggesting it may not induce weight gain or sedation when used clinically. Taken together, compound 11 displays an interesting pharmacological profile that necessitates the evaluation of its functional and in vivo effects in animal models which are currently ongoing
    corecore