

Thermal Modeling of an Advanced Geared Turbofan for Distributed Engine Control Application

Jonathan Kratz (NASA GRC)

Dennis Culley (NASA GRC)

George Thomas (N&R Engineering)

AIAA Propulsion & Energy Forum

10 July 2018

Outline

Summary

- Presents a method for modeling the dynamic thermal environment of a gas turbine engine with an eye toward control system component reliability as it relates to the implementation of distributed engine control.
- Application is to a conceptual N+3 generation geared turbofan.
- The resulting model is shown to run in real-time within a multi-model simulation environment that demonstrates the ability to interact with hardware to drive test equipment

<u>Outline</u>

- Background/Motivation
- Thermal Modeling Methodology
- Thermal Modeling Techniques
- Application to an Advanced Geared Turbofan
- Real-Time Capabilities
- Summary

Background: Distributed Engine Control

Current Control Approach

- Centralized architecture performed through a full authority digital engine controller (FADEC)
- Constrains the control system topology and limits capability

Distributed Engine Control

- Hardware-driven strategy that adds flexibility
- Modularizes the control system and distributes control functions to smart nodes located across the engine
- Utilizes a light-weight digital communication network

• Some Potential Benefits: Reduce weight, reduce volume impact, alleviate obsolescence and certification issues, enable more advanced control

Background: High Temperature Electronics

Example of the reliability vs. temperature relationship for an electronic device http://www.analog.com/library/analogdialogue/archives/46-04/high_temp_electronics.pdf

- Desire to mount smart nodes on the engine core
- Challenging thermal environment
 - State-of-art material for internal gas path exceed 1500°C
 - Common consumer electronics operate reliably <70°C, sometimes 150°C
 - Inverse relationship between temperature and electronic reliability
- High-Temp electronics
 - Silicon-On-Insulator (SOI): Up to 300°C (225°C near term)
 - Silicon Carbide: 500°C +
- Important considerations: Max & min temperature (steady-state), rate of change in temperature (dynamic), & temperature cycling (dynamic)
- Objective: Develop a thermal model of the relevant engine structure to estimate the environment in which DEC electronics will be placed + develop re-useable modeling tools + develop capability to use the model and or its results to drive test equipment

"High temperature is relative"

Thermal Modeling Methodology

7/10/2018

Structure

• 2-D Finite Difference Method (FDM) - More significant components (engine casing, shrouds, duct wall, etc.)

$$\frac{\partial T}{\partial t} = \frac{1}{\rho C_p} \nabla \cdot (k \nabla T) \rightarrow \frac{\partial T}{\partial t} = \frac{1}{\rho C_p} \left[\left(\frac{\partial k}{\partial r} + \frac{k}{r} \right) \frac{\partial T}{\partial r} + k \frac{\partial^2 T}{\partial r^2} + \frac{\partial k}{\partial z} \frac{\partial T}{\partial z} + k \frac{\partial^2 T}{\partial z^2} \right]$$

T = temperature, *t* = time, *ρ* = density, *C_p* = heat capacity, *k* = thermal conductivity,

- Model the component as a cylindrical shell of constant radius and thickness
- Discretized and then solved using a 2-D implicit scheme
- Lumped Capacitance Less significant components (core components – compressor and turbine blades)

$$\frac{\partial T}{\partial t} = \frac{1}{mC_p} \left[\frac{hA(T_F - T)}{\gamma} + \frac{uA(T_R - T)}{\gamma} \right]$$

Convection Radiation

 $m = effective mass, A = surface area, T_F = temperature of convecting fluid, T_R = temperature of radiating body,$ h = convection heat transfer coefficient, u = radiation heat transfer coefficient

Flow Paths & Voids

- Engine simulation data used for gas paths and some bleed flows
- Fluid Energy Balance used for bleed flows of significant heat transfer and relatively low mass flow

$$Q = \sum_{out} (\dot{m}C_pT) - \sum_{in} (\dot{m}C_pT)$$

T = temperature, C_p = heat capacity, \dot{m} = mass flow rate, Q = heat

 Average of Surroundings – used for closed volumes with no forced air flow

Boundary Conditions

- Conduction
 - Thermal capacitance of each boundary node is computed to enable conduction boundary conditions to be applied at the interface of 2 solid components
- Convection
 - Forced and natural convection are considered
 - Relations used for the coefficient h are generic and tunable
 - Tuning variables were set based on guidance from studies conducted at NASA and information found in literature
- Radiation
 - Written in a linear form
 - The coefficient u is a strong function of temperature and is updated each timestep of the simulation.
 - Relations for *u* assumes radiation between reflective concentric cylinders
 - Assumed radiation only occurs between parallel surfaces

Q = heat

- *h* = convection heat transfer coefficient
- $T_F = fluid$ temperature
- u = radiation heat transfer coefficient
- *T_R* = temperature of radiating body
- C = thermal capacitance
- *T_{int}* = temperature at the interface between 2 solids

Thermal System Analysis Toolbox (TSAT)

AIR

- Library of tools developed in the MATLAB/Simulink environment
- Topics modeled
 - Conduction
 - Convection
 - Radiation
 - Deformation
 - Air Properties
 - Fluid Heat Transfer
 - General Tools
- Provides building blocks for building up and modeling dynamic thermal systems

WARM OBJECT

HEAT TRANSFER

2D Transient Conduction Model - Fully Implicit

Application: The Engine

Advanced Geared Turbofan 30,000lb_f (AGTF30)

- Based on the NASA N+3 NPSS reference engine
- 3rd generation geared turbofan
- Features a compact gas turbine (CGT) and a variable area fan nozzle
- Capable of producing 30,000lb_f of thrust at the sea-level static condition

XXXXXXXX

Application: The Engine Air Flow

Application: Modeling

- Structures
 - All components except the "core components" were modeled with 2-D FDM
 - Geometry was approximated as a cylindrical shell of the components average radius and thickness
 - Various levels of discretization were investigated
 - Core components utilized a lumped capacitance model
- Important cavities and voids
 - Bypass flow path, core flow path, and case cavity 2 temperatures were driven by the engine model simulation
 - Case cavity 1 temperature was approximated as the average of its surrounding structure
 - Core compartment temperature was approximated using the fluid energy balance method
- Boundary conditions and interfaces between models were defined

Application: Flight Profile

- Flight profile constructed from real data
- The starting and ending destinations are unknown but is representative of a ~250 mi flight
 - Cleveland, Ohio to Washington D.C. or Las Vegas, Nevada to Los Angeles, California
- At the start of the simulation all structures are initialized at ambient temperature
- After the flight, the thermal simulation is extended to investigate heat soak back (modeling details are not provided here for the sake of time – see the paper)

Time: 0min

- NASA
- Engine Casing Maximum Temperature [°F] 1400 1200 1000 800 600 400 200 80 0 20 40 60 100 120 z [in]

- Compartments
 - Case Cavity 1: Up to 125°F
 - Case Cavity 2: Up to 155 °F
 - Core Compartment (Cowl Cavity): Up to 650 °F (400 °F upstream of the inter-turbine duct)
- Structure
 - Engine Casing: Up to 1580 °F (1100 °F outside the inter-turbine duct)
 - Inner Duct Wall (Thermal Blanket): Up to 600 °F (350 °F upstream of the inter-turbine duct)
 - Case Wall 1: Up to 220 °F
 - Case Wall 2: Up to 220 °F
- Observations
 - Rate of change in temperature
 - Compartments: -2.5 °F/sec 2.5 °F/sec
 - Structures: -2.5 °F/sec 5 °F/sec
 - Maximum temperatures occurred at different parts of the engine during different times including: the cold startup of the engine, during climb, during cruise, and during heat soak back

Real-Time Capabilities

- Model runs faster than real-time
- Migrated to the hardware-in-the-loop (HIL) system known as the Decentralized Engine Control System Simulator (DECSS)
- Integrated in a multi-model simulation including a physical network and simulated smart nodes
- Used the model to drive a real-time, full-size LED display
 - Illustrates the ability to interact with test equipment

Summary

- Motivation for high level thermal modeling pertaining to distributed engine control has been discussed
- A thermal modeling methodology for gas turbine engines has been proposed
- An application of modeling methodology has been illustrated
- Results from the application have been presented and discussed
- Real-time capabilities have been demonstrated with eye toward hardware testing

Acknowledgements

- Funded by the Transformational Tools and Technology (TTT) project under the Aerospace Research Mission Directorate (ARMD)
- NASA civil servants & contractors who contributed in some way to this effort: Sanjay Garg, Scott Jones, Jonathan Litt, Jeffryes Chapman, Vikram Shyam, Paht Juangphanich, Ram Bhatt, Jerry Lang, James DiCarlo, Joe Grady, Dan Paxson, and Shane Sowers
- The Distributed Engine Control Working Group (DECWG[®]) for providing input and guidance related to this work

Questions?

Contact Information:

- Jonathan Kratz jonathan.kratz@nasa.gov
- Dennis Culley <u>dennis.e.culley@nasa.gov</u>
- George Thomas <u>george.l.thomas@nasa.gov</u> TSAT Link:

https://github.com/nasa/TSAT

EXTRA SLIDES

Background: Distributed Engine Control

Where can we mount hardware?

- SN mounting surfaces could include those exposed to the cowl cavity or case compartments (engine casing, bypass duct wall, & various supports structures)

7/10/2018

Customer Bleed

Duct

What part(s) of the engine are we interested in modeling?

- Any potential mounting structure for a smart node
- Any compartment in which a smart node could be mounted
- Any structure or flow path that could have significant implications on the thermal environment of a potential mounting locations Needs?
- Geometry/dimensions, secondary air system, other heat transfer/cooling mechanisms inherent in the design

Misc. Structure

- Max T: 125°F during take-off (case cavity 1), 155 °F during heat soak (case cavity 2), 400 °F during climb (applicable portion of the cowl cavity)
- Max Increasing dT/dt: 1 °F/sec (case cavity 1 & 2), 2.5 °F/sec (applicable portion of the cowl cavity)
- Max Decreasing dT/dt: 0.5 °F/sec (case cavity 1), 2 °F/sec (case cavity 2), 2.5 °F/sec (applicable portion of the cowl cavity)
- Observations
 - Temperature rises several hundred degrees through the cowl cavity (core compartment)
 - Case cavity 1 shows dampening effects comparted to the temperature response of case cavity 2

7/10/2018

AIAA Propulsion & Energy Forum 2018

- Max T: ~1580 °F (~1100 °F neglecting inter-turbine duct)
- Max Increasing dT/dt: 5 °F/sec (neglecting nozzle)
- Max Decreasing dT/dt: 2.5 °F/sec (neglecting nozzle)
- Observations:
 - Max temperature occurs in the inter-turbine duct region due high temperatures from the aggressive cycle design and lack of active cooling
 Max temperatures for different locations are
 - Max temperatures for different locations are shown to occur during climb, cruise, and heat soak

Engine Casing - Maximum Temperature [°F]

- Max T: ~220 °F
- Max Increasing dT/dt: ~1.3 °F/sec (at engine case), ~0.3 °F/sec (away from the engine case)
- Max Decreasing dT/dt: ~0.7 °F/sec (at engine case), ~0.1 °F/sec (away from the engine case)
- Observations:
 - Max temperature occur during heat soak, and to a lesser extent take-off

220

200

180

160

140

120

100

150

100

50

Time of Max Temperature [min]

r [in]

r [in]

- Max T: ~600 °F (~350 °F for the region upstream of the inter-turbine duct)
- Max Increasing dT/dt: ~2 °F/sec
- Max Decreasing dT/dt: ~1.5 °F/sec
- Observations:
 - Max temperatures reached during climb to shortly after reaching cruise

AIAA Propulsion & Energy Forum 2018

Extra Slides: ANSYS Verification Example

