107 research outputs found

    Search for the standard model Higgs boson at LEP

    Get PDF

    H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The packaging of DNA into chromatin regulates transcription from initiation through 3' end processing. One aspect of transcription in which chromatin plays a poorly understood role is the co-transcriptional splicing of pre-mRNA.</p> <p>Results</p> <p>Here we provide evidence that H2B monoubiquitylation (H2BK123ub1) marks introns in <it>Saccharomyces cerevisiae</it>. A genome-wide map of H2BK123ub1 in this organism reveals that this modification is enriched in coding regions and that its levels peak at the transcribed regions of two characteristic subgroups of genes. First, long genes are more likely to have higher levels of H2BK123ub1, correlating with the postulated role of this modification in preventing cryptic transcription initiation in ORFs. Second, genes that are highly transcribed also have high levels of H2BK123ub1, including the ribosomal protein genes, which comprise the majority of intron-containing genes in yeast. H2BK123ub1 is also a feature of introns in the yeast genome, and the disruption of this modification alters the intragenic distribution of H3 trimethylation on lysine 36 (H3K36me3), which functionally correlates with alternative RNA splicing in humans. In addition, the deletion of genes encoding the U2 snRNP subunits, Lea1 or Msl1, in combination with an <it>htb-K123R </it>mutation, leads to synthetic lethality.</p> <p>Conclusion</p> <p>These data suggest that H2BK123ub1 facilitates cross talk between chromatin and pre-mRNA splicing by modulating the distribution of intronic and exonic histone modifications.</p

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF
    Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.</p

    Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

    Get PDF
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe
    corecore