1,522 research outputs found

    O−O Bond Formation and Liberation of Dioxygen Mediated by N5‐Coordinate Non‐Heme Iron(IV) Complexes

    Get PDF
    Formation of the O−O bond is considered the critical step in oxidative water cleavage to produce dioxygen. High‐valent metal complexes with terminal oxo (oxido) ligands are commonly regarded as instrumental for oxygen evolution, but direct experimental evidence is lacking. Herein, we describe the formation of the O−O bond in solution, from non‐heme, N5‐coordinate oxoiron(IV) species. Oxygen evolution from oxoiron(IV) is instantaneous once meta‐chloroperbenzoic acid is administered in excess. Oxygen‐isotope labeling reveals two sources of dioxygen, pointing to mechanistic branching between HAT (hydrogen atom transfer)‐initiated free‐radical pathways of the peroxides, which are typical of catalase‐like reactivity, and iron‐borne O−O coupling, which is unprecedented for non‐heme/peroxide systems. Interpretation in terms of [FeIV(O)] and [FeV(O)] being the resting and active principles of the O−O coupling, respectively, concurs with fundamental mechanistic ideas of (electro‐) chemical O−O coupling in water oxidation catalysis (WOC), indicating that central mechanistic motifs of WOC can be mimicked in a catalase/peroxidase setting.DFG, 12489635, SFB 658: Elementarprozesse in molekularen Schaltern auf OberflĂ€chenTU Berlin, Open-Access-Mittel - 201

    The lipid transporter ORP2 regulates synaptic neurotransmitter release via two distinct mechanisms

    Get PDF
    Funding Information: We thank Marisa Brockmann and GĂŒlcin Vardar for initial help with SynGCamp6f imaging and electrophysiology, respectively. We thank Katja Pötschke, Bettina Brokowski, Heike Lerch, Nadine Albrecht-Koepke, and Berit Söhl-Kielczynski for expert technical assistance and the Viral Core Facility of the CharitĂ© – UniversitĂ€tsmedizin Berlin for lentivirus and AAV production. We thank the Core Facility for Electron Microscopy of the CharitĂ© for their support with the electron microscope. This study was supported by the CharitĂ© UniversitĂ€tsmedizin Berlin (M.W.-B., J.K., T.T., C.R.), the German Research Council via a Reinhart Koselleck project (C.R.), the Lydia Rabinowitsch-Förderung (M.W.-B.), the Academy of Finland (grant 3222647 to V.M.O.), and the Sigrid JusĂ©lius Foundation (V.M.O.). Publisher Copyright: © 2022 The AuthorsCholesterol is crucial for neuronal synaptic transmission, assisting in the molecular and structural organization of lipid rafts, ion channels, and exocytic proteins. Although cholesterol absence was shown to result in impaired neurotransmission, how cholesterol locally traffics and its route of action are still under debate. Here, we characterized the lipid transfer protein ORP2 in murine hippocampal neurons. We show that ORP2 preferentially localizes to the presynapse. Loss of ORP2 reduces presynaptic cholesterol levels by 50%, coinciding with a profoundly reduced release probability, enhanced facilitation, and impaired presynaptic calcium influx. In addition, ORP2 plays a cholesterol-transport-independent role in regulating vesicle priming and spontaneous release, likely by competing with Munc18-1 in syntaxin1A binding. To conclude, we identified a dual function of ORP2 as a physiological modulator of the synaptic cholesterol content and a regulator of neuronal exocytosis.Peer reviewe

    Time preferences and risk aversion: tests on domain differences

    No full text
    The design and evaluation of environmental policy requires the incorporation of time and risk elements as many environmental outcomes extend over long time periods and involve a large degree of uncertainty. Understanding how individuals discount and evaluate risks with respect to environmental outcomes is a prime component in designing effective environmental policy to address issues of environmental sustainability, such as climate change. Our objective in this study is to investigate whether subjects' time preferences and risk aversion across the monetary domain and the environmental domain differ. Crucially, our experimental design is incentivized: in the monetary domain, time preferences and risk aversion are elicited with real monetary payoffs, whereas in the environmental domain, we elicit time preferences and risk aversion using real (bee-friendly) plants. We find that subjects' time preferences are not significantly different across the monetary and environmental domains. In contrast, subjects' risk aversion is significantly different across the two domains. More specifically, subjects (men and women) exhibit a higher degree of risk aversion in the environmental domain relative to the monetary domain. Finally, we corroborate earlier results, which document that women are more risk averse than men in the monetary domain. We show this finding to, also, hold in the environmental domain

    Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin

    Get PDF
    Endophilins-A are conserved endocytic adaptors with membrane curvature-sensing and -inducing properties. We show here that, independently of their role in endocytosis, endophilin-A1 and endophilin-A2 regulate exocytosis of neurosecretory vesicles. The number and distribution of neurosecretory vesicles were not changed in chromaffin cells lacking endophilin-A, yet fast capacitance and amperometry measurements revealed reduced exocytosis, smaller vesicle pools and altered fusion kinetics. The levels and distributions of the main exocytic and endocytic factors were unchanged, and slow compensatory endocytosis was not robustly affected. Endophilin-A’s role in exocytosis is mediated through its SH3-domain, specifically via a direct interaction with intersectin-1, a coordinator of exocytic and endocytic traffic. Endophilin-A not able to bind intersectin-1, and intersectin-1 not able to bind endophilin-A, resulted in similar exocytic defects in chromaffin cells. Altogether, we report that two endocytic proteins, endophilin-A and intersectin-1, are enriched on neurosecretory vesicles and regulate exocytosis by coordinating neurosecretory vesicle priming and fusion

    RHAMM deficiency disrupts folliculogenesis resulting in female hypofertility

    Get PDF
    The postnatal mammalian ovary contains the primary follicles, each comprising an immature oocyte surrounded by a layer of somatic granulosa cells. Oocytes reach meiotic and developmental competence via folliculogenesis. During this process, the granulosa cells proliferate massively around the oocyte, form an extensive extracellular matrix (ECM) and differentiate into cumulus cells. As the ECM component hyaluronic acid (HA) is thought to form the backbone of the oocyte-granulosa cell complex, we deleted the relevant domain of the Receptor for HA Mediated Motility (RHAMM) gene in the mouse. This resulted in folliculogenesis defects and female hypofertility, although HA-induced signalling was not affected. We report that wild-type RHAMM localises at the mitotic spindle of granulosa cells, surrounding the oocyte. Deletion of the RHAMM C-terminus in vivo abolishes its spindle association, resulting in impaired spindle orientation in the dividing granulosa cells, folliculogenesis defects and subsequent female hypofertility. These data reveal the first identified physiological function for RHAMM, during oogenesis, and the importance of this spindle-associated function for female fertility

    RHAMM deficiency disrupts folliculogenesis resulting in female hypofertility

    Get PDF
    The postnatal mammalian ovary contains the primary follicles, each comprising an immature oocyte surrounded by a layer of somatic granulosa cells. Oocytes reach meiotic and developmental competence via folliculogenesis. During this process, the granulosa cells proliferate massively around the oocyte, form an extensive extracellular matrix (ECM) and differentiate into cumulus cells. As the ECM component hyaluronic acid (HA) is thought to form the backbone of the oocyte-granulosa cell complex, we deleted the relevant domain of the Receptor for HA Mediated Motility (RHAMM) gene in the mouse. This resulted in folliculogenesis defects and female hypofertility, although HA-induced signalling was not affected. We report that wild-type RHAMM localises at the mitotic spindle of granulosa cells, surrounding the oocyte. Deletion of the RHAMM C-terminus in vivo abolishes its spindle association, resulting in impaired spindle orientation in the dividing granulosa cells, folliculogenesis defects and subsequent female hypofertility. These data reveal the first identified physiological function for RHAMM, during oogenesis, and the importance of this spindle-associated function for female fertility

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≄6 to ≄9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    • 

    corecore