413 research outputs found
Detection of New Delhi Metallo-β-Lactamase (Encoded by \u3ci\u3ebla\u3c/i\u3e\u3csub\u3eNDM-1\u3c/sub\u3e) in \u3ci\u3eAcinetobacter schindleri\u3c/i\u3e during Routine Surveillance
A carbapenem-resistant Alcaligenes faecalis strain was isolated from a surveillance swab of a service member injured in Afghanistan. The isolate was positive for blaNDM by real-time PCR. Species identification was reevaluated on three identification systems but was inconclusive. Genome sequencing indicated that the closest relative was Acinetobacter schindleri and that blaNDM-1 was carried on a plasmid that shared \u3e99% identity with one identified in an Acinetobacter lwoffii isolate. The isolate also carried a novel chromosomally encoded class D oxacillinase
Bacterial Peritonitis Due to \u3ci\u3eAcinetobacter baumannii\u3c/i\u3e Sequence Type 25 with Plasmid-Borne New Delhi Metallo-Beta-Lactamase in Honduras
A carbapenem-resistant Acinetobacter baumannii strain was isolated from the peritoneal fluid of a patient with complicated intra-abdominal infection and evaluated at the Multidrug-resistant Organism Repository and Surveillance Network by wholegenome sequencing and real-time PCR. The isolate was sequence type 25 and susceptible to colistin and minocycline, with low MICs of tigecycline. blaNDM-1 was located on a plasmid with \u3e99% homology to pNDM-BJ02. The isolate carried numerous other antibiotic resistance genes, including the 16S methylase gene, armA
CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca(2+)- Permeable Channels and Stomatal Closure
Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca(2+) in guard cell ion channel regulation. However, genetic mutants in Ca(2+) sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+)-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+) activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+)-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+)-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+) oscillation experiments revealed that Ca(2+)-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+)-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+)-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling
Drosophila cbl Is Essential for Control of Cell Death and Cell Differentiation during Eye Development
Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation, differentiation and survival. However, as important as the activation of these receptors is their appropriate spatial and temporal down-regulation for normal development and tissue homeostasis. The Cbl family of E3-ubiquitin ligases plays a major role for the ligand-dependent inactivation of receptor tyrosine kinases (RTKs), most notably the Epidermal Growth Factor Receptor (EGFR) through ubiquitin-mediated endocytosis and lysosomal degradation.Here, we report the mutant phenotypes of Drosophila cbl (D-cbl) during eye development. D-cbl mutants display overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Using genetic interaction and molecular markers, we show that most of these phenotypes are caused by increased activity of the Drosophila EGFR. Our genetic data also indicate a critical role of ubiquitination for D-cbl function, consistent with biochemical models.These data may provide a mechanistic model for the understanding of the oncogenic activity of mammalian cbl genes
Independent impacts of aging on mitochondrial DNA quantity and quality in humans
Background
The accumulation of mitochondrial DNA (mtDNA) mutations, and the reduction of mtDNA copy number, both disrupt mitochondrial energetics, and may contribute to aging and age-associated phenotypes. However, there are few genetic and epidemiological studies on the spectra of blood mtDNA heteroplasmies, and the distribution of mtDNA copy numbers in different age groups and their impact on age-related phenotypes. In this work, we used whole-genome sequencing data of isolated peripheral blood mononuclear cells (PBMCs) from the UK10K project to investigate in parallel mtDNA heteroplasmy and copy number in 1511 women, between 17 and 85 years old, recruited in the TwinsUK cohorts.
Results
We report a high prevalence of pathogenic mtDNA heteroplasmies in this population. We also find an increase in mtDNA heteroplasmies with age (β = 0.011, P = 5.77e-6), and showed that, on average, individuals aged 70-years or older had 58.5% more mtDNA heteroplasmies than those under 40-years old. Conversely, mtDNA copy number decreased by an average of 0.4 copies per year (β = −0.395, P = 0.0097). Multiple regression analyses also showed that age had independent effects on mtDNA copy number decrease and heteroplasmy accumulation. Finally, mtDNA copy number was positively associated with serum bicarbonate level (P = 4.46e-5), and inversely correlated with white blood cell count (P = 0.0006). Moreover, the aggregated heteroplasmy load was associated with blood apolipoprotein B level (P = 1.33e-5), linking the accumulation of mtDNA mutations to age-related physiological markers.
Conclusions
Our population-based study indicates that both mtDNA quality and quantity are influenced by age. An open question for the future is whether interventions that would contribute to maintain optimal mtDNA copy number and prevent the expansion of heteroplasmy could promote healthy aging
Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes
Penetrance of variants in monogenic disease and clinical utility of common polygenic variation has not been well explored on a large-scale. Here, the authors use exome sequencing data from 77,184 individuals to generate penetrance estimates and assess the utility of polygenic variation in risk prediction of monogenic variants
- …