31 research outputs found

    Feasibility of fuel switching in Boston

    Get PDF
    This report develops a simple physical model that predicts that the nighttime dispersion of S2 from the largest sources in Boston is different than the dispersion of S2 from small, low level sources. Diurnal variations in S02 levels measured in Boston over the last seven years are analyzed in the light of this theory. The comparison between theory and observation is favorable. A simple, unambiguous, criteria for defining a large source is developed. The results are used to predict the fraction of the time large sources could burn high sulfur fuels while still meeting the state standards for sulfur dioxide

    Grain yield, crop and basal evapotranspiration, production functions and water productivity response of drought-tolerant and non-drought-tolerant maize hybrids under different irrigation levels, population densities and environments: Part II. In south-central and northeast Nebraska\u27s transition zone and sub-humid environments

    Get PDF
    Information and data on newer drought-tolerant maize hybrid response to water in different climates are extremely scarce. This research quantified the performance of non-drought-tolerant (NDT) (H1) and drought-tolerant (DT) (H2, H3, and H4) maize (Zea mays L.) hybrids response to grain yield, crop evapotranspiration (ETc), basal evapotranspiration (ETb), ETc-yield production functions (ETYPF), and crop water use efficiency (CWUE) at three irrigation levels and two plant population densities (PPDs) at two locations (transition zone between sub-humid and semiarid climates at Clay Center (SCAL), Nebraska, in 2010 and 2012; and in a sub-humid climate at Concord (HAL), Nebraska, in 2010, 2011, and 2012). Irrigation treatments were: fully irrigated (FIT), early cutoff (ECOT) (i.e., no irrigation after blister stage), and rainfed (RFT) under two PPDs of 59,300 plants ha-1 (low PPD), and 84,000 plants ha-1 (high PPD). Generally, DT hybrids performed superior to NDT hybrid consistently at both locations, treatments, and years. DT H3 and DT H4 had highest grain yield consistently at SCAL and HAL, respectively. DT H3 and H4 hybrids’ productivity was not only superior in the RFT, but also in FIT. The highest yield of 16.3, and 15.3 Mg ha-1 were achieved by DT H3 (high PPD) and DT H2 (high PPD), respectively, associated with 471 and 590 mm of ETc in the FIT in 2012 at SCAL, and HAL, respectively. In most cases, all hybrids had highest grain yield under low PPD than high PPD at the RFT. All hybrids exhibited a linear yield response to increasing ETc in all years at both locations with positive slopes in all cases. The individual ETYPF response for individual hybrids had inter-annual variation in slopes between the hybrids and for the same hybrids between the years and location for both low and high PPDs. The ETYPF slopes ranged from 0.004 to 0.102 Mg ha-1 mm-,1 including all treatments (i.e., irrigation and PPDs) at SCAL for 2010 and 2012; and they ranged from 0.008 to 0.057 Mg ha-1 mm-1 including all treatments at HAL for 2010, 2011, and 2012. The ETb values exhibited inter-annual variation for the same hybrid between the irrigation levels, PPDs, and locations and they also exhibited an inner-annual variation between the hybrids and treatments in a given year with DT hybrids having consistently lower ETb values than the NDT hybrid. The greatest CWUE values were found in DT hybrids consistently at both locations. The DT hybrids can significantly increase yield productivity as well as crop water productivity per unit of ETc with respect to conventional hybrids not only in dry conditions, but also in average or above average years in terms of precipitation

    Irrigation-Yield Production Functions and Irrigation Water Use Effciency Response of Drought-Tolerant and Non-Drought-Tolerant Maize Hybrids under Different Irrigation Levels, Population Densities, and Environments

    Get PDF
    Irrigation-yield production functions (IYPFs), irrigation water use effciency (IWUE), and grain production per unit of applied irrigation of non-drought-tolerant (NDT) and drought-tolerant (DT) maize (Zea mays L.) hybrids were quantified in four locations with different climates in Nebraska [Concord (sub-humid), Clay Center (transition zone between sub-humid and semi-arid); North Platte (semi-arid); and, Scottsbluff (semi-arid)] during three growing seasons (2010, 2011, and 2012) at three irrigation levels (fully-irrigated treatment (FIT), early cut-off (ECOT), and rainfed (RFT)) under two plant population densities (PPDs) (low-PPD; 59,300 plants ha-1; and, high-PPD, 84,000 plants ha-1). Overall, DT hybrids’ performance was superior to NDT hybrid at RFT, ECT, and FIT conditions, as confirmed by the yield response, IYPF and IWUE when all locations, years, and PPDs were averaged. The yield response to water was greater with the high-PPD than the low-PPD in most cases. The magnitude of the highest yields for DT hybrids ranged from 7.3 (low-PPD) to 8.5% (high-PPD) under RFT, 3.7 (low-PPD) to 9.6% (high-PPD) under ECOT, and 3.9% (high-PPD) under FIT higher than NDT hybrid. Relatively, DT hybrids can resist drought-stress conditions longer than NDT hybrid with fewer penalties in yield reduction and maintain comparable or even higher yield production at non-stress-water conditions

    Grain yield, crop and basal evapotranspiration, production functions and water productivity response of drought-tolerant and non-drought-tolerant maize hybrids under different irrigation levels, and population densities: Part I. In western Nebraska\u27s semi-arid environments

    Get PDF
    Grain yield, crop evapotranspiration (ETc), basal evapotranspiration (ETb), ETc-yield production functions (ETYPF), and crop water use efficiency (CWUE) response of three drought-tolerant (DT) and one non-drought-tolerant (NDT) maize (Zea mays L.) hybrids to two plant population densities (PPDs) [84,000 plants ha-1 (high PPD) and 59,300 plants ha-1 (low PPD)] and three irrigation levels were researched at two semi-arid locations: North Platte (WCREC) and Scottsbluff (MAL), Nebraska, in 2010, 2011, and 2012. The irrigation levels were fully irrigated (FIT), early cutoff (ECOT), and rainfed (RFT). Precipitation in 2010 was above average, 2011 was a normal year, and 2012 was one of the driest and hottest years in Nebraska’s recorded history. Generally, DT hybrids performed better than the NDT hybrid. The performances of the DT hybrids were stronger in the driest year and driest location (MAL), especially with low PPD. ETc exhibited interannual variation for the same hybrid in the same location and between the two locations and also with the PPD and irrigation treatments. There were significant differences (P\u3c0.05) between the ETc values for the same hybrids across three irrigation treatments. The grain yield response to hybrids and treatments also exhibited substantial variation for the same hybrid between the PPDs and had inter-annual variation between the years and locations. The greatest grain yields of 14.6 and 18.0 Mg ha-1 were observed with 548 and 837 mm of ETc, which were recorded for the DT hybrid H3 (high PPD) at WCREC and MAL, respectively. There were significant differences (P\u3c0.05) in performance among the DT hybrids in performance variables (ETc, ETb, ETYPF, CWUE). In most cases, the DT hybrids produced greater grain yield than the NDT hybrid with lower ETc. In terms of ETYPF response for individual hybrids, the slope of the production functions exhibited an inter-annual variation between the hybrids and for the same hybrids between the years and location for both high and low PPDs. All hybrids exhibited a linear yield response to increasing ETc in all years at both locations with positive slopes in all cases with DT hybrids having the greatest slopes. The ETb values also exhibited a substantial variation between the hybrids, years, locations, and PPDs. Generally, DT hybrids had sizably lower ETb values than the NDT hybrid in both PPD levels. It was concluded that DT hybrids increase the grain yield production per unit of ETc in semi-arid regions not only during very dry and hot year, but also during the growing season with favorable rainfall and climate conditions

    Adult zebrafish as a model organism for behavioural genetics

    Get PDF
    Recent research has demonstrated the suitability of adult zebrafish to model some aspects of complex behaviour. Studies of reward behaviour, learning and memory, aggression, anxiety and sleep strongly suggest that conserved regulatory processes underlie behaviour in zebrafish and mammals. The isolation and molecular analysis of zebrafish behavioural mutants is now starting, allowing the identification of novel behavioural control genes. As a result of this, studies of adult zebrafish are now helping to uncover the genetic pathways and neural circuits that control vertebrate behaviour

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Impact of Tillage and Placement of Terbufos Insecticide Runoff

    Get PDF
    On a national scale, the damage caused by corn rootworm (Diabrotica virgifera virgifera LeConte), can cause economic loss of up to $650 million annually. To limit these losses, corn producers apply terbufos insecticide to approximately 11% of all corn acres at a time when there is a high probability of intense precipitation. When combined with low vegetative cover and disturbed soil surfaces, there is a high potential for terbufos transport into surface water bodies. Increased public concern for environmental contamination from the use of agricultural chemicals has prompted many crop growers to look for crop production practices that minimize the transport of insecticides by surface runoff. A field experiment was conducted at the Haskell Agricultural Laboratory in northeast Nebraska in the spring of 1989 to develop best management practices for applying corn rootworm insecticides. The objective of the study was to determine the influence of three tillage practices (DISK, NOTILL, and PLOW) and two insecticide placement methods (BAND and FURROW) on the transport of terbufos insecticide (Counter®) with runoff water resulting from high intensity simulated precipitation after chemical application. A randomized complete block design of four replications was utilized. Treatments were laid out in a split-plot fashion with tillage as the main plot and insecticide placement as the subplot. Corn was planted up-and-down hill in 0.76 m row spacings on a Nora silt loam (fine-silty, mixed, mesic Udic Haplustoll) with a field slope of 6 %. Water runoff was not significantly affected by either tillage practice or insecticide placement method (P \u3c 0.05). Sediment losses from NOTILL plots were significantly less than from the DISK and PLOW treatments. Overall, terbufos transport was significantly affected by tillage practice with the NOTILL treatment resulting in less terbufos transport than the PLOW or DISK treatments. However, terbufos transport was not affected by placement method. Samples collected 10 and 20 min after runoff initiation indicated that sediment-adsorbed terbufos accounted for more than 90% of total terbufos transport. No significant differences in the sediment-adsorbed levels were noted due to tillage treatment or insecticide placement method (P \u3c 0.05). Tillage and insecticide placement methods significantly affected the dissolved terbufos concentration, especially for samples collected 20 min after runoff initiation where the BAND placement was greater than the FURROW placement. Within tillage treatments, the PLOW treatment had greater dissolved terbufos concentration than the NOTILL treatment after 20 min of runoff
    corecore