32 research outputs found

    Progress and Research Needs of Plant Biomass Degradation by Basidiomycete Fungi

    Get PDF
    Peer reviewe

    MrdH, a Novel Metal Resistance Determinant of Pseudomonas putida KT2440, Is Flanked by Metal-Inducible Mobile Genetic Elements▿ †

    No full text
    We report here the identification and characterization of mrdH, a novel chromosomal metal resistance determinant, located in the genomic island 55 of Pseudomonas putida KT2440. It encodes for MrdH, a predicted protein of ∼40 kDa with a chimeric domain organization derived from the RcnA and RND (for resistance-nodulation-cell division) metal efflux proteins. The metal resistance function of mrdH was identified by the ability to confer nickel resistance upon its complementation into rcnA mutant (a nickel- and cobalt-sensitive mutant) of Escherichia coli. However, the disruption of mrdH in P. putida resulted in an increased sensitivity to cadmium and zinc apart from nickel. Expression studies using quantitative reverse transcription-PCR showed the induction of mrdH by cadmium, nickel, zinc, and cobalt. In association with mrdH, we also identified a conserved hypothetical gene mreA whose encoded protein showed significant homology to NreA and NreA-like proteins. Expression of the mreA gene in rcnA mutant of E. coli enhanced its cadmium and nickel resistance. Transcriptional studies showed that both mrdH and mreA underwent parallel changes in gene expression. The mobile genetic elements Tn4652 and IS1246, flanking mrdH and mreA were found to be induced by cadmium, nickel, and zinc, but not by cobalt. This study is the first report of a single-component metal efflux transporter, mrdH, showing chimeric domain organization, a broad substrate spectrum, and a location amid metal-inducible mobile genetic elements

    Hexose Transporters of a Hemibiotrophic Plant Pathogen: FUNCTIONAL VARIATIONS AND REGULATORY DIFFERENCES AT DIFFERENT STAGES OF INFECTION*

    No full text
    Plant pathogenic fungi use a wide range of different strategies to gain access to the carbon sources of their host plants. The hemibiotrophic maize pathogen Colletotrichum graminicola (teleomorph Glomerella graminicola) colonizes its host plants, and, after a short biotrophic phase, switches to destructive, necrotrophic development. Here we present the identification of five hexose transporter genes from C. graminicola, CgHXT1 to CgHXT5, the functional characterization of the encoded proteins, and detailed expression studies for these genes during vegetative and pathogenic development. Whereas CgHXT4 is expressed under all conditions analyzed, transcript abundances of CgHXT1 and CgHXT3 are transiently up-regulated during the biotrophic phase, and CgHXT2 and CgHXT5 are expressed exclusively during necrotrophic development. Analyses of the encoded proteins characterized CgHXT5 as a low-affinity/high-capacity hexose transporter with a narrow substrate specificity for glucose and mannose. In contrast, CgHXT1 to CgHXT3 are high affinity/low capacity transporters that also accept other substrates, including fructose, galactose, or xylose. CgHXT4, the largest of the identified proteins, has only little transport activity and may function as a sugar sensor. Phylogenetic studies revealed hexose transporters closely related to the five CgHXT proteins also in other pathogenic fungi suggesting conserved functions of these proteins during fungal pathogenesis
    corecore