32 research outputs found

    Modeling relationships between calving traits: a comparison between standard and recursive mixed models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of structural equation models for the analysis of recursive and simultaneous relationships between phenotypes has become more popular recently. The aim of this paper is to illustrate how these models can be applied in animal breeding to achieve parameterizations of different levels of complexity and, more specifically, to model phenotypic recursion between three calving traits: gestation length (GL), calving difficulty (CD) and stillbirth (SB). All recursive models considered here postulate heterogeneous recursive relationships between GL and liabilities to CD and SB, and between liability to CD and liability to SB, depending on categories of GL phenotype.</p> <p>Methods</p> <p>Four models were compared in terms of goodness of fit and predictive ability: 1) standard mixed model (SMM), a model with unstructured (co)variance matrices; 2) recursive mixed model 1 (RMM1), assuming that residual correlations are due to the recursive relationships between phenotypes; 3) RMM2, assuming that correlations between residuals and contemporary groups are due to recursive relationships between phenotypes; and 4) RMM3, postulating that the correlations between genetic effects, contemporary groups and residuals are due to recursive relationships between phenotypes.</p> <p>Results</p> <p>For all the RMM considered, the estimates of the structural coefficients were similar. Results revealed a nonlinear relationship between GL and the liabilities both to CD and to SB, and a linear relationship between the liabilities to CD and SB.</p> <p>Differences in terms of goodness of fit and predictive ability of the models considered were negligible, suggesting that RMM3 is plausible.</p> <p>Conclusions</p> <p>The applications examined in this study suggest the plausibility of a nonlinear recursive effect from GL onto CD and SB. Also, the fact that the most restrictive model RMM3, which assumes that the only cause of correlation is phenotypic recursion, performs as well as the others indicates that the phenotypic recursion may be an important cause of the observed patterns of genetic and environmental correlations.</p

    Genetic Variation in the TP53 Pathway and Bladder Cancer Risk. A Comprehensive Analysis

    Get PDF
    Introduction: Germline variants in TP63 have been consistently associated with several tumors, including bladder cancer, indicating the importance of TP53 pathway in cancer genetic susceptibility. However, variants in other related genes, including TP53 rs1042522 (Arg72Pro), still present controversial results. We carried out an in depth assessment of associations between common germline variants in the TP53 pathway and bladder cancer risk. Material and Methods: We investigated 184 tagSNPs from 18 genes in 1,058 cases and 1,138 controls from the Spanish Bladder Cancer/EPICURO Study. Cases were newly-diagnosed bladder cancer patients during 1998–2001. Hospital controls were age-gender, and area matched to cases. SNPs were genotyped in blood DNA using Illumina Golden Gate and TaqMan assays. Cases were subphenotyped according to stage/grade and tumor p53 expression. We applied classical tests to assess individual SNP associations and the Least Absolute Shrinkage and Selection Operator (LASSO)-penalized logistic regression analysis to assess multiple SNPs simultaneously. Results: Based on classical analyses, SNPs in BAK1 (1), IGF1R (5), P53AIP1 (1), PMAIP1 (2), SERINPB5 (3), TP63 (3), and TP73 (1) showed significant associations at p-value#0.05. However, no evidence of association, either with overall risk or with specific disease subtypes, was observed after correction for multiple testing (p-value$0.8). LASSO selected the SNP rs6567355 in SERPINB5 with 83% of reproducibility. This SNP provided an OR = 1.21, 95%CI 1.05–1.38, p-value = 0.006, and a corrected p-value = 0.5 when controlling for over-estimation. Discussion: We found no strong evidence that common variants in the TP53 pathway are associated with bladder cancer susceptibility. Our study suggests that it is unlikely that TP53 Arg72Pro is implicated in the UCB in white Europeans. SERPINB5 and TP63 variation deserve further exploration in extended studies.This work was supported by the Fondo de Investigacion Sanitaria, Spain (grant numbers 00/0745, PI051436, PI061614, G03/174); Red Tematica de Investigacion Cooperativa en Cancer (grant number RD06/0020-RTICC), Spain; Marato TV3 (grant number 050830); European Commission (grant numbers EU-FP7-HEALTH-F2-2008-201663-UROMOL; US National Institutes of Health (grant number USA-NIH-RO1-CA089715); and the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, USA; Consolider ONCOBIO (Ministerio de Economia y Competitividad, Madrid, Spain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Application of Multi-SNP Approaches Bayesian LASSO and AUC-RF to Detect Main Effects of Inflammatory-Gene Variants Associated with Bladder Cancer Risk

    Get PDF
    The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.The work was partially supported by the Fondo de Investigacion Sanitaria, Instituto de Salud Carlos III (G03/174, 00/0745, PI051436, PI061614, PI09-02102, G03/174 and Sara Borrell fellowship to ELM) and Ministry of Science and Innovation (MTM2008-06747-C02-02 and FPU fellowship award to VU), Spain; AGAUR-Generalitat de Catalunya (Grant 2009SGR-581); Fundaciola Maratode TV3; Red Tematica de Investigacion Cooperativa en Cancer (RTICC); Asociacion Espanola Contra el Cancer (AECC); EU-FP7-201663; and RO1-CA089715 and CA34627; the Spanish National Institute for Bioinformatics (www.inab.org); and by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA. MD Anderson support for this project included U01 CA 127615 (XW); R01 CA 74880 (XW); P50 CA 91846 (XW, CPD); Betty B. Marcus Chair fund in Cancer Prevention (XW); UT Research Trust fund (XW) and R01 CA 131335 (JG)

    A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer

    Get PDF
    Funder: Fundación Científica Asociación Española Contra el Cáncer (ES)Funder: Cancer Focus Northern Ireland and Department for Employment and LearningFunder: Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, USAAbstract: Background: Pancreatic cancer (PC) is a complex disease in which both non-genetic and genetic factors interplay. To date, 40 GWAS hits have been associated with PC risk in individuals of European descent, explaining 4.1% of the phenotypic variance. Methods: We complemented a new conventional PC GWAS (1D) with genome spatial autocorrelation analysis (2D) permitting to prioritize low frequency variants not detected by GWAS. These were further expanded via Hi-C map (3D) interactions to gain additional insight into the inherited basis of PC. In silico functional analysis of public genomic information allowed prioritization of potentially relevant candidate variants. Results: We identified several new variants located in genes for which there is experimental evidence of their implication in the biology and function of pancreatic acinar cells. Among them is a novel independent variant in NR5A2 (rs3790840) with a meta-analysis p value = 5.91E−06 in 1D approach and a Local Moran’s Index (LMI) = 7.76 in 2D approach. We also identified a multi-hit region in CASC8—a lncRNA associated with pancreatic carcinogenesis—with a lowest p value = 6.91E−05. Importantly, two new PC loci were identified both by 2D and 3D approaches: SIAH3 (LMI = 18.24), CTRB2/BCAR1 (LMI = 6.03), in addition to a chromatin interacting region in XBP1—a major regulator of the ER stress and unfolded protein responses in acinar cells—identified by 3D; all of them with a strong in silico functional support. Conclusions: This multi-step strategy, combined with an in-depth in silico functional analysis, offers a comprehensive approach to advance the study of PC genetic susceptibility and could be applied to other diseases

    Toward the integration of Omics data in epidemiological studies: still a "long and winding road"

    No full text
    Primary and secondary prevention can highly benefit a personalized medicine approach through the accurate discrimination of individuals at high risk of developing a specific disease from those at moderate and low risk. To this end precise risk prediction models need to be built. This endeavor requires a precise characterization of the individual exposome, genome, and phenome. Massive molecular omics data representing the different layers of the biological processes of the host and the nonhost will enable to build more accurate risk prediction models. Epidemiologists aim to integrate omics data along with important information coming from other sources (questionnaires, candidate markers) that has been proved to be relevant in the discrimination risk assessment of complex diseases. However, the integrative models in large-scale epidemiologic research are still in their infancy and they face numerous challenges, some of them at the analytical stage. So far, there are a small number of studies that have integrated more than two omics data sets, and the inclusion of non-omics data in the same models is still missing in most of studies. In this contribution, we aim at approaching the omics and non-omics data integration from the epidemiology scope by considering the "massive" inclusion of variables in the risk assessment and predictive models. We also provide already available examples of integrative contributions in the field, propose analytical strategies that allow considering both omics and non-omics data in the models, and finally review the challenges imbedding this type of research.status: publishe

    Tumor-Infiltrating B- and T-Cell Repertoire in Pancreatic Cancer Associated With Host and Tumor Features.

    No full text
    BackgroundInfiltrating B and T cells have been observed in several tumor tissues, including pancreatic ductal adenocarcinoma (PDAC). The majority known PDAC risk factors point to a chronic inflammatory process leading to different forms of immunological infiltration. Understanding pancreatic tumor infiltration may lead to improved knowledge of this devastating disease.MethodsWe extracted the immunoglobulins (IGs) and T cell receptors (TCRs) from RNA-sequencing of 144 PDAC from TCGA and 180 pancreatic normal tissue from GTEx. We used Shannon entropy to find differences in IG/TCR diversity. We performed a clonotype analysis considering the IG clone definition (same V and J segments, same CDR3 length, and 90% nucleotide identity between CDR3s) to study differences among the tumor samples. Finally, we performed an association analysis to find host and tumor factors associated with the IG/TCR.ResultsPDAC presented a richer and more diverse IG and TCR infiltration than normal pancreatic tissue. A higher IG infiltration was present in heavy smokers and females and it was associated with better overall survival. In addition, specific IG clonotypes classified samples with better prognosis explaining 24% of the prognosis phenotypic variance. On the other hand, a larger TCR infiltration was present in patients with previous history of diabetes and was associated with lower nonantigen load.ConclusionsOur findings support PDAC subtyping according to its immune repertoire landscape with a potential impact on the understanding of the inflammatory basis of PDAC risk factors as well as the design of treatment options and prognosis monitoring

    Exploring Biological Relationships Between Calving Traits in Primiparous Cattle with a Bayesian Recursive Model

    No full text
    Structural equation models (SEMs) of a recursive type with heterogeneous structural coefficients were used to explore biological relationships between gestation length (GL), calving difficulty (CD), and perinatal mortality, also known as stillbirth (SB), in cattle, with the last two traits having categorical expression. An acyclic model was assumed, where recursive effects existed from the GL phenotype to the liabilities (latent variables) to CD and SB and from the liability to CD to that of SB considering four periods regarding GL. The data contained GL, CD, and SB records from 90,393 primiparous cows, sired by 1122 bulls, distributed over 935 herd-calving year classes. Low genetic correlations between GL and the other calving traits were found, whereas the liabilities to CD and SB were high and positively correlated, genetically. The model indicated that gestations of ∼274 days of length (3 days shorter than the average) would lead to the lowest CD and SB and confirmed the existence of an intermediate optimum of GL with respect to these traits

    Tumor-infiltrating b-and T-cell repertoire in pancreatic cancer associated with host and tumor features

    No full text
    Background: Infiltrating B and T cells have been observed in several tumor tissues, including pancreatic ductal adenocarcinoma (PDAC). The majority known PDAC risk factors point to a chronic inflammatory process leading to different forms of immunological infiltration. Understanding pancreatic tumor infiltration may lead to improved knowledge of this devastating disease. Methods: We extracted the immunoglobulins (IGs) and T cell receptors (TCRs) from RNA-sequencing of 144 PDAC from TCGA and 180 pancreatic normal tissue from GTEx. We used Shannon entropy to find differences in IG/TCR diversity. We performed a clonotype analysis considering the IG clone definition (same V and J segments, same CDR3 length, and 90% nucleotide identity between CDR3s) to study differences among the tumor samples. Finally, we performed an association analysis to find host and tumor factors associated with the IG/TCR. Results: PDAC presented a richer and more diverse IG and TCR infiltration than normal pancreatic tissue. A higher IG infiltration was present in heavy smokers and females and it was associated with better overall survival. In addition, specific IG clonotypes classified samples with better prognosis explaining 24% of the prognosis phenotypic variance. On the other hand, a larger TCR infiltration was present in patients with previous history of diabetes and was associated with lower nonantigen load. Conclusions: Our findings support PDAC subtyping according to its immune repertoire landscape with a potential impact on the understanding of the inflammatory basis of PDAC risk factors as well as the design of treatment options and prognosis monitoringAACRAstraZenecaFondo de InvestigacionesSanitarias (FIS)Instituto de Salud Carlos III, SpainPancreatic Cancer Collective (PCC)Lustgarten Foundation & Stand-Up to CancerDepto. de Estadística y Ciencia de los DatosFac. de Estudios EstadísticosTRUEpu
    corecore