4,718 research outputs found
Geometry dominated fluid adsorption on sculptured substrates
Experimental methods allow the shape and chemical composition of solid
surfaces to be controlled at a mesoscopic level. Exposing such structured
substrates to a gas close to coexistence with its liquid can produce quite
distinct adsorption characteristics compared to that occuring for planar
systems, which may well play an important role in developing technologies such
as super-repellent surfaces or micro-fluidics. Recent studies have concentrated
on adsorption of liquids at rough and heterogeneous substrates and the
characterisation of nanoscopic liquid films. However, the fundamental effect of
geometry has hardly been addressed. Here we show that varying the shape of the
substrate can exert a profound influence on the adsorption isotherms allowing
us to smoothly connect wetting and capillary condensation through a number of
novel and distinct examples of fluid interfacial phenomena. This opens the
possibility of tailoring the adsorption properties of solid substrates by
sculpturing their surface shape.Comment: 6 pages, 4 figure
The Spin Structure of the Nucleon
We present an overview of recent experimental and theoretical advances in our
understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure
Betti numbers for numerical semigroup rings
We survey results related to the magnitude of the Betti numbers of numerical
semigroup rings and of their tangent cones.Comment: 22 pages; v2: updated references. To appear in Multigraded Algebra
and Applications (V. Ene, E. Miller Eds.
Exploring the Higgs Portal with 10/fb at the LHC
We consider the impact of new exotic colored and/or charged matter
interacting through the Higgs portal on Standard Model Higgs boson searches at
the LHC. Such Higgs portal couplings can induce shifts in the effective
Higgs-gluon-gluon and Higgs-photon-photon couplings, thus modifying the Higgs
production and decay patterns. We consider two possible interpretations of the
current LHC Higgs searches based on ~ 5/fb of data at each detector: 1) a Higgs
boson in the mass range (124-126) GeV and 2) a `hidden' heavy Higgs boson which
is underproduced due to the suppression of its gluon fusion production cross
section. We first perform a model independent analysis of the allowed sizes of
such shifts in light of the current LHC data. As a class of possible candidates
for new physics which gives rise to such shifts, we investigate the effects of
new scalar multiplets charged under the Standard Model gauge symmetries. We
determine the scalar parameter space that is allowed by current LHC Higgs
searches, and compare with complementary LHC searches that are sensitive to the
direct production of colored scalar states.Comment: 27 pages, 11 figures; v2: references added, correction to scalar form
factor, numerical results updated with Moriond 2012 data, conclusions
unchange
Janus monolayers of transition metal dichalcogenides.
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements
Multicolour correlative imaging using phosphor probes
Correlative light and electron microscopy exploits the advantages of optical methods, such as multicolour probes and their use in hydrated live biological samples, to locate functional units, which are then correlated with structural details that can be revealed by the superior resolution of electron microscopes. One difficulty is locating the area imaged by the electron beam in the much larger optical field of view. Multifunctional probes that can be imaged in both modalities and thus register the two images are required. Phosphor materials give cathodoluminescence (CL) optical emissions under electron excitation. Lanthanum phosphate containing thulium or terbium or europium emits narrow bands in the blue, green and red regions of the CL spectrum; they may be synthesised with very uniform-sized crystals in the 10- to 50-nm range. Such crystals can be imaged by CL in the electron microscope, at resolutions limited by the particle size, and with colour discrimination to identify different probes. These materials also give emissions in the optical microscope, by
multiphoton excitation. They have been deposited on the surface of glioblastoma cells and imaged by CL. Gadolinium oxysulphide doped with terbium emits green photons by either ultraviolet or electron excitation. Sixty-nanometre crystals of this phosphor have been imaged in the atmospheric scanning electron microscope (JEOL ClairScope). This probe and microscope combination allow correlative imaging in hydrated samples. Phosphor probes should prove to be very useful in correlative light and electron microscopy, as fiducial
markers to assist in image registration, and in high/super resolution imaging studies
Towards multi-scale dynamics on the baryonic branch of Klebanov-Strassler
We construct explicitly a new class of backgrounds in type-IIB supergravity
which generalize the baryonic branch of Klebanov-Strassler. We apply a
solution-generating technique that, starting from a large class of solutions of
the wrapped-D5 system, yields the new solutions, and then proceed to study in
detail their properties, both in the IR and in the UV. We propose a simple
intuitive field theory interpretation of the rotation procedure and of the
meaning of our new solutions within the Papadopoulos-Tseytlin ansatz, in
particular in relation to the duality cascade in the Klebanov-Strassler
solution. The presence in the field theory of different VEVs for operators of
dimensions 2, 3 and 6 suggests that this is an important step towards the
construction of the string dual of a genuinely multi-scale (strongly coupled)
dynamical model.Comment: 37 pages, 7 figures. References added, version to appear in JHE
Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin
One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-
We report the first observation of the baryonic flavor-changing neutral
current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a
statistical significance of 5.8 Gaussian standard deviations. This measurement
uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV
collected by the CDF II detector at the Tevatron collider. The total and
differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We
find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}.
We also report the first measurement of the differential branching ratio of B_s
-> phi mu+ mu- using 49 signal events. In addition, we report branching ratios
for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
