1,057 research outputs found

    Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment

    Get PDF
    Silver nanoparticles are recognized as effective antimicrobial agents and have been implemented in various consumer products including washing machines, refrigerators, clothing, medical devices, and food packaging. Alongside the silver nanoparticles benefits, their novel properties have raised concerns about possible adverse effects on biological systems. To protect consumer’s health and the environment, efficient monitoring of silver nanoparticles needs to be established. Here, we present the development of human metallothionein (MT) based surface plasmon resonance (SPR) sensor for rapid detection of nanosilver. Incorporation of human metallothionein 1A to the sensor surface enables screening for potentially biologically active silver nanoparticles at parts per billion sensitivity. Other protein ligands were also tested for binding capacity of the nanosilver and were found to be inferior to the metallothionein. The biosensor has been characterized in terms of selectivity and sensitivity towards different types of silver nanoparticles and applied in measurements of real-life samples—such as fresh vegetables and river water. Our findings suggest that human MT1-based SPR sensor has the potential to be utilized as a routine screening method for silver nanoparticles, that can provide rapid and automated analysis dedicated to environmental and food safety monitoring

    Serum tumor markers in pediatric osteosarcoma: a summary review

    Get PDF
    Osteosarcoma is the most common primary high-grade bone tumor in both adolescents and children. Early tumor detection is key to ensuring effective treatment. Serum marker discovery and validation for pediatric osteosarcoma has accelerated in recent years, coincident with an evolving understanding of molecules and their complex interactions, and the compelling need for improved pediatric osteosarcoma outcome measures in clinical trials. This review gives a short overview of serological markers for pediatric osteosarcoma, and highlights advances in pediatric osteosarcoma-related marker research within the past year. Studies in the past year involving serum markers in patients with pediatric osteosarcoma can be assigned to one of four categories, i.e., new approaches and new markers, exploratory studies in specialized disease subsets, large cross-sectional validation studies, and longitudinal studies, with and without an intervention

    Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at 1as = 13 TeV

    Get PDF
    Two-particle angular correlations are measured in high-multiplicity proton-proton collisions at s = 13 TeV by the ALICE Collaboration. The yields of particle pairs at short-( 06\u3b7 3c 0) and long-range (1.6 < | 06\u3b7| < 1.8) in pseudorapidity are extracted on the near-side ( 06\u3c6 3c 0). They are reported as a function of transverse momentum (pT) in the range 1 < pT< 4 GeV/c. Furthermore, the event-scale dependence is studied for the first time by requiring the presence of high-pT leading particles or jets for varying pT thresholds. The results demonstrate that the long-range \u201cridge\u201d yield, possibly related to the collective behavior of the system, is present in events with high-pT processes as well. The magnitudes of the short- and long-range yields are found to grow with the event scale. The results are compared to EPOS LHC and PYTHIA 8 calculations, with and without string-shoving interactions. It is found that while both models describe the qualitative trends in the data, calculations from EPOS LHC show a better quantitative agreement for the pT dependency, while overestimating the event-scale dependency. [Figure not available: see fulltext.

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF

    Search for a common baryon source in high-multiplicity pp collisions at the LHC

    Get PDF
    We report on the measurement of the size of the particle-emitting source from two-baryon correlations with ALICE in high-multiplicity pp collisions at s=13 TeV. The source radius is studied with low relative momentum p–p, p‟–p‟, p–Λ, and p‟–Λ‟ pairs as a function of the pair transverse mass mT considering for the first time in a quantitative way the effect of strong resonance decays. After correcting for this effect, the radii extracted for pairs of different particle species agree. This indicates that protons, antiprotons, Λ s, and Λ‟ s originate from the same source. Within the measured mT range (1.1–2.2) GeV/c2the invariant radius of this common source varies between 1.3 and 0.85 fm. These results provide a precise reference for studies of the strong hadron–hadron interactions and for the investigation of collective properties in small colliding systems. © 2020 CERN for the benefit of the ALICE CollaborationPeer reviewe

    Observation of flow angle and flow magnitude fluctuations in Pb-Pb collisions at sNN=5.02TeV at the CERN Large Hadron Collider

    Get PDF
    This Letter reports on the first measurements of transverse momentum dependent flow angle n and flow magnitude vn fluctuations determined using new four-particle correlators. The measurements are performed for various centralities in Pb–Pb collisions at a center-of-mass energy per nucleon pair of √s NN = 5.02 TeV with ALICE at the CERN Large Hadron Collider. Both flow angle and flow magnitude fluctuations are observed in the presented centrality ranges and are strongest in the most central collisions and for a transverse momentum pT > 2 GeV/c. Comparison with theoretical models, including iEBE-VISHNU, MUSIC, and AMPT, show that the measurements exhibit unique sensitivities to the initial state of heavy-ion collisions

    First measurement of Ωc 0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon Omega_c^0 is measured for the first time via its hadronic decay into Omega-pi+ at midrapidity (|y|<0.5) in proton–proton (pp) collisions at the centre-of-mass energy sqrt(s) = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c . The pT dependence of the Omega_C^0-baryon production relative to the prompt D^0-meson and to the prompt Csi_C^0-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of Omega_c^0 and prompt Lambda_c^+ baryons multiplied by the Omega- pi+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e- collisions

    Photoproduction of low-pT J/ψ from peripheral to central Pb–Pb collisions at 5.02 TeV

    Get PDF
    An excess of J/ψ yield at very low transverse momentum (pT < 0.3 GeV/c), originating from coherent photoproduction, is observed in peripheral and semicentral hadronic Pb–Pb collisions at a center-of-mass energy per nucleon pair of sqrt(sNN) = 5.02 TeV. The measurement is performed with the ALICE detector via the dimuon decay channel at forward rapidity (2.5 < y <4). The nuclear modification factor at very low pT and the coherent photoproduction cross section are measured as a function of centrality down to the 10% most central collisions. These results extend the previous study at sqrt(sNN) = 2.76 TeV, confirming the clear excess over hadronic production in the pT range 0-0.3 GeV/c and the centrality range 70–90%, and establishing an excess with a significance greater than 5σ also in the 50–70% and 30–50% centrality ranges. The results are compared with earlier measurements at sqrt(sNN) = 2.76 TeV and with different theoretical predictions aiming at describing how coherent photoproduction occurs in hadronic interactions with nuclear overlap

    Hypertriton Production in p-Pb Collisions at √sNN = 5.02 TeV

    Get PDF
    The study of nuclei and antinuclei production has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. The first measurement of the production of Λ3H{\rm ^{3}_{\Lambda}\rm H} in p-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV is presented in this Letter. Its production yield measured in the rapidity interval -1 < y < 0 for the 40% highest multiplicity p-Pb collisions is dN/dy=[6.3±1.8(stat.)±1.2(syst.)]×10−7{\rm d} N /{\rm d} y =[\mathrm{6.3 \pm 1.8 (stat.) \pm 1.2 (syst.) ] \times 10^{-7}}. The measurement is compared with the expectations of statistical hadronisation and coalescence models, which describe the nucleosynthesis in hadronic collisions. These two models predict very different yields of the hypertriton in small collision systems such as p-Pb and therefore the measurement of dN/dy{\rm d} N /{\rm d} y is crucial to distinguish between them. The precision of this measurement leads to the exclusion with a significance larger than 6σ\sigma of some configurations of the statistical hadronisation, thus constraining the production mechanism of loosely bound states
    • 

    corecore