55 research outputs found

    Dynamic Analysis of the STARC-ABL Propulsion System

    Get PDF
    In the pursuit of Electrified Aircraft Propulsion (EAP), much of the attention is on the development of hybrid electric concept vehicles and their propulsion systems from a steady state performance perspective. While it is steady-state performance that largely determines the efficiency of civil air transports, engine operability and transient performance define constraints for the steady state design that impact efficiency and system viability. Neglecting dynamics and control technologies can result in an over-designed, sub optimal propulsion system or a concept that is not feasible. Thus, dynamic system studies were conducted on the propulsion system of the conceptual aircraft design known as the Single-aisle Turboelectric AiRCraft with Aft Boundary Layer propulsor (STARC-ABL). This paper describes the development of a controller to verify the baseline concept's feasibility from an operability perspective. Further, studies were conducted to identify excessive stability margin in the baseline design that could be traded for potential benefits in efficiency through an engine re design. This study revealed the potential to reduce the high pressure compressor (HPC) stall margin by 3%. Finally, a study was conducted to investigate the potential benefit of adding energy storage to the STARC-ABL concept that further improves operability and enables more gains in engine efficiency and performance. The energy storage provided an additional 0.5% stall margin can be removed from the HPC

    Turbine Electrified Energy Management (TEEM) For Enabling More Efficient Engine Designs

    Get PDF
    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of an effort to assist industry in meeting the future needs of a global aviation market. The integration of electric machines into traditional turbine-based propulsion provides opportunities to change system architectures effecting radical improvements in propulsive efficiency. However, less consideration has been afforded to the utilization of these electrical machines to improve the thermal efficiency and performance of the gas turbine engine. Noting this deficit, a novel operability concept is proposed and is referred to as Turbine Electrified Energy Management (TEEM). The concept is a transient control technology that supplements the main fuel control for the suppression of the natural off-design dynamics associated with changes in engine operating state. Here the electric machines, used as engine actuators during the transient, add or extract torque from the engine shafts to maintain the speed-flow characteristics of steady-state design operation. This greatly reduces the need to maintain transient stall margin stack in the compressors, among other potential benefits. This paper demonstrates the feasibility of the concept in dynamic simulation using a Numerical Propulsion System Simulation (NPSS) engine model of a NASA hybrid electric propulsion concept known as the Parallel Hybrid Electric Turbofan (hFan)

    A Parametric Study of Actuator Requirements for Active Turbine Tip Clearance Control of a Modern High Bypass Turbofan Engine

    Get PDF
    The efficiency of aircraft gas turbine engines is sensitive to the distance between the tips of its turbine blades and its shroud, which serves as its containment structure. Maintaining tighter clearance between these components has been shown to increase turbine efficiency, increase fuel efficiency, and reduce the turbine inlet temperature, and this correlates to a longer time-on-wing for the engine. Therefore, there is a desire to maintain a tight clearance in the turbine, which requires fast response active clearance control. Fast response active tip clearance control will require an actuator to modify the physical or effective tip clearance in the turbine. This paper evaluates the requirements of a generic active turbine tip clearance actuator for a modern commercial aircraft engine using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software that has previously been integrated with a dynamic tip clearance model. A parametric study was performed in an attempt to evaluate requirements for control actuators in terms of bandwidth, rate limits, saturation limits, and deadband. Constraints on the weight of the actuation system and some considerations as to the force which the actuator must be capable of exerting and maintaining are also investigated. From the results, the relevant range of the evaluated actuator parameters can be extracted. Some additional discussion is provided on the challenges posed by the tip clearance control problem and the implications for future small core aircraft engines

    Active Turbine Tip Clearance Control Trade Space Analysis of an Advanced Geared Turbofan Engine

    Get PDF
    Tip clearance within the high pressure turbine of a gas turbine engine is a significant factor in engine performance and efficiency. In the pursuit of higher efficiency, aero-engine designs are migrating toward compact gas turbine (CGT) technology that seeks to increase the bypass ratio of the gas turbine engine without increasing the size of the fan, which is constrained by its underwing location. The reduced size of CGTs invoke concern over increased sensitivity of engine performance due to turbine tip clearance gap that makes an argument for advanced tip clearance mitigation and control techniques to be employed. This paper evaluates the tip clearance trade space for a conceptual geared turbofan engine with a CGT core. This is accomplished through a modeling and simulation approach that includes a sensitivity analysis of engine performance in response to high pressure turbine tip clearance as well as an evaluation of the sensitivity of tip clearance to various design parameters, including material properties and component cooling characteristics. Also included is a parametric study of actuators that provides preliminary requirements for implementation of active turbine tip clearance control actuation systems. The results produced from these studies are meant to be informative, with special emphasis on the demonstration of a systematic approach. The modeling approach appears to capture expected trends. The studies suggest that the tip clearance gap will have a greater impact on the new CGT engines and that a relatively slow, actively controlled actuation system may be sufficient as long as it has control authority to both open and close the tip clearance gap

    Thermal Modeling of an Advanced Geared Turbofan for Distributed Engine Control Application

    Get PDF
    Reliability and life-expectancy of gas turbine engine components is very much correlated to the temperature environment in which they operate. This is no different for control system components, especially those with electronic parts. In recent years, the concept of Distributed Engine Control (DEC) has emerged to address the limitations of the current centralized control implementation. This new approach involves relocating control system components from a relatively benign environment to the harsher thermal environment of the engine casing and its surrounding structures and cavities. In this paper, an approach to modeling the gas turbine thermal environment is described. The modeling approach is applied to a 3rd generation geared turbofan design with a focus on the engine locations where control instrumentation and actuation could be installed. The analysis was conducted with an eye toward component reliability and service life as it relates to the thermal environment. The results were found to be reasonable. Furthermore, the model is shown to execute in real-time within a multi-model simulation environment that demonstrates the capability to interact with hardware to drive test equipment

    Dynamic Analysis of the hFan, a Parallel Hybrid Electric Turbofan Engine

    Get PDF
    NASA and a variety of aerospace industry stakeholders are investing in conceptual studies of electrified aircraft, including parallel hybrid electric aircraft such as the Subsonic Ultra Green Aircraft Research (SUGAR) Volt. At this point, little of the work published in the literature has examined the transient behavior of the turbomachinery in these systems. This paper describes a control system built around the hFan, the parallel hybrid electric turbofan engine designed for the SUGAR Volt concept aircraft. This control system is used to show that the hFan, running with its baseline concept of operations, is capable of transient operation throughout the envelope. The design parameters of this controller are varied to assess the amount of operability margin built into the engine design, and whether this margin can be reduced to enable more aggressive designs, that may feature better fuel economy. Further, studies are performed as parameters for the hFan electric motor are varied to determine how the motor impacts the engine's need for transient operability margin. The studies suggest that the engine may be redesigned with as much as a 3% reduction in high pressure compressor stall margin. It was also demonstrated that appropriate design and control of the electric motor may be able to buy an additional 0.5% stall margin reduction or a turbine inlet temperature reduction of 35 R, as tested at the sea-level static condition

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore