322 research outputs found

    Maximum expected ramp rates using cloud speed sensor measurements

    Get PDF
    Large ramps and ramp rates in photovoltaic (PV) power output are of concern and sometimes even explicitly restricted by grid operators. Battery energy storage systems can smooth the power output and maintain ramp rates within permissible limits. To enable PV plant and energy storage system design and planning, a method to estimate the largest expected ramps for a given location is proposed. Because clouds are the dominant source of PV power output variability, an analytical relationship between the worst expected ramp rate, cloud motion vector, and the geometrical layout of the PV plant is developed. The ability of the proposed method to bracket actual ramp rates is assessed over 10 months under different meteorological conditions, demonstrating an average compliance rate of 98.9% for a 2 min evaluation time window. The largest observed ramp of 29.7% s(-1)is contained with the worst case estimate of 34.3% s(-1). This method provides a convenient yet economical approach to worst-case PV ramp rate modeling and is compatible with solar irradiance measured at coarse temporal resolution.Juan Bosch was financed in part by Project No. PID2019-108953RB-C21, funded by the Ministerio de Ciencia e Innovación and co-financed by the European Regional Development Fund. In addition, Iñigo de la Parra was partially supported by the Spanish State Research Agency (AEI) and FEDER-UE under Grant Nos. DPI2016-80641-R and DPI2016-80642-R

    Fraction of uninfected walkers in the one-dimensional Potts model

    Full text link
    The dynamics of the one-dimensional q-state Potts model, in the zero temperature limit, can be formulated through the motion of random walkers which either annihilate (A + A -> 0) or coalesce (A + A -> A) with a q-dependent probability. We consider all of the walkers in this model to be mutually infectious. Whenever two walkers meet, they experience mutual contamination. Walkers which avoid an encounter with another random walker up to time t remain uninfected. The fraction of uninfected walkers is investigated numerically and found to decay algebraically, U(t) \sim t^{-\phi(q)}, with a nontrivial exponent \phi(q). Our study is extended to include the coupled diffusion-limited reaction A+A -> B, B+B -> A in one dimension with equal initial densities of A and B particles. We find that the density of walkers decays in this model as \rho(t) \sim t^{-1/2}. The fraction of sites unvisited by either an A or a B particle is found to obey a power law, P(t) \sim t^{-\theta} with \theta \simeq 1.33. We discuss these exponents within the context of the q-state Potts model and present numerical evidence that the fraction of walkers which remain uninfected decays as U(t) \sim t^{-\phi}, where \phi \simeq 1.13 when infection occurs between like particles only, and \phi \simeq 1.93 when we also include cross-species contamination.Comment: Expanded introduction with more discussion of related wor

    Blink and you'll miss it: The role of blinking in the perception of magic tricks

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed.Magicians use several techniques to deceive their audiences, including, for example, the misdirection of attention and verbal suggestion. We explored another potential stratagem, namely the relaxation of attention. Participants watched a video of a highly skilled magician whilst having their eye-blinks recorded. The timing of spontaneous eye-blinks was highly synchronized across participants. In addition, the synchronized blinks frequency occurred immediately after a seemingly impossible feat, and often coincided with actions that the magician wanted to conceal from the audience. Given that blinking is associated with the relaxation of attention, these findings suggest that blinking plays an important role in the perception of magic, and that magicians may utilize blinking and the relaxation of attention to hide certain secret actions.Peer reviewedFinal Published versio

    Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth

    Get PDF
    A method for retrieving cloud optical depth (τc) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red–blue ratio (RRBR) method is motivated from the analysis of simulated images of various τc produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red–blue ratio (RBR) of a pixel are identified as the solar zenith angle (θ0), τc, solar pixel angle/scattering angle (ϑs), and pixel zenith angle/view angle (ϑz). The effects of these parameters are described and the functions for radiance, Iλτc, θ0, ϑs, ϑz, and RBRτc, θ0, ϑs, ϑz are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Iλmeasϑs, ϑz, in addition to RBRmeasϑs, ϑz, to obtain a unique solution for τc. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τc values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τc RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI  have an RMSE of 2.2, which is well within the uncertainty of the MWR. The procedure developed here provides a foundation to test and develop other cloud detection algorithms

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie

    Markovian Dynamics on Complex Reaction Networks

    Full text link
    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underling population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions, the computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.Comment: 52 pages, 11 figures, for freely available MATLAB software, see http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.htm
    • …
    corecore