90 research outputs found

    Co-lateralized bilingual mechanisms for reading in single and dual language contexts: evidence from visual half-field processing of action words in proficient bilinguals

    Get PDF
    When reading, proficient bilinguals seem to engage the same cognitive circuits regardless of the language in use. Yet, whether or not such ‘bilingual’ mechanisms would be lateralized in the same way in distinct – single or dual – language contexts is a question for debate. To fill this gap, we tested 18 highly proficient Polish (L1) – English (L2) childhood bilinguals whose task was to read aloud one of the two laterally presented action verbs, one stimulus per visual half field. While in the single-language blocks only L1 or L2 words were shown, in the subsequent mixed-language blocks words from both languages were concurrently displayed. All stimuli were presented for 217 ms followed by masks in which letters were replaced with hash marks. Since in non-simultaneous bilinguals the control of language, skilled actions (including reading), and representations of action concepts are typically left lateralized, the vast majority of our participants showed the expected, significant right visual field advantage for L1 and L2, both for accuracy and response times. The observed effects were nevertheless associated with substantial variability in the strength of the lateralization of the mechanisms involved. Moreover, although it could be predicted that participants’ performance should be better in a single-language context, accuracy was significantly higher and response times were significantly shorter in a dual-language context, irrespective of the language tested. Finally, for both accuracy and response times, there were significant positive correlations between the laterality indices (LIs) of both languages independent of the context, with a significantly greater left-sided advantage for L1 vs. L2 in the mixed-language blocks, based on LIs calculated for response times. Thus, despite similar representations of the two languages in the bilingual brain, these results also point to the functional separation of L1 and L2 in the dual-language context

    Impaired delayed but preserved immediate grasping in a neglect patient with parieto-occipital lesions

    Get PDF
    Patients with optic ataxia, a deficit in visually guided action, paradoxically improve when pantomiming an action towards memorized stimuli. Visual form agnosic patient D.F. shows the exact opposite pattern of results: although being able to grasp objects in real-time she loses grip scaling when grasping an object from memory. Here we explored the dissociation between immediate and delayed grasping in a patient (F.S.) who after a parietal-occipital stroke presented with severe left visual neglect, a loss of awareness of the contralesional side of space. Although F.S. had preserved grip scaling even in his neglected field, he was markedly impaired when asked to pretend to grasp a leftward object from memory. Critically, his deficit cannot be simply explained by the absence of continuous on-line visual feedback, as F.S. was also able to grasp leftward objects in real-time when vision was removed. We suggest that regions surrounding the parietal-occipital sulcus, typically damaged in patients with optic ataxia but spared in F.S., seem to be essential for real-time actions. On the other hand, our data indicates that regions in the ventral visual stream, damaged in D.F but intact in F.S., would appear to be necessary but not sufficient for memory-guided action

    Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search

    Get PDF
    A prevailing theory proposes that the brain's two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways
    • …
    corecore