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ABSTRACT 

The cuticle of parasitic nematodes performs many critical functions and is essential for 

proper development and for protection from the host immune response. The biosynthesis, 

assembly, modification and turnover of this exoskeleton has been most extensively studied 

in the free-living nematode, Caenorhabditis elegans, where it represents a complex multi-

step process involving a whole suite of enzymes. The biosynthesis of the cuticle has an 

additional level of complexity, as many of the enzymes also require additional proteins to 

aid their activation and selective inhibition. Blister-5 (BLI-5) represents a protein with a 

kunitz-type serine protease interacting domain and is involved in cuticle collagen 

biosynthesis in C. elegans, through its interaction with subtilisin-like processing enzymes 

(such as BLI-4). Mutation of the bli-5 gene causes blistering of the collagenous adult 

cuticle. Homologues of BLI-5 have been identified in several parasitic species that span 

different nematode clades. In this study, we molecularly and biochemically characterize 

BLI-5 homologues from the clade V nematodes C. elegans and Haemonchus contortus and 

from the clade III filarial nematode Brugia malayi. The nematode BLI-5 orthologues 

possess a shared domain structure and perform similar in vitro and in vivo functions, 

performing important proteolytic enzyme functions. The results demonstrate that the bli-5 

genes from these diverse parasitic nematodes are able to complement a C. elegans bli-5 

mutant and thereby support the use of the C. elegans model system to examine gene 

function in the experimentally less-amenable parasitic species. 

 

Keywords: collagen; cuticle; Caenorhabditis elegans; Haemonchus contortus; Brugia 

malayi.
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1. Introduction 

Parasitic nematodes, which cause significant debilitating infections in humans, livestock 

and plants, are encased in a protective barrier known as the cuticle. This exoskeleton 

protects the nematode from the external environment, maintains body morphology and 

permits motility of the nematode through opposed muscles. The cuticle is constructed from 

highly cross-linked small collagen-like proteins, which are modified by a variety of 

biosynthetic enzymes [1-3]. Monomeric collagen molecules are identified by the repeat 

sequence Gly-X-Y, where X and Y commonly represent proline and hydroxyproline, and 

three monomers combine to form a triple helical structure that in turn makes up the mature 

collagen molecule [1]. Over 150 collagen molecules are present in the genome of the free-

living nematode Caenorhabditis elegans [1]. Disulphide bonding and covalent di- and tri-

tyrosine cross-links are essential to stabilise the triple helical structure and to ensure the 

proper structure of the molecule [3, 4]. The N-termini of these proteins contain 80-150 

amino acids of non-repetitive sequence, preceding the Gly-X-Y repetitive domain, which 

contains a signal peptide sequence for transportation of the protein to the endoplasmic 

reticulum, followed by a conserved subtilisin-like pro-domain cleavage site [2]. A non-

repetitive region is also present at the C-terminus, following the Gly-X-Y repeat domain 

and this, in turn, in certain collagens, contains an astacin-like processing domain [5]. 

Large families of cuticle collagen genes are also present in parasitic nematodes, such as 

Haemonchus contortus [6], Ascaris suum [7, 8], Brugia malayi, B. pahangi, Onchocerca 

volvulus, Dirofilaria immitis [9] and Ostertagia circumcincta [10], showing great similarity 

in structure to those found in C. elegans and suggesting a common mode of biogenesis and 

a specific role for collagen in cuticle function throughout the nematode phylum [8, 11]. All 
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nematode species undergo four developmental moults from the first-stage larva to the 

mature adult, with the cuticle being re-synthesised prior to each moult. The correct 

assembly of the nematode cuticle at each stage consists of several critical steps, each 

directed by specific enzymes [1, 2].  Following trimerisation, procollagen processing at the 

N- and C-termini by enzymes such as BLI-4 [12] and DPY-31 [13] permits the assembly 

and crosslinking of mature collagens into the matrix. It is this procollagen processing step 

that is the focus of this study. The C-terminal and N-terminal non-Gly-X-Y regions both 

encode essential pro-collagen processing sites; for example, the kex2/subtilisin-like serine 

endoprotease BLI-4 cleaves the N-terminal site [1] and the astacin metalloprotease DPY-31 

cleaves the essential collagen SQT-3 at the C-terminal non-repeat region [5]. The mode of 

induction and regulation of this cleavage activity remains to be elucidated. 

BLI-5 has previously been proposed to be an extracellular serine protease inhibitor due to 

the presence of a bovine pancreatic trypsin inhibitor domain [14].  It is a crucial regulator 

of moulting in C. elegans and has been hypothesised to inhibit collagen-processing 

enzymes (such as DPY-31) or to regulate subtilisin-like processing enzymes (such as BLI-

4) [14]. This protein contains two important characteristic domains: a nematode-specific 

EB domain (Pfam PF01683) and a kunitz/ bovine pancreatic trypsin inhibitor domain 

(Pfam PF00014). The function of the EB domain remains elusive, although it has been 

found, associated with kunitz domains, in several C. elegans proteins. The kunitz domain 

has been associated with members of the serine protease inhibitor class. The C. elegans 

mutant bli-5(e518) contains a single EMS-induced point mutation in the EB domain, 

resulting in an amino acid change, at position 56, from serine to leucine. This mutation and 

the corresponding RNAi phenotype affects the structure of the cuticle, resulting in a 
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blistered cuticle that becomes apparent in the adult stage, indicating that the encoded 

protein has an essential function in the direct regulation of cuticle synthesis and the 

moulting process [14]. 

The parasitic clade V nematode Haemonchus contortus is an economically important 

parasite of grazing livestock and represents an ideal system in which to verify and validate 

potential nematode-specific drug targets identified in the C. elegans model system. The 

clade III human infective filarial parasite Brugia malayi is the focus of a well-advanced 

sequencing project [15], making it a good complimentary system in which to examine 

conservation of gene function between evolutionary diverse nematode species.  This study 

describes the detailed molecular and biochemical characterization of BLI-5 in both H. 

contortus and B. malayi. 

 

2. Materials and Methods 

2.1. Nematode strains 

The wild-type Bristol N2, CB937 (bli-4 e937) and CB518 (bli-5 e518) strains of C. 

elegans were provided by the Caenorhabditis Genetics Center, University of Minnesota. 

The H. contortus nematodes were provided by Dr. Frank Jackson, Moredun Research 

Institute and the B. malayi nematodes were provided by Prof. Rick Maizels, University of 

Edinburgh. 

 

2.2. Preparation of H. contortus and B. malayi genomic DNA, RNA and cDNA 

Genomic DNA was isolated from H. contortus or B. malayi adult worms using a standard 

protocol involving homogenization in proteinase K, followed by repeated 
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phenol/chloroform extraction. Total RNA was isolated by Trizol (Invitrogen) extraction 

and cDNA was prepared using the AffinityScript Multiple Temperature cDNA synthesis kit 

(Stratagene). 

 

2.3. Identification of the bli-5 gene from H. contortus 

The C. elegans BLI-5 protein sequence (F45G2.5) was obtained from the Wormbase 

database (http://www.wormbase.org/) and a BLAST search of the Wellcome Trust Sanger 

institute H. contortus database (http://www.sanger.ac.uk/Projects/H_contortus/) was 

performed using the option “assembled contigs, all reads (12/11/07)”. The contig 0004834 

had the highest homology score, and the Genewise program (http://us.expasy.org/) was 

used to predict the intron-exon splice sites and the predicted coding sequence was 

translated (http://us.expasy.org/). The protein was aligned with the C. elegans protein 

sequence using ClustalX and BoxShade 

(http://www.ch.embnet.org/software/BOX_form.html) and SignalP confirmed the presence 

of a signal peptide. Gene Structure Draw was used to produce a scaled schematic depicting 

the positions of the introns and exons in the gene. 

 

2.4. Identification of the bli-5 gene from B. malayi 

A BLAST search of the B. malayi database (http://www.tigr.org/tdb/e2k1/bma1/) using 

the C. elegans bli-5 gene identified a homologue, locus Bm1_03495. The DNA and protein 

sequences were analysed as described above for the H. contortus homologue. 

 

2.5. Generation of H. contortus and B. malayi bli-5 rescue constructs 

http://www.wormbase.org/
http://www.sanger.ac.uk/Projects/H_contortus/
http://us.expasy.org/
http://us.expasy.org/
http://www.ch.embnet.org/software/BOX_form.html
http://www.tigr.org/tdb/e2k1/bma1/
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A 1777bp PstI-BamHI C. elegans bli-5 promoter construct was generated by PCR from 

C. elegans N2 genomic DNA using the primers, Ce bli-5 promF (5’-

gcgctgcagctgtacctcgagacgtgggcg-3’) and Ce bli-5 promR (5’-

cgcggatccggttctgaaactaaacgc-3’) and cloned into pBlueScript SK- (Stratagene). A 417bp 

XbaI-SacII C. elegans bli-5 3’-UTR was generated by PCR from C. elegans N2 genomic 

DNA using the primers, Ce bli-5 3utrF (5’-gcgtctagaggtttttggttccacac-3’) and Ce bli-5 

3’utrR (5’-cgcccgcggtgacgatgttagtttccttcac-3’), and cloned into the Ce bli-5 promoter-

pBlueScript construct to create the plasmid pbli-5 (Fig. 1B). 

The genomic sequence of the H. contortus bli-5 gene was amplified by PCR using the 

primers, Hc bli-5 SpeI F (5’-gcgactagtatgaagacggcattactttc-3’) and Hc bli-5 XbaI R (5’-

cgctctagattaggcaaagatatttacac-3’) with PfuUltra polymerase to generate a product of 

1622bp. This was cloned into the SpeI-XbaI digested pbli-5 vector to create an H. contortus 

bli-5 rescue construct (Fig. 1B). 

The cDNA sequence of the B. malayi bli-5 gene was isolated by PCR using the primers, 

Bm bli-5 F (5’-gcgggatccatgaggatatacgtaatac-3’) and Bm bli-5 R (5’-

cgctctagatcagattgattgattgatg-3’) with PfuUltra polymerase to generate a product of 573bp. 

This PCR product was cloned into pCR-TOPO2.1, and a synthetic intron (5’-

gtaagtttaaactattcgttactaactaactttaaacatttaaattttcag-3’) was inserted by ligation of a double-

stranded oligo into a SnaBI blunt-ended restriction site. This product was then cloned into 

the BamHI-XbaI digested pbli-5 vector to create a B. malayi bli-5 rescue construct (Fig. 

1B). 

The H. contortus and B. malayi bli-5 rescue constructs were each microinjected into the 

syncitial gonad of bli-5(e518) mutant nematodes at a concentration of 25 g/ml, together 
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with 5 g/ml of a pdpy-7::GFP fusion construct and 120 g/ml pBlueScript. Transformants 

were selected by GFP (Green Fluorescent Protein) fluorescence and four transgenic lines 

per rescue construct were produced. Single worm PCR was performed for three GFP 

positive and three GFP negative worms per line and compared to three wild type worms 

and three bli-5(e518) mutant worms, using the rescue primers, Hc bli-5 SpeI F and Hc bli-5 

XbaI R (H. contortus) or Bm bli-5 inF (5’-gattccaatggttggatatg-3’) and Bm bli-5 R (B. 

malayi). 

 

2.6. Over-expression of H. contortus bli-5 

The H. contortus bli-5 rescue construct was co-injected into wild type C. elegans worms 

at 100 g/ml with pdpy-7::GFP marker plasmid. Three transgenic lines were obtained and 

examined by U.V. microscopy. The C. elegans bli-5 overexpression construct as detailed 

earlier [14] was co-injected at 140 g/ml with pdpy-7::GFP marker, producing two 

additional transgenic lines which were examined as described above. 

 

2.7. RNA interference (RNAi) 

RNAi feeding constructs for bli-5 (F45G2.5) [14] and bli-4 (K04F10.4) were cloned into 

the feeding vector L4440. For bli-4, a 292bp fragment was produced by PCR, using C. 

elegans N2 cDNA and the primers, Ce bli-4 F2 (5’-gatgaaagtataggtgcctgtg-3’) and Ce bli-

4 R2 (5’-gatgaacatcattatccaggag-3’). bli-4(e937) worms were fed the bli-5 RNAi bacteria, 

while bli-5(e518) worms were fed on the bli-4 RNAi bacteria and, as a negative control, 

both strains were also fed bacteria containing the L4440 feeding vector alone. All worms 

were viewed daily and phenotypic observations were recorded. 
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2.8. Semi-Quantitative RT-PCR 

Semi-Quantitative RT-PCR was performed using C. elegans cDNA samples taken at two-

hourly intervals throughout the lifecycle from 2 to 40 hrs post-embryonic hatching. The 

cDNA template and the RT-PCR methods were performed as described previously [16] 

using the gene combinations of bli-4 and ama-1, and bli-5 and ama-1, where the control 

gene was ama-1, the constitutively expressed RNA polymerase II subunit. The primers 

used for these gene amplifications were Ce ama-1 F2 (5’-gtcgagtttccagaagtctac-3’) and Ce 

ama-1 R2 (5’-gtacggtacaaatcatccattc-3’), Ce bli-5 inF2 (5’-caatatgtgttcgtggaagatg-3’) 

and Ce bli-5 inR (5’-ggacaacaaactccatccaatg-3’), and Ce bli-4 F2 (5’-

gatgaaagtataggtgcctgtg-3’) and Ce bli-4 R2 (5’-gatgaacatcattatccaggag-3’), with the 

resulting gene products being 634bp, 280bp and 292bp, respectively. The optimal cycling 

conditions were as follows: 94
o
C for 5mins; 35 cycles of 94

o
C for 1min, 56

o
C for 2mins, 

72
o
C for 1min; and then 72

o
C for 5mins. The PCR products were analysed on a 1% agarose 

gel and the relative abundance of the bli-5 and bli-4 genes, compared to that of the ama-1 

gene, was determined from the gel images using ImageQuant TL software (Amersham). 

 

2.9. Recombinant expression of C. elegans, H. contortus and B. malayi BLI-5 proteins 

The constructs encoding the mature proteins (without signal peptide and prodomain) of 

C. elegans, H. contortus and B. malayi BLI-5 were isolated by PCR using the primers, Ce 

bli-5matF (5’-gcggcatgcgagaaatgcctgaccaatg-3’) and Ce bli-5matR (5’-

cgcaagcttgaaaagatgaaagttgga-3’), Hc bli-5matF (5’-gcggcatgcgtcaaacatcaagcaaag-3’) and 

Hc bli-5matR (5’-cgcaagcttggcaaagatatttacac-3’), or Bm bli-5matF (5’-
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gcggcatgcaaggaatgcaaaaatgatg-3’) and Bm bli-5matR (5’-cgcaagcttgattgattgattgatg-3’) 

with PfuUltra polymerase to generate products of 549bp, 537bp and 528bp, respectively. 

The PCR products were cloned into pCR-TOPO2.1, fully sequenced and sub-cloned into 

the SphI-HindIII digested pQE30 (Qiagen) vector to create N-terminal histidine tagged 

protein expression constructs. The sequences of these plasmids were checked over the 

cloning junctions prior to transformation of E. coli M15 (pREP4) cells for expression of the 

encoded protein by an adapted autoinduction method [17]. Briefly, 10ml cultures of MDG 

medium containing 100 g/ml ampicillin and 25 g/ml kanamycin were inoculated 

overnight with these clones. This non-induced culture was used to inoculate 500ml of 

ZYM-5052 medium for 40-50 hrs at 25
o
C. The cells expressing the protein were collected 

by centrifugation at 5500rpm, 4
o
C for 20mins and re-suspended in native lysis buffer (pH 

8.0) containing 10mM imidazole and 1mg/ml lysozyme. The lysed cells were sonicated and 

the soluble protein was collected by centrifugation at 11500rpm, 4
o
C for 30mins. 

Purification of the proteins from the soluble cell lysates was performed using Ni-NTA resin 

columns at 4
o
C under native conditions and the fractions were analysed by SDS-PAGE and 

western blotting using an Anti-His (G) antibody (Invitrogen). 

 

2.10. Serine protease assay with recombinant BLI-5 from C. elegans, H. contortus and B. 

malayi 

Serine protease assays were used to determine the inhibitory activity of recombinant 

CeBLI-5, HcBLI-5 and BmBLI-5, and were essentially as previously described [18]. 

Briefly, 0, 0.5, 1 and 2 M of each of the recombinant enzymes was incubated with either 

3nM bovine pancreatic -chymotrypsin, 1.5nM porcine pancreatic elastase, or no serine 
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protease and the volume was made up to a total of 100 l with TNC buffer (10mM Tris-

HCl, pH 8.0/ 150mM NaCl/ 5mM CaCl2). Equivalent concentrations of bovine serum 

albumin (BSA) were used as a negative control protein. Samples were incubated for 1hr at 

25
o
C prior to the addition of either 200 M Suc-Ala-Ala-Pro-Phe-pNA (chymotrypsin 

substrate) or 250 M Suc-Ala-Ala-Pro-Ala-pNA (elastase substrate) then incubated at 25
o
C 

for a further 1hr. Absorbance was measured on a OpsysMR (Dynex) plate reader at 450nm, 

with each set of samples being examined in triplicate. 

 

2.11. Microscopy and Imaging 

All nematodes were transferred to 2% agarose (0.06% sodium azide) pads and viewed 

under Differential Interference Contrast (DIC) or fluorescence (GFP) optics on a Zeiss 

Axioskop2 microscope, and images were taken using an AxioCam camera and Axiovision 

software. 

 

3. Results 

3.1. Identification of H. contortus and B. malayi bli-5 homologues 

The BLAST search of the H. contortus database revealed contig 0004834 to have the 

highest homology score with C. elegans BLI-5. The intron-exon splice sites were predicted 

from this sequence using the GeneWise program on the ExPASy proteomics website, and 

the coding sequence was translated through the ExPASy site and then aligned with the C. 

elegans homologue using ClustalX and BoxShade. A BLAST search of the B. malayi 

genome database identified a homologous bli-5 gene in the filarial nematode, B. malayi 

(locus Bm1_03495). The gene structure and comparison of the nematode bli-5 homologues 
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are presented in Table 1 and Figure 1A. The full-length coding sequence for B. malayi bli-5 

is trans-spliced to the SL1 spliced leader whereas the C. elegans and H. contortus 

transcripts are not (data not shown). 

A signal peptide cleavage site was predicted by the SignalP program to be between Ala-

17 and Val-18 for H. contortus BLI-5, between Cys-20 and Glu-21 for C. elegans BLI-5 

and between Ala-15 and Lys-16 for B. malayi BLI-5 (Fig. 2A). These BLI-5 proteins range 

from 19-20kDa and have isoelectric points that range from 5.26 to 5.98 (Table 1) and share 

between 40-50% identity to C. elegans BLI-5 (Fig. 2A). A BLI-5 homologue is also 

present in the parasitic nematode Ostertagia ostertagi (Accession number: BQ457535.1) 

that shares 49.3% identity to the C. elegans protein. All nematode proteins contain the 

conserved nematode-specific EB domain (Pfam PF01683), SREWVCL, and the kunitz-

type serine protease inhibitor domain (Pfam PF00014) (Fig. 2). The C. elegans EB domain 

shares 100% identity with O. ostertagi and H. contortus, but only 57% identity to B. 

malayi. The C-terminal kunitz-type serine protease inhibitor domains show highest levels 

of identity between C. elegans, H. contortus and O. ostertagi (67%) (Fig. 2A). This 

consecutive arrangement of EB and kunitz-type domains is not found outside the phylum 

nematoda. 

 

3.2. Complementation of the bli-5(e518) mutant worms with the H. contortus and B. malayi 

orthologues 

The C. elegans bli-5(e518) mutant was transformed via microinjection with a construct 

expressing the H. contortus bli-5 gene along with a C. elegans promoter GFP marker. Four 

transgenic lines were obtained and adults were examined for the restoration of the wild 
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type appearance characteristic of the N2 strain (Fig. 3A) from the mutant blistered cuticle 

appearance (Fig. 3B). The H. contortus bli-5 genomic construct successfully rescued the 

bli-5 mutant worms, restoring their normal body morphology (Figs. 3C and 3D). Single 

worm PCR indicated that only the GFP positive worms for each transgenic line amplified 

the correct transgenic product of 1622bp (Fig. 3G), confirming that the transgenic worms 

contained the H. contortus bli-5 rescue construct. 

A B. malayi bli-5 genomic rescue construct was prepared as for the H. contortus 

construct. As a consequence of mis-processing of this construct in C. elegans, no rescued 

lines were obtained (data not shown). An expression construct using a cDNA that 

incorporated a synthetic intron was therefore constructed to overcome this problem. 

However, from the population of cloned and sequenced B. malayi cDNAs, several were 

found to utilize an alternative splice site, between exons one and two, to that of the original 

B. malayi sequence (278/279bp instead of 286/287bp; Fig. 1C), thereby disrupting the 

translational context of B. malayi bli-5. A correctly spliced B. malayi cDNA rescue 

construct was therefore selected and injected into the bli-5(e518) mutant.  This correctly 

spliced cDNA construct successfully rescued the corresponding C. elegans mutant strain 

(Figs. 3E and 3F) and single worm PCR confirmed that only the GFP positive worms for 

each transgenic line amplified the corresponding rescue construct (Fig. 3H). 

 

3.3. Over-expression of H. contortus bli-5 produces larval body morphology defects 

Transformation of wild type C. elegans with a high concentration of the endogenous bli-5 

rescue construct was previously shown to induce severe overexpression phenotypes, 

including a range of body morphology defects [14], a result that was supported by the 



 14 

generation of two further over-expression lines in this study (data not shown). A similar 

overexpression phenomenon was observed when the H. contortus bli-5 rescue construct 

was injected into wild-type C. elegans worms at a concentration four-fold greater than that 

used for transgenic rescue (Fig. 4). The over-expression phenotype was characterized by a 

range of L1 body morphology defects, including dumpy and moult defects (Fig. 4). This 

result suggests that BLI-5 plays a functionally conserved role in the normal development of 

both nematode species. Phenotypes were limited to the L1 stage and these went on to 

develop to morphologically normal adults (results not shown). 

 

3.4. RNA interference of bli-5 (F45G2.5) and bli-4 (K04F10.4) 

In all the RNAi experiments performed, no embryonic death was noted and the levels of 

morphological defects are summarised in Table 2. As expected, the bli-5 RNAi feeding 

experiment produced an adult specific blister phenotype in 43% of the wild type (N2) (Fig. 

5B) but at the higher rate of 73% when fed to bli-4(e937) mutants (Fig. 5G), compared to 

the controls comprising N2s fed the L4440 vector alone (Fig. 5A). A similar blister 

phenotype was present, but at the lower penetrance of 14%, in bli-5(e518) worms fed the 

control L4440 vector (Fig. 5C) and at 19% in bli-4(e937) worms fed the L4440 control 

vector (Fig. 5F). It is significant to note however that bli-4 RNAi caused a highly penetrant, 

97.5%, larval arrest phenotype when fed to either N2 (Fig. 5E) or bli-5(e518) mutant 

worms, 73% (Fig. 5D). The larval arrest phenotype occurred at the L1 stage with the L2 

failing to escape from the L1 cuticle. The bli-4 RNAi caused a more severe phenotype than 

the e937 mutant allele of bli-4. The bli-4 gene encodes nine alternatively-spliced isoforms 

and only five of these are affected by the e937 mutation allele whereas all nine are affected 
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by RNAi. The fact that bli-5 RNAi phenocopies the bli-5(e518) mutant allele confirms this 

to be a null, loss-of-function mutant allele of this gene. The more severe bli-4 RNAi 

phenotype described in this study also suggests that BLI-4 plays a more important role in 

the correct formation of the cuticle than that of BLI-5. The RNAi experiments also indicate 

a mild synergistic effect between the two gene products, since there is a higher penetrance 

of the blister phenotype associated with bli-5 RNAi in the bli-4(937) mutant background 

compared to the wild type strain and, more importantly, the number and severity of the 

blisters present are greater (Fig. 5G compared to Fig. 5B). 

 

3.5. Expression of bli-4 and bli-5 throughout the post-embryonic C. elegans lifecycle 

In an attempt to gauge the relative abundance of bli-4 and bli-5, and to establish if they 

had overlapping expression levels, a semi-quantitative RT-PCR approach was applied 

using staged cDNA samples that represented two hour developmental increments from 

hatching into adulthood.  Transcripts of 634bp, 280bp and 292bp were amplified for ama-

1, bli-5 and bli-4, respectively, with ama-1 representing the constitutively expressed 

control gene. The bli-4 transcript was relatively constitutively expressed, being detected in 

all C. elegans lifecycle stages, but displayed peaks of abundant expression at each larval 

transition, most significantly at the L2-L3, L3-L4 and L4- adult moults (Fig. 6A). bli-5 was 

found to be less abundantly expressed than bli-4 but displayed peaks of expression at the 

L2-L3 moult at 18 hrs, then another peak prior to the L3-L4 moult, from 22 to 24 hrs (Fig. 

6B).  
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3.6. Expression of C. elegans, H. contortus and B. malayi active BLI-5 recombinant 

proteins 

The genes encoding the mature BLI-5 proteins from each of the three nematode species 

were cloned and inserted into the pQE30 expression vector to allow expression of histidine-

tagged proteins. The recombinant BLI-5 proteins were expressed by an autoinduction 

method, purified on Ni-NTA columns and an anti-His antibody was used to detect a 

molecule of approximately 25kDa from each species following Western transfer (data not 

shown). 

The recombinant proteins were then assessed for their potential inhibitory activities in a 

serine protease assay with five separate serine proteases. This assay, however, 

demonstrated that the recombinant BLI-5 proteins did not in fact inhibit the serine protease 

activity, but instead they enhanced this activity (data not shown). To confirm this finding, a 

range of concentrations of each of the BLI-5 nematode proteins were incubated with two 

distinct classes of serine proteases, namely porcine pancreatic elastase and bovine 

pancreatic -chymotrypsin. There was a positive correlation between the nematode BLI-5 

concentration and absorbance at 450nm, which corresponds to substrate cleavage (Fig. 7A). 

Additionally, when the BLI-5 proteins are incubated with substrate in the absence of the 

serine protease, equivalent substrate cleavage was also shown to occur (Fig. 7B). 

Therefore, BLI-5 appears to be an active enhancer of serine protease activity, or indeed a 

proteolytic enzyme and not an inhibitor, as previously hypothesised, and this role is 

conserved between the recombinant proteins from the three diverse nematode species. 

 

4. Discussion 
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In this paper, we describe the identification and biochemical characterization of the 

nematode-specific kunitz domain protein, BLI-5, from the parasitic nematodes H. contortus 

and B. malayi and from the free-living nematode C. elegans. BLI-5 from H. contortus, O. 

ostertagi and C. elegans share the highest identity, a fact consistent with them belonging to 

the same phylogenetic clade [19]. 

Despite the difference in identity of the EB domain between the nematode BLI-5 

homologues, there is an important functionally conserved serine (position 56) found in all 

four nematode species. This position corresponds to the point mutation in the C. elegans 

bli-5(e518) mutant allele that results in a leucine substitution [14]. The functional relevance 

of this BLI-5 conservation was confirmed through the rescue of the C. elegans mutant with 

either the H. contortus or B. malayi gene, as evidenced by the restoration of normal cuticle 

structure. It is highly significant that this functional conservation extends to the distantly 

related clade III nematode B. malayi. There are numerous published examples of successful 

interspecies complementation between H. contortus and C. elegans [20, 21] but, to our 

knowledge, this represents the first published example of a B. malayi gene rescuing a C. 

elegans mutant, and this strengthens the proposition that BLI-5 plays a critical nematode-

specific role in cuticle biogenesis. 

The bli-5 mutant rescue experiments performed with a B. malayi bli-5 rescue construct 

also revealed that the B. malayi gene was spliced at two alternative intron-exon sites 

between the first intron and second exon, only one of which produced a translationally in-

frame message that permitted rescue of the mutant body form (Fig. 1C). This is in contrast 

to the single in-frame transcript produced by H. contortus bli-5 in C. elegans. An additional 

difference between the splicing mechanism of the B. malayi and C. elegans bli-5 
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orthologues is that the B. malayi mRNA is trans-spliced to SL1 whereas the C. elegans 

mRNA is not.  

The specific function of the nematode-specific EB domain remains to be established, 

although it has been found associated with the kunitz-type bovine pancreatic trypsin 

inhibitor domains in several, as yet uncharacterised, C. elegans proteins. It is the presence 

of this latter domain that has led to the proposition that these proteins may function as 

serine protease inhibitors. The EB domain contains eight conserved cysteine residues that 

are predicted to form four disulphide bridges, and the Pfam website 

(http://pfam.sanger.ac.uk/) describes the EB domain as being similar to the trypsin 

inhibitor-like cysteine-rich domain (Pfam PF01826). This latter domain contains ten 

cysteine residues that form five disulphide bonds, and is found in several trypsin inhibitors 

and extracellular proteins, but is restricted to those proteins found in the Ecdyzoa 

superphylum, namely the moulting nematoda and arthropoda phyla. The presence of highly 

conserved cysteines in the EB, and the following domains of the BLI-5 orthologues, 

supports the importance of these residues in the proper folding and the structural 

conformation of these proteins.  

A wide range of diverse nematode species have been found to express proteins with 

trypsin inhibitor-like domains, including; Ascaris suum [22], Ancylostoma caninum [23], A. 

ceylanicum [24], Trichuris suis [25] and Onchocerca volvulus [26]. Many of these 

nematode proteins have also been shown to inhibit chymotrypsin, trypsin, elastase and, in 

the case of the hookworms, coagulation factor Xa, and have functions predicted to be 

important in parasite development [25, 26]. 

http://pfam.sanger.ac.uk/
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Serine protease inhibitors with specific kunitz-bovine pancreatic trypsin inhibitor 

domains have also been described from a diverse range of organisms, including ticks, 

where they have anti-coagulant and anti-inflammatory properties [27, 28]. In Drosophila 

melanogaster, they are required for larval moulting [29, 30] and, in mice they are involved 

in muscle differentiation [31]. In the nematodes H. contortus [32], A. caninum [33] and A. 

ceylanicum [18, 34], these kunitz-type inhibitor domains have been predicted to have an 

essential role in nematode development, a role also envisaged for this domain in the BLI-5 

orthologues described in this study. 

Mutations or RNAi depletion of bli-5 in C. elegans result in a range of body morphology 

defects, including blistering of the adult cuticle, that support the proposition that the protein 

has a function in the proper formation and development of this essential exoskeleton: a 

premise supported by the fact that the bli-5 transcript is expressed in the larval and adult 

hypodermis, the vulva and excretory cell and duct of C. elegans [14]. It has been proposed 

that BLI-5 may function by regulating one or more of the enzymes involved in collagen 

processing, and two potential candidates include BLI-4 and DPY-31, both of which are 

directly involved in the processing of cuticular collagens in C. elegans [14]. BLI-4 is a 

calcium-dependent serine endoprotease that is synthesised as a zymogen and is a member 

of the kex2/subtilisin-like proprotein convertase family [35]. BLI-4 is essential for the 

normal development of C. elegans in that it catalyses the cleavage of inactive precursor 

proteins to mature, active forms at the specific cleavage site, R-X-K/R-R [35, 36]. This 

enzyme plays an essential role in development and in the production and maintenance of 

the adult cuticle since mutant alleles that affect all alternative forms of this enzyme (h199, 

h1010 and q508) result in late embryonic arrest, whereas the mutation that affects only a 
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subset of these alternative forms (e937) results in blistering of the adult cuticle [35, 36]. 

The R-X-K/R-R cleavage site is present at the N-terminal non-repetitive region in all C. 

elegans cuticle procollagens, suggesting a role for BLI-4 in general procollagen processing. 

It may be predicted that the convertase activity of BLI-4 would be tightly regulated 

throughout development. Based on domain homology, BLI-5 was hypothesised to be an 

inhibitor or regulator of serine-type endopeptidase activity. Both BLI-4 [37] and BLI-5 [14] 

are expressed in the hypodermal cells, vulva and ventral nerve cords throughout the 

lifecycle of C. elegans. From the semi-quantitative RT-PCR results in this current study, it 

is clear that bli-5 is most abundantly expressed at the L2-L3 moult and the L3-L4 moult. 

The results of combined bli-4 and bli-5 RNAi do support a mild synergistic effect, as bli-5 

RNAi in the bli-4 mutant background is both more penetrant and more severe than bli-5 

RNAi in a wild type background. This result does however raise the possibility that bli-5 

may be part of a larger redundant family since the nematodes remain viable in the absence 

of bli-5, indeed a further 57 proteins containing the kunitz motif, two of which also posses 

EB domains, can be found in the Wormbase database. bli-4, on the other hand, is essential 

since its removal by RNAi or mutations that affect all transcripts leads to early L1 larval 

arrest [11, 35]. It is interesting to note that the overexpression of H. contortus BLI-5 in C. 

elegans also specifically affects the L1 stage, causing body morphology defects. The 

specific sensitivity of this stage could relate to the fact that this represents the first 

collagenous cuticle, whose major role is maintenance of proper body morphology, a role 

prior to this stage that is dependant on actin fibres [38]. The L1-specific sensitivity to 

increased levels of BLI-5 could, alternatively, relate to the normally low abundance of this 

protein during this stage (Fig. 6B). 
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The results from our in vitro serine protease assays suggest that recombinant BLI-5 is in 

fact a proteolytic enzyme, as opposed to an inhibitor, of serine protease activity. Further 

support for this hypothesis comes from studies performed in the D. melanogaster basement 

membrane protein papilin, a protein that is essential for embryonic development of the fly. 

Based on its homology to kunitz-type bovine pancreatic trypsin inhibitor domains, papilin 

was proposed to be an inhibitor of an ADAMTS enzyme. This protein has likewise recently 

been shown not to possess serine, trypsin nor chymotrypsin protease inhibiting activity [39, 

40]. This finding was consistent with the absence of key residues from the bovine 

pancreatic trypsin inhibitor motif (Fx(3)GCx(6)FYx(5)C); [32, 40]. This observation may also 

explain the absence of serine protease inhibitory activity that we describe for the nematode 

BLI-5 proteins, since the identity between the kunitz domain of the BLI-5 protein from 

each of the nematode species and bovine pancreatic trypsin inhibitor is only approximately 

20% (Fig. 2B). 

The C. elegans cuticle collagens contain the N-terminal R-X-K/R-R cleavage motif [35], 

a domain shared by H. contortus, A. suum and B. pahangi, indicating that this mechanism 

of collagen maturation is conserved across the nematode families [37]. BLI-4 is likewise 

conserved in other nematodes with homologues found to date in O. volvulus, H. contortus, 

S. stercoralis, A. caninum, T. spiralis, D. immitis, A. suum, A. ceylanicum and B. malayi 

[11, 15, 37, 41, 42] (and our unpublished results). BLI-4 and BLI-5 represent nematode-

specific proteins that play important developmental roles in the formation of the nematode 

cuticle and may therefore represent novel targets for the control of parasitic nematodes of 

medical and economic importance. 
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Table 1. Comparisons of the genomic and coding sequences of the bli-5 gene and of the BLI-5 mature 

protein between C. elegans, H. contortus and B. malayi 

 C. elegans H. contortus B. malayi 

Intron number 3 3 2 

Exon number 4 4 3 

Gene size (genomic) 1991bp 1622bp 983bp 

Gene size (coding) 609bp 588bp 573bp 

pI 5.98 5.42 5.26 

MW (kDa) 20 20 19 

no. of amino acids 182 178 175 
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Table 2 bli-4 and bli-5 RNAi in wild type and mutant C. elegans backgrounds 

 

Worm strain RNAi clone Total no. of 

worms 

No. affected by 

RNAi 

% affected 

by RNAi 

N2 L4440 548 adults 0 0% 

N2 F45G2.5 (bli-5) 436 adults 189 (blistered) 43.3% 

N2 K04F10.4 (bli-4) 488 L1 476 (larval arrest) 97.5% 

bli-5 (e518) L4440 103 adults 14 (blistered) 13.6% 

bli-5 (e518) K04F10.4(bli-4) 133 L1 97 (larval arrest) 72.9% 

bli-4 (e937) L4440 190 adults 37 (blistered) 19.5% 

bli-4 (e937) F45G2.5 (bli-5) 242 adults 177 (blistered) 73.1% 
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FIGURE LEGENDS 

 

Fig. 1. (A) Gene structures of C. elegans, H. contortus and B. malayi bli-5. The introns are 

indicated by lines, while the exons are open boxes with Roman numerals. The translational 

start and stop codons are indicated by the ATG and TGA or TAA, respectively, and the 

conserved nematode-specific EB domain is found in exon II, and is shaded black. The 

kunitz-type serine protease inhibitor domain is shaded grey, and is found in exon IV for C. 

elegans and H. contortus, and exon III for B. malayi. (B) Schematic representation of H. 

contortus and B. malayi bli-5 rescue constructs. The rescue vector pbli-5 contains the C. 

elegans bli-5 promoter and 3’-UTR sequences in pBluescript. The H. contortus genomic 

bli-5 rescue construct was inserted into the pbli-5 vector. The full-length B. malayi bli-5 

cDNA sequence, with a single C. elegans synthetic intron inserted at the 5’ end, was 

likewise inserted into pbli-5. The black boxes indicate coding regions, with the white boxes 

representing introns. The grey extended box on the promoter represents the six additional 

bases of the pBlueScript SK- vector for SpeI. SI, synthetic intron. (C) Alternative intron-

exon splice-acceptor sites at intron 1/ exon 2 junction in B. malayi bli-5 when expressed in 

C. elegans. Site 1 is the alternative splice site utilized by C. elegans, and site 2 is the in-

frame splice site used by the B. malayi gene. 

 

Fig. 2. (A) Alignment of nematode BLI-5 homologues. Amino acid sequences were aligned 

using ClustalX and BoxShade, with identical amino acids shaded black and similar amino 

acids shaded grey. The signal peptide domain is indicated by italics, with the ^ highlighting 

the conserved serine residue that is mutated to leucine in the bli-5(e518) mutant. The 
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conserved nematode-specific EB domain is in the black box with the highly conserved 

residues indicated by +.  The Kunitz/Bovine pancreatic trypsin inhibitor domain is marked 

by a grey box. The 16 conserved cysteine residues are highlighted by an asterisk (*). The 

percentage sequence identity between C. elegans and the individual nematode homologues 

is indicated at the end of the alignment. (B) Alignment of the nematode BLI-5 kunitz 

domains with bovine pancreatic trypsin inhibitor (BPTI). The kunitz inhibitor motif 

(FxxxGCxxxxxxFYxxxxxC) is indicated below the alignment. The percentage sequence 

identities between BPTI and the nematode BLI-5 kunitz domains are indicated at the end of 

the alignment. 

 

Fig. 3. Nematode bli-5 orthologues complement the C. elegans bli-5(e518) mutant. The H. 

contortus or B. malayi rescue constructs were co-injected with pdpy-7::GFP transgenic 

marker and four transgenic lines were obtained for each species. These lines were 

examined under both DIC and GFP optics, and representative images are depicted. (A) DIC 

image of a wild type worm. (B) DIC image of a bli-5(e518) mutant worm. The blister 

phenotype is indicated by arrows. (C) DIC image of a bli-5(e518) worm rescued with the 

Hc-bli-5 genomic construct. (D) GFP image of the worm in (C). (E) DIC image of a bli-

5(e518) worm rescued with a Bm-bli-5 cDNA construct. (F) GFP image of the worm in (E). 

Single worm PCR was performed for three GFP positive and three GFP negative worms 

per line for each rescue construct, for three wild type worms and three bli-5(e518) mutant 

worms, to confirm expression of the transgene. Only the GFP positive worms for each 

transgenic line amplified the correct product of 1622bp for the Hc-bli-5 transgene (G) or 

429bp for the Bm-bli-5 transgene (H). 
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Fig. 4. Over-expression of H. contortus BLI-5 causes a body morphology defect in C. 

elegans. The H. contortus bli-5 genomic rescue construct was co-injected with the pdpy-

7::GFP marker plasmid into wild type C. elegans. Three transgenic lines were obtained and 

representative images are shown. (A) DIC image of L1 larvae indicating a dumpy body 

morphology defect (white arrow) alongside a wild type L1. (B) GFP image of the 

transformed worm in (A). (C) DIC image of an L1 displaying a body morphology dumpy 

defect. (D) GFP image of the transgenic worm in (C). 

 

Fig. 5. Combined RNAi of bli-4 and bli-5. bli-4(e937) worms were fed either the bli-5 

RNAi (F45G2.5) or the L4440 feeding vector bacteria, while bli-5(e518) worms were fed 

the bli-4 RNAi (K04F10.4) or the L4440 bacteria. Representative images of adult worms 

are shown for each of (A-C and F-G), and representative images of larvae are shown for 

(D-E). (A) N2 fed with the L4440 vector only. (B) N2 fed with bli-5 RNAi. (C) bli-5 

mutants fed with the L4440 vector only. (D) bli-5 fed with bli-4 RNAi. (E) N2 fed with bli-

4 RNAi. (F) bli-4 mutants fed with the L4440 vector only. (G) bli-4 mutants fed with bli-5 

RNAi. Scale bar = 20 m. 

 

Fig. 6. Expression of bli-4 and bli-5 throughout the C. elegans life-cycle. Semi-quantitative 

RT-PCR was performed using C. elegans cDNA samples prepared from RNA isolated 

from worms synchronized at 2 hr intervals post hatching, for 40 hrs. The relative transcript 

levels of bli-4 and bli-5 to ama-1 were determined using ImageQuant TL software. The 

data plotted represent the mean of three individual RT-PCR reactions ± standard error of 
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the mean. The resulting gene products for ama-1, bli-5 and bli-4 are 634bp, 280bp and 

292bp, respectively, as indicated on the representative RT-PCR gels depicted below the 

graphs. (A) Expression of bli-4. (B) Expression of bli-5. 

 

Fig. 7. Serine protease assay to determine the activity of C. elegans, H. contortus and B. 

malayi recombinant BLI-5. (A) 0, 0.5, 1 and 2 M of each of the recombinant enzymes 

were incubated with either 3nM bovine pancreatic -chymotrypsin or 1.5nM porcine 

pancreatic elastase. Samples were run in triplicate and standard errors plotted. 0, 0.5, 1 and 

2 M BSA was employed as the negative control, in place of recombinant BLI-5. BPCT = 

bovine pancreatic -chymotrypsin; PPE = porcine pancreatic elastase. (B) 1 M 

recombinant BLI-5 was incubated in the presence and absence of 3nM bovine pancreatic 

-chymotrypsin. Samples were run in triplicate and standard errors plotted. 
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Figure 2A

C.elegans       1 MVSIHNSFILLMLMIS--ICFCEKCLTNEECDLKWPDAICVRGRCRCSENTIRKKSASR
H.contortus     1 MKTALLSLILFSCHIWAVKHQAKKCTEDRECEEIWPGSTCQRARCRCPENYVRRKSPSR
O.ostertagi     1 ----------------------KKCTSNEDCEVIWPGSTCQRSRCRCPENYVRRKSPSR
B.malayi        1 ---MRIYVILALAKIA----IAKECK-NDECENRWPGAICRNGRCACPQDSIRRKSDSN

C.elegans      59 EWVCLATND-ATGNSGPPLTCPTPEGAGYQVMYRKDGE------PVKCSSKKKPDTCPE
H.contortus    61 EWVCLSVNDAATGQVGPPLTCPLPDGAGYQVILRGSSTNNLLSPPVLCSSKT--NDCET
O.ostertagi    39 EWVCLAVNDAATGQVGPPLTCPLPDGAGYQVILRGSSTNNLLSPPILCSSKT--NDCDT
B.malayi       53 GWICLSLIDASTGMLGPPFTCPLPSGTGYRSILYRNNE------PVFCQTLEE-NNCPE

C.elegans     112 GFECIQ--GLSILGALDGVCCPDRAKTCVHPIFDHPDDGYLSRWGFDGEQCIEFKWNPE
H.contortus   119 GYECIQ--GLSPVDGLDGACCPDQITTCAHPIFDH-ESGTLERWGFDGSECVKFKWDPE
O.ostertagi    97 GYECIQ--GLSAAGTLDGACCPDPITTCAHPIFDH-ESGTLERWGYDGSECVQFKWDPE
B.malayi      106 GYECIQSIGLSTAAG-NGVCCPRKETACLQPVCQS-KDGWLIRWYFNGETCESFRWNPE

C.elegans     170 RPSSANNFKTRAHCEDYCIGSINGITNYHQSNFHLF
H.contortus   176 KPSSANNFKTKLQCESYCVNIFA------------- (50.2%)
O.ostertagi   154 RPSSANNFKTKMQCESYCV----------------- (49.3%)
B.malayi      164 VETSANNFVTKQHCLSYCAFVNSESINQSI------ (40.7%)

Figure 2B

C.elegans  134 TCVHPIFDHPDDGYLSRWGFDGEQ—-CIEFKWNPERPSSANNFKTRAHCEDYCI (24.1%)
H.contortus141 TCAHPIFDH-ESGTLERWGFDGSE—-CVKFKWDPEKPSSANNFKTKLQCESYCV (20.4%)
B.malayi   129 ACLQPVCQS-KDGWLIRWYFNGET—-CESFRWNPEVETSANNFVTKQHCLSYCA (24.1%)
BPTI        39 FCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYG-GCRAKRNNFKSAEDCMRTCG 
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Figure 3
Click here to download high resolution image

http://ees.elsevier.com/molbio/download.aspx?id=41401&guid=b7a1f9ea-9518-4caf-81db-7c485061ef22&scheme=1


Figure 4
Click here to download high resolution image

http://ees.elsevier.com/molbio/download.aspx?id=41402&guid=64cc18df-5217-491a-bba6-e239f69d9766&scheme=1


Figure 5
Click here to download high resolution image

http://ees.elsevier.com/molbio/download.aspx?id=41403&guid=7fa9fc54-c544-4cd6-8b0b-504b611b5a80&scheme=1


Figure 6
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Figure 7 
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