1,929 research outputs found

    Analysis of unidirectional non-paraxial invisibility of purely reflective PT-symmetric volume gratings

    Full text link
    We study the diffraction produced by a slab of purely reflective PT-symmetric volume Bragg grating that combines modulations of refractive index and gain/loss of the same periodicity with a quarter-period shift between them. Such a complex grating has a directional coupling between the different diffraction orders, which allows us to find an analytic solution for the first three orders of the full Maxwell equations without resorting to the paraxial approximation. This is important, because only with the full equations can the boundary conditions, allowing for the reflections, be properly implemented. Using our solution we analyze unidirectional invisibility of such a grating in a wide variety of configurations.Comment: 17 pages, 11 figures. arXiv admin note: text overlap with arXiv:1412.050

    Modeling of the angular tolerancing of an effective medium diffractive lens using combined finite difference time domain and radiation spectrum method algorithms

    Get PDF
    International audienceA new rigorous vector-based design and analysis approach of diffractive lenses is presented. It combines the use of two methods: the Finite-Difference Time-Domain for the study in the near field, and the Radiation Spectrum Method for the propagation in the far field. This approach is proposed to design and optimize effective medium cylindrical diffractive lenses for high efficiency structured light illumination systems. These lenses are realised with binary subwavelength features that cannot be designed using the standard scalar theory. Furthermore, because of their finite and high frequencies characteristics, such devices prevent the use of coupled wave theory. The proposed approach is presented to determine the angular tolerance in the cases of binary subwavelength cylindrical lenses by calculating the diffraction efficiency as a function of the incidence angle

    Diffractive optics fabricated by direct write methods with an electron beam

    Get PDF
    State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics

    The kunitz domain protein BLI-5 plays a functionally conserved role in cuticle formation in a diverse range of nematodes

    Get PDF
    The cuticle of parasitic nematodes performs many critical functions and is essential for proper development and for protection from the host immune response. The biosynthesis, assembly, modification and turnover of this exoskeleton have been most extensively studied in the free-living nematode, Caenorhabditis elegans, where it represents a complex multi-step process involving a whole suite of enzymes. The biosynthesis of the cuticle has an additional level of complexity, as many of the enzymes also require additional proteins to aid their activation and selective inhibition. Blister-5 (BLI-5) represents a protein with a kunitz-type serine protease interacting domain and is involved in cuticle collagen biosynthesis in C. elegans, through its interaction with subtilisin-like processing enzymes (such as BLI-4). Mutation of the bli-5 gene causes blistering of the collagenous adult cuticle. Homologues of BLI-5 have been identified in several parasitic species that span different nematode clades. In this study, we molecularly and biochemically characterize BLI-5 homologues from the clade V nematodes C. elegans and Haemonchus contortus and from the clade III filarial nematode Brugia malayi. The nematode BLI-5 orthologues possess a shared domain structure and perform similar in vitro and in vivo functions, performing important proteolytic enzyme functions. The results demonstrate that the bli-5 genes from these diverse parasitic nematodes are able to complement a C. elegansbli-5 mutant and thereby support the use of the C. elegans model system to examine gene function in the experimentally less-amenable parasitic species

    Optical power transmission in a polygon mirror-based swept source optical coherence tomography system

    Get PDF
    Swept Source Optical Coherence Tomography (SS-OCT) relies on the rapid tuning of a broadband light source to produce narrow laser linewidths. Imaging speed is governed by the sweeping frequency of the source and the axial resolution is given by the total bandwidth generated. Mechanical, free space methods, employing rotating polygonal mirrors with a pair of telescopically arranged lenses, can achieve tuning speeds in excess of 100 kHz. Their success relies upon maximising the light throughput of the swept spectrum by reducing the effects of aberration and vignetting caused by the lens design and the geometrical properties of the polygon respectively. However, these properties impose constrictions on the spectral filter’s design and care must be taken when building the filter to avoid unnecessarily limiting the performance of the system. This paper presents some of the initial stages of a much larger study into the optimisation of such systems. Theoretical work has been confirmed by experimental observations and compared with ideal simulations for a spectral filter consisting of a dispersive element, a double lens telescope, arranged in a Littman configuration, and a 72-facet, off-axis polygon mirror with end reflector. A non-linear relationship between the linewidth’s location on the telescope in time with the rotation of the polygon was observed and a first approximation for the tuned wavelength with respect to the polygon rotation angle was found. These observations, coupled with ongoing research, will lead to a complete description of polygon based scanners and how their performance can be optimised in future design

    Redox control of sulfur degassing in silicic magmas

    No full text
    International audienceExplosive eruptions involve mainly silicic magmas in which sulfur solubility and diffusivity are low. This inhibits sulfur exsolution during magma uprise as compared to more mafic magmas such as basalts. Silicic magmas can nevertheless liberate large quantities of sulfur as shown by the monitoring of SO2 in recent explosive silicic eruptions in arc settings, which invariably have displayed an excess of sulfur relative to that calculated from melt degassing. If this excess sulfur is stored in a fluid phase, it implies a strong preference of sulfur for the fluid over the melt under oxidized conditions, with fluid/melt partition coefficients varying between 50 and 2612, depending on melt composition. Experimentally determined sulfur partition coefficients for a dacite bulk composition confirm this trend and show that in volcanic eruptions displaying excess gaseous sulfur, the magmas were probably fluid-saturated at depth. The experiments show that in more reduced silicic magmas, those coexisting only with pyrrhotite, the partition coefficient decreases dramatically to values around 1, because pyrrhotite locks up nearly all the sulfur of the magma. Reevaluation of the sulfur yields of some major historical eruptions in the light of these results shows that for oxidized magmas, the presence of 1-5 wt % fluid may indeed account for the differences observed between the petrologic estimate of the sulfur yield and that constrained from ice core data. Explosive eruptions of very large magnitude but involving reduced and cool silicic magmas, such as the Toba or the Bishop events, release only minor amounts of sulfur and could have consequently negligible long-term (years to centuries) atmospherical effects. This redox control on sulfur release diminishes as the melt composition becomes less silicic and as temperature increases, because both factors favor more efficient melt sulfur degassing owing to the increased diffusivity of sulfur in silicate melts under such conditions
    corecore