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Abstract Basidiomycete fungi are efficient organisms for conversion and degradation 

of plant biomass. This is due to combination of their extracellular enzymes and chemical 

reactions targeted to plant cell wall degradation. Wood- and litter-decomposing white 

rot fungi have unique ability to degrade and even mineralize all polymeric components 

of plant cell walls, including aromatic lignin, which makes them promising candidates 

for biotechnological applications using plant biomass as feedstock. 

 

Rapidly increasing whole genome sequence data has revealed the content of plant 

biomass modification related genes in different basidiomycete species. Comparative 

genome analyses have enlightened evolutionary events that have led to development of 

different fungal plant cell wall decay strategies, which are reflected in nuances detected 

between basidiomycete rot types and lifestyles in nature. However, basidiomycete 

genomes harbour a large number of genes encoding proteins with unknown functions, 

which remains to be characterized to fully understand the degradation process. In 

addition, fungal aromatic metabolism of plant biomass derived compounds has gained 

relatively little attention, although aromatic metabolic enzymes specifically acting on 

lignin structures would provide interesting options for biotechnological use. Still, low 

production levels of basidiomycete enzymes in commonly used ascomycete or bacterial 

host organisms often hamper their use in biotechnological applications. Another aspect 

that is in its infancy in basidiomycetes and restricts the use of their full potential is 

understanding of the regulatory systems driving the production of plant biomass 

degrading enzymes. In this chapter, recent developments in basidiomycete research with 

respect to plant biomass conversion will be discussed. 
_________________ 
*miia.r.makela@helsinki.fi 
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1. Introduction 

Wood and lignified annual plant biomasses such as cereal straws are usually called 

lignocellulose because they are mainly composed of the three natural polymers, i.e. the 

polysaccharides cellulose and hemicelluloses, and aromatic lignin. These biomasses are 

renewable, and huge amounts of lignocellulose are annually synthesized and degraded 

in nature. Degradation of plant biomass is in a central position in the global carbon 

cycle, because most renewable carbon is either in lignin or in plant cell wall 

polysaccharides (Kirk 1983). Especially in forest ecosystems, basidiomycete 

saprotrophic wood decaying and litter-decomposing fungi have an essential role in this 

degradation process.  

 

The use of plant biomass resources, such as residues from agriculture and forestry, 

energy crops and municipal waste streams, as feedstock for production of biofuels, 

biochemicals and biomaterials is interesting due to their abundance and relatively low 

cost. In addition, they do not compete with food production (Tolbert et al. 2014). As 

basidiomycete fungi are efficient plant biomass degrading organisms and produce 

versatile sets of enzymes targeted on depolymerisation of all the polymeric components 

of lignocellulose, they are promising candidates for various biotechnological 

applications. 

 

For a long time, the studies on plant biomass degrading basidiomycetes were focused 

on lignin degradation, especially on the so-called white rot fungi that can efficiently 

degrade and even mineralize the recalcitrant lignin polymers. In relation to this, many 

research needs and future perspectives in basidiomycete research with respect to lignin 

degradation were recognized about 20 years ago (Hatakka 2001). At that time, it was 

considered important to study (i) taxonomically or functionally different fungi, (ii) 

involvement of accessory factors, i.e. small molecular weight effectors and mediators, 

(iii) isoenzymes or isoforms expressed under natural conditions, (iv) enzymes or factors 

involved in the degradation of macromolecular native or isolated lignins, (v) the relative 

importance of individual ligninolytic enzymes in the whole degradation process, and 

(vi) in vitro degradation of polymeric lignin using mixtures of enzymes, small 

molecules, and different conditions. The same items are valid and remain as major 

challenges even now. However, the role of basidiomycete fungi as sources of other 

biotechnologically interesting enzymes has also been recognized, especially after the 

rapid progress in the genomics and post-genomics studies of lignocellulose degrading 

basidiomycetes in the 2010’s. Figure 1 shows the strong increase in the number of the 

scientific articles related to plant biomass degradation by basidiomycete fungi during 

the last decade. 
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In this chapter, we emphasize the recent developments and needs on basidiomycete 

research, to fully exploit the biotechnological potential of these fungi and their enzymes 

in terms of plant biomass utilization. 

2. Plant cell wall polymers 

Cellulose is the most abundant biopolymer on Earth (Klemm et al. 2005). It is the main 

constituent of wood, and approximately 40% of the dry weight of most wood species is 

cellulose (Sjöström 1993). Cellulose is a homopolysaccharide composed of β-D-

glucopyranoside units, which are linearly linked together by β-1,4-glycosidic bonds. 

Cellulose can be crystalline, para-crystalline and even amorphous, depending on the 

tissue in native plant, or the way that cellulose is isolated (Andersson et al. 2004, Ding 

and Himmel 2009, Karimi and Taherzadeh 2016), and its degree of polymerization may 

vary between 1000 (e.g. in wheat straw) up to 4000-5000 (in hardwood and softwood) 

(Hallac and Ragauskas 2011). Fibre aggregation found in isolated celluloses and caused 

by sample processing does not necessarily represent the native cellulose structure, and 

the detailed molecular structure of plant cell wall cellulose remains unknown (Ding and 

Himmel 2009).  

 

Hemicelluloses in wood consist of relatively short, mainly branched heteropolymers of 

glucose, xylose, galactose, mannose and arabinose as well as uronic acids of glucose, 

galactose and 4-O-methylglucose linked by β-1,3-, β-1,6- and β-1,4-glycosidic bonds. 

Galacto(gluco)mannans are the principal hemicelluloses in softwoods (approx. 20%), 

whereas their xylan content is lower (5-10%). Depending on hardwood species, the 

xylan content varies within the limits of 15-30% of the dry wood. Acetyl groups are 

present as substituents particularly in the glucomannans of gymnosperms and the xylans 

of angiosperms (Sjöström 1993). Other hemicelluloses are xyloglucan (β-1,4-linked D-

glucose), found mainly in the primary walls; β-glucan (β-1,3;1,4-linked D-glucose); and 

mannan (β-1,4-linked D-mannose) (Harris and Stone 2009). Xylan, xyloglucan and 

mannan backbones are decorated with branched monomers and short oligomers 

consisting of D-galactose, D-xylose, L-arabinose, L-fucose, D-glucuronic acid, acetate, 

ferulic acid and p-coumaric acid that are cleaved by various debranching enzymes. 

Hemicelluloses are reported to be linked to lignin through cinnamate acid ester linkages, 

to cellulose through interchain hydrogen bonding, and to other hemicelluloses via 

covalent and hydrogen bonds (Decker et al. 2009). 
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Lignin is a phenylpropanoid structural polymer of vascular plants, which gives the 

plants rigidity and binds plant cell walls together (Sarkanen and Ludwig 1971). It is a 

key structural component in water transportation (Tolbert et al. 2014) and protects plant 

tissues from invasion of pathogenic microorganisms (Eriksson et al. 1990). Lignin in 

plant cell walls is intimately mixed with carbohydrate components. It also forms lignin-

carbohydrate complexes (LCC), thereby increasing the recalcitrance of the biomass 

(Tolbert et al. 2014). Therefore, when lignocellulosic biomasses are used in enzymatic 

biotechnological processes, they must be pretreated either physically, chemically or 

biologically before enzymatic depolymerisation of the plant cell wall polysaccharides 

to e.g. monosaccharides for the production of bioethanol. The main aim of the 

pretreatment is the removal or partial or total degradation lignin, and therefore there has 

been an increasing interest in the use of the white rot fungi or their lignin degrading 

enzymes as a part of pretreatment, studied already by Hatakka (Hatakka 1983). This 

approach has received a considerable interest and has been reviewed frequently during 

recent years (e.g. Johnson and Elander 2009; Salvachua et al. 2011; Shirkavand et al. 

2016; Sindhu et al. 2016).  

 

Lignin is one of the most abundant biopolymers in the world, and comprises about 25% 

of the dry weight of cellular carbon stored in the biosphere (Zeikus 1981). To avoid 

confusion, it is important to understand the basic terminology and follow definitions, 

when describing lignin and aromatic substrates. Lignins can be defined as outlined by 

Zeikus (1981): natural lignins, which are water insoluble polymers arising from an 

enzyme-initiated dehydrogenative polymerization of coumaryl, coniferyl or sinapyl 

alcohol in plant cell walls; industrial lignins, which are chemically or physically 

modified, largely aromatic residues from pulp and paper, and bioethanol producing 

industrial processes utilizing wood, straw or other lignocellulose; and model lignins, 

which include water-soluble aromatic compounds that are synthesized from cinnamyl 

alcohol derivatives and contain an intermonomer linkage(s) present in natural lignin.  

 

Natural lignins can be divided into three major groups: guaiacyl lignins found in 

conifers but also in some other plants, guaiacyl-syringyl lignins, found in angiosperms, 

and guaiacyl-syringyl-p-hydroxyphenyl lignins, found in grasses (Graminae). Because 

natural lignins are highly polydisperse materials, their molecular weight is difficult to 

determine. The non-uniformity of the chain lengths of lignin prevents the 

characterization of a specific molecular weight. Thus, it is necessary to characterize 

lignin in terms of average molecular weight, using e.g. number average molecular 

weight (Mn) and weight average molecular weight (Mw) (Tolbert et al. 2014).  

 

Due to the complex and irregular structure of the lignin polymer, isolation of native 

lignin is difficult (Buswell and Odier 1987; Brunow 2001) and therefore many industrial 
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lignins, such as alkali lignins, are highly modified preparations. In a recent review by 

Tolbert et al. (2014), different methods to isolate lignin from native biomass are 

summarized, including the determination of its average molecular weight. The most 

common isolation methods are milled wood lignin (MWL), cellulolytic enzyme lignin 

(CEL), and enzymatic mild acidolysis lignin (EMAL) methods.  

 

Lignin model compounds, e.g. dimeric -O-4 model compounds and synthetic lignin 

(dehydrogenation polymer, DHP), are commonly used in microbiological studies (Kirk 

and Farrell 1987). However, when small molecular weight aromatic compounds are 

used as substrates, they do not have the polymeric nature of lignin, which is essential 

characteristic of natural lignins.  

3. Life styles of plant biomass converting basidiomycetes 

Plant biomass degrading basidiomycete fungi are traditionally categorized based on the 

visually observed wood-decay pattern (Hildén and Mäkelä 2018). White rot fungi are 

able to degrade all the components of the plant cell wall. The decayed wood is 

characteristically white including fiber-like cellulose enriched material, whereas brown 

rot fungi mainly degrade wood polysaccharides and only modify lignin, which results 

in dry, brown residual wood. Based on their genome content, fungal species which show 

intermediate characteristics to white and brown rot have been suggested to be named as 

grey rot (Riley et al. 2014; Floudas et al. 2015; Nagy et al. 2016) 

 

White rot causing fungal species in the subphylum Agaricomycotina have a special role 

in plant biomass degradation since they can efficiently degrade all components of plant 

cell walls and even mineralize the most recalcitrant natural polymer, lignin (Kirk 1983; 

Eriksson et al. 1990; Hatakka 2001). While the white rot fungi usually belong to 

basidiomycetes, some ascomycete fungi such as those belonging to Xylariaceae can 

mineralize lignin to some extent causing greyish sponge-like soft rot (Blanchette 1995; 

Liers et al. 2006). Basidiomycete white rot species colonize the wood cell lumen where 

the hypha can enter from cell to cell via bordered pits or through the cell walls 

(Blanchette 1995; Kuhad et al. 1997). White rot fungi can be divided into simultaneous 

and selective lignin degraders. In simultaneous degradation, lignin and wood cell wall 

polysaccharides are concomitantly depolymerized, whereas in selective degradation, 

lignin and hemicelluloses are degraded leaving cellulose almost intact (Eriksson et al. 

1990; Kuhad et al. 1997, Hakala et al. 2004). Selective degradation is usually limited to 

the initial stages of decay (Adaskaveg et al. 1995). However, selective lignin 

degradation has been suggested to significantly differ between mono- and dikaryotic 
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white rot fungal strains (Marinović et al. 2018b). Litter-decomposing basidiomycete 

fungi are also able to cause white rot type decay. The growth and degradation capacity 

of these species is usually restricted to the soil environment (Steffen et al. 2000). The 

common feature of all white rot species is the ability to secrete oxidative lignin-

modifying enzymes such as lignin-modifying heme peroxidases, laccases and H2O2-

generating enzymes (Kirk and Farrell 1987; Hatakka 2001; Hammel and Cullen 2008).  

 

Brown rot fungi mainly depolymerize cellulose and hemicelluloses in wood, but lignin 

modification occurs only at some extent, mostly by demethoxylation (Eriksson et al. 

1990; Akhtar et al. 1997; Hammel 1997). The decayed wood remains brown and breaks 

down into cubical cracks. The main decay mechanism of brown rot fungi is non-

enzymatic attack using highly reactive oxygen species (ROS), especially hydroxyl 

radicals (HO˙) produced by Fenton reaction (Fe2+ + H2O2 → Fe3+ + HO− + HO˙) (Jensen 

Jr. et al. 2001). ROS enable loosening of wood structure by depolymerizing lignin, 

which is followed by partial repolymerization and enzymatic polysaccharide 

degradation in wood cell lumen (Yelle et al. 2008; Goodell et al. 2017).  

 

Recently, the traditional classification to white rot or brown rot species has been 

challenged by species that produce white rot like appearance of wood, but lack key gene 

families for lignin degradation (Riley et al. 2014; Floudas et al. 2015). Their ability to 

degrade wood is limited, and in that regard they resemble ascomycete soft rot causing 

fungi (e.g. Trichoderma and Xylaria species), which are able to degrade wood 

polysaccharides in moist or aquatic conditions. Particularly, a key enzyme family 

involved in lignin degradation, class II lignin-modifying heme peroxidases, is missing 

in their genomes (Nagy et al. 2016).  

 

It is noteworthy that ectomycorrhizal fungi possess genes encoding plant cell wall 

degrading enzymes, but their ability to decompose lignocellulose is lower than in most 

other wood-decaying basidiomycetes. Degradation mechanism of some 

ectomycorrhizal species resembles that of brown rot type of decay (e.g. Paxillus), while 

others use a white rot type mechanism (e.g. Cortinarius) (Kohler et al. 2015; Lindahl 

and Tunlid 2015). In addition to mycorrhizal species, plant pathogenic basidiomycetes 

have also been reported to be able to degrade lignocellulose, but less efficiently than 

wood decaying species (Rytioja et al. 2014; Kohler et al. 2015). Therefore, we focus on 

wood and litter-degrading basidiomycetes in this chapter.  

3. Plant biomass modifying enzymes of basidiomycetes 
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Due to the structural complexity of plant biomass, multiple carbohydrate-active 

enzymes (CAZymes) and oxidoreductases are needed to degrade the plant 

polysaccharides and lignin. CAZy database (www.cazy.org) consists of thousands of 

enzymes involved in the modification of plant biomass components (Lombard et al. 

2014). Plant polysaccharides degrading hydrolytic enzymes include a variety of 

activities that are grouped in glycoside hydrolase (GH) families. Many of these enzymes 

harbour a cellulose binding module(s) (CBM), which binds to the substrate and 

promotes enzyme catalysis (Várnai et al. 2014). Most of the oxidoreductases acting on 

lignin as well as lytic monosaccharide monooxygenases (LPMOs) that oxidatively 

cleave various polysaccharides are classified to the family of Auxiliary Activities (AA) 

in the CAZy database.  

3.1 Carbohydrate modifying enzymes  

So-called classical cellulases, namely endoglucanases, exoglucanases 

(cellobiohydrolase; CBH) and -glucosidases, and oxidative enzymes, LPMOs and 

cellobiose dehydrogenases (CDHs) (Rytioja et al. 2014), are involved in cellulose 

degradation. Endoglucanases, which belong to several GH families (GH5, 7, 12, 45) 

hydrolyse non-crystalline regions of cellulose by opening and cleaving internal 

glycosidic bonds at random positions. They generate free cellulose chain ends for 

processively acting CBHs. CBH I (GH7) acts on non-reducing and CBH II (GH6) on 

reducing end of cellulose chain resulting in the release of oligosaccharides. In addition 

to these hydrolytic cellulases, oxidative LPMOs (AA9-11, AA14,15) together with 

CDH (AA3_1) act on crystalline cellulose regions providing new access points for 

endoglucanases and CBHs (Bissaro et al. 2018). -Glucosidases (GH 1, 3) finalize the 

concerted action of cellulases by hydrolysing the released oligosaccharides to glucose 

molecules (Shewale 1982, Rytioja et al. 2014).  

 

The heterogeneous composition of hemicelluloses requires a diverse set of enzymes for 

degradation of the backbones and branches depending on each hemicellulose types 

(Shallom and Shoham 2003; Rytioja et al. 2014). The two main groups, which 

participate in hemicellulose degradation are xylanolytic and mannanolytic enzymes. 

The backbone of xylan is hydrolysed by endoxylanases (GH10, 11) to shorter 

oligosaccharides. In addition, xylobiohydrolase (GH30) is able to cleave xylan 

backbone to xylobiose units. Exo-acting -xylosidases (GH3, 43) release monomeric 

xylose residues from the ends of xylan chain. Xyloglucan has the same backbone as 

cellulose, but with xylose-based side chains. Xyloglucan backbone is hydrolysed by 

xyloglucanases (GH74), endoglucanases, CBHs and -glucosidases. The mannan 
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backbone is cleaved by endo-mannanases (GH5, 26) into manno-oligosaccharides, 

which are further hydrolyzed by -mannosidases (GH2) into mannoses. In addition, -

glucosidases act on the mannan backbone.  

 

In addition to the backbone degrading enzymes, a variety of debranching enzymes are 

needed in hydrolysis of xylan and mannan (Rytioja et al. 2014). As their side chains 

include monomers and oligomers which can contain acetate, arabinose, fucose, 

glucuronic acid, galactose or ferulic acid residues, they are hydrolyzed by different sets 

of debranching enzymes depending on the type of hemicellulose. Side chains of xylan 

are cleaved e.g. by acetyl xylan esterases (CE1, 5), arabinoxylan 

arabinofuranohydrolase (GH62) and -glucuronidases (GH67, 115), whereas mannan 

debranching enzymes include -galactosidases (GH27, 36) and galactomannan acetyl 

esterase (not included in CAZy database). Debranching enzymes for xyloglucan are -

fucosidases (GH29, 95), -arabinofuranosidases (GH51, 54) and -xylosidase (GH31). 

Feruloyl (EC 3.1.1.73) and glucuronoyl esterases (CE15) catalyze the cleavage of ester 

bonds between plant cell wall polysaccharides and lignin (Dilokpimol et al. 2016; 

Dilokpimol et al. 2018). 

3.2 Lignin modifying enzymes 

Class II heme containing peroxidases and laccases are considered as classical lignin 

modifying enzymes. In addition, assisting enzymes such as H2O2-producing enzymes 

participate in lignin degradation (Lundell et al. 2014). They are classified as auxiliary 

activities (AA) in the CAZy database (Lombard et al. 2014).  

 

Manganese peroxidases (MnP), lignin peroxidases (LiP) and versatile peroxidases (VP) 

are unspecific lignin modifying heme peroxidases, which are exclusively secreted by 

the white rot species. All lignin-modifying peroxidases belong to the AA2 family. For 

all heme peroxidases, H2O2 or organic peroxides act as the primary oxidant. Two 

electrons derived from substrate molecules gradually reduce the enzyme back to the 

resting stage with concomitant release of two water molecules (Dunford 1991; Gold et 

al. 2000; Hammel and Cullen 2008). As a result, organic radicals are formed, which 

rapidly undergo subsequent chemical reactions leading to formation of oxidized or 

coupled (oligomeric) end-products. 

 

MnP catalyzes the oxidation of Mn(II) to Mn(III) in the presence of H2O2. Highly 

reactive Mn(III) is stabilized in chelated form by organic acids. Chelated Mn(III) acts 

as a low molecular weight diffusible redox mediator, which is able to penetrate into 
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wood cell wall. This yields spontaneous break down of unstable organic radicals from 

phenolic lignin structures, carboxylic acids, and unsaturated lipids (Wariishi et al. 1992; 

Blanchette et al. 1997; Gold et al. 2000; Hofrichter 2002). Nonphenolic structures of 

lignin cannot be directly oxidized by MnP, but MnP-mediated lipid peroxidation 

reactions enable the slow degradation of nonphenolic structures (Kapich et al. 1999a; 

Kapich et al. 1999b). In addition, significant cell-free mineralization of 14C-labelled 

synthetic and natural lignins by MnP has been reported (Hofrichter et al. 1999a; 

Hofrichter et al. 1999b) further highlighting the importance of MnPs in lignin 

degradation. 

 

LiP catalyzes the oxidation of variety of substrates, such as phenolic and nonphenolic 

aromatic compounds, including the substructures of lignin (Kirk and Farrell 1987; 

Hatakka and Hammel 2010). The catalytically active tryptophan residue on the enzyme 

surface participates in the so-called long-range electron transfer from lignin or other 

bulky recalcitrant substrate that cannot directly interact with heme in the active centre 

of LiP (Doyle et al. 1998). Typically, the oxidation reactions of LiP result with 

formation of organic radicals leading to C-Ccleavage, aromatic ring cleavage and 

demeth(ox)ylation (Kirk and Farrell 1987; Lundell et al. 1993).  

 

VP combines the structural and catalytic properties of MnP and LiP (Ruiz-Dueñas and 

Martínez 2009). Therefore, they are capable of degrading a wide range of substrates. 

Similarly to MnP, VP is able to efficiently oxidize Mn(II), and also nonphenolic 

structures in the absence of Mn(II) ions by using the similar approach as LiP (Perez-

Boada et al. 2005).  

 

A turning point in lignin biodegradation studies was the discovery “ligninase” in 1983 

in the model white rot basidiomycete fungus Phanerochaete chrysosporium. Kirk 

(1983) evaluated developments before that, and some advances since 1983 were listed 

by Hatakka (2001). The discoveries include finding and characterization of ligninolytic 

peroxidases, LiP and MnP, in 1983-1984, one-electron oxidation mechanism and cation 

radical formation by LiP in 1985, and the concept of "enzymatic combustion" (Kirk and 

Farrell 1987). Some pioneering molecular biological studies (for references, see 

Hatakka 2001) until 2000 include the first cloning and sequencing of lip and mnp gene, 

heterologous expression of laccase and peroxidases, homologous expression of 

peroxidases, and 3D structures of LiP, MnP and laccases (in 1993-1998), and detailed 

characterization of VP. The need to study more than one model fungus was obvious in 

the 1990’s, when lignin biodegradation had almost exclusively been studied by the 

canonized white rot model fungus P. chrysosporium. Later, the profiles of ligninolytic 

enzymes produced by different white rot fungi were found to show considerable 

variations (Hatakka 1994).  
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In addition to family AA2 heme peroxidases, dye-decolorizing peroxidases (DyP) and 

members of heme-thiolate peroxidase (HTP) superfamily are suggested to participate in 

plant biomass degradation. DyPs have been shown to degrade wheat straw, non-

phenolic-O-4 lignin model compounds and substituted phenols (Liers et al. 2010; 

Linde et al. 2015). HTPs include chloroperoxidases, unspecific peroxygenases (UPOs) 

and intracellular cytochrome P450 monooxygenases. UPOs are able to catalyse a variety 

of oxidation and oxyfunctionalization reactions with H2O2 (Hofrichter et al. 2015). The 

UPO catalyzed reactions include aromatic oxygenations, alkyl hydroxylations and 

oxidations of different aromatic and aliphatic compounds. UPOs are also able to cleave 

dimeric nonphenolic -O-4 lignin model compounds suggesting that UPOs may have a 

role in the degradation of lignin derived methoxylated compounds (Kinne et al. 2011). 

The physiological function of DyPs and HTPs and their natural substrates remains 

unclear (Hofrichter et al. 2015; Linde et al. 2015). 

 

Laccases (family AA1_1) belong to the multicopper oxidase family and they catalyse 

one-electron oxidations of wide range of substrates with the concomitant reduction of 

O2 to water via a radical-catalysed reaction (Thurston 1994; Munk et al. 2015). First the 

substrate is oxidized at the mononuclear copper center T1 followed by intramolecular 

electron transfer into the trinuclear copper center T2/T3 in the laccase active site 

(Solomon et al. 2008). Laccases are able to directly oxidise a variety of phenolic 

compounds, e.g. methoxy-substituted phenols, polyphenols, aromatic amines and 

benzenethiols (Thurston 1994; Call and Mücke 1997). The laccase-mediator system was 

discovered in late 1990’s (Call and Mücke 1997) showing that in the presence of low 

molecular weight compounds that act as redox mediators, the substrate range of laccases 

can be indirectly expanded to non-phenolic compounds (Bourbonnais and Paice 1990). 

As non-phenolic aromatic structures comprise ca. 80% of lignin, laccase-mediator 

systems play an essential role in lignin degradation. Laccases are applied in many 

industrial applications such as in bleaching and removal of lignin from wood and non-

wood fibres. In addition, they are the most popular enzymes studied for the modification 

of various industrial lignins.  

 

GMC (glucose-methanol-choline) superfamily oxidoreductases (AA3) and copper 

radical oxidases (AA5) are essential enzymes in plant biomass degradation as they 

generate H2O2 for peroxidase-catalysed reactions in white rot fungi and for Fenton 

reactions in brown rot species (Hammel and Cullen 2008). GMC superfamily members 

include various alcohol and sugar oxidases such as aryl alcohol oxidase (AA3_2), which 

catalyses the oxidation of lignin-derived compounds, such as phenolic aromatic 

aldehydes and acids, to their corresponding aldehydes by simultaneously reducing O2 to 

H2O2 (Hernández-Ortega et al. 2012). Aryl alcohol oxidases are the most common GMC 
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oxidases in the white rot species. Copper radical oxidases, such as glyoxal oxidase 

(AA5_1) and galactose oxidase (AA5_2), produce H2O2 by catalysing oxidation of 

simple aldehydes to their corresponding carboxylic acids (Whittaker et al. 1996).  

3.3 Intracellular aromatic converting enzymes 

Fungal intracellular enzymes involved in conversion of aromatic compounds are mainly 

cytochrome P450 monooxygenases, glutathione-S-transferases, O-methyl transferases 

and vanillyl alcohol oxidases. 

 

Basidiomycete genomes are rich in genes encoding putative cytochrome P450s 

(cytP450s). These enzymes are potentially involved in detoxification of small molecular 

weight aromatic compounds from lignin degradation process (Mäkelä et al. 2015). In 

addition, the huge number and sequence-level variation in basidiomycete cytP450s 

suggests that they play roles also in other metabolic adaptations such as secondary 

metabolite production and detoxification of xenobiotics (Crešnar and Petrič 2011; 

Durairaj et al. 2016). While experimental screening is essential to elucidate the catalytic 

potential of individual cytP450s, a systematic functional characterization has already 

been conducted e.g. with the cytP450s of the brown rot fungus Postia placenta (Ide et 

al. 2012). 

 

Glutathione-S-transferase (GST; EC 2.5.1.18) superfamily consists of multifunctional 

enzymes which are involved in metabolic and detoxification pathways. They catalyse 

the conjugation of the tripeptide glutathione to the compounds containing electrophilic 

center. In addition, some GSTs are also able to bind non-substrate molecules possessing 

ligandin function (Lallement et al. 2014). Ligandin properties are known to play an 

important role in sequestration and transport of toxic compounds inside of cell. Fungal 

specific GSTs (GSTFuA) have been identified and characterized in white rot species. 

GSTs include β-etherases, which catalyse the reductive cleavage of β-O-4 bonds. 

Putative β-etherase encoding genes are widely detected in fungal genomes, however 

functional β-etherase (GST1) has been only characterized from the white rot 

basidiomycete Dichomitus squalens (Marinović et al. 2018b). GST1 is able to cleave β-

O-4 bond in lignin model compound as well as to reduce the size of synthetic lignin (G-

DHP) thus suggesting a role in intracellular catabolism of lignin-derived aromatic 

compounds. GSTFuAs of the other white rot species P. chrysosporium have shown 

ligandin properties towards lignin derived components such as coniferyl and 

syringaldehyde, vanillin, chloronitrobenzoic acid, hydroxyacetophenone, and catechins 

(Thuillier et al. 2014).  
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O-methyl transferase encoding genes are found in the genomes of white rot species. 

Functionally characterized O-methyl transferase of P. chrysosporium converts the 

aromatic ring linked OH groups at both meta and para positions by utilizing S-adenosyl 

methionine (Wat and Towers 1975; Coulter et al. 1993; Pham and Kim 2016). They are 

able to methylate coniferyl alcohol, ferulic acid, vanillic acid and isovanillic acid 

(Jeffers et al. 1997; Pham and Kim 2016). It is suggested that the biological role of O-

methyl transferases in fungi is to remove free-OH phenolic compounds, which inhibit 

enzymatic activity of LiP, and convert them into non-toxic methylated phenolic ones 

(Pham et al. 2014; Pham and Kim 2014). Fungal phenol-methylating enzymes may have 

applications e.g. in the pulp and paper industry. Treatment of mechanical pulp under 

anaerobic conditions with mycelial extracts of the white rot fungi Phlebia radiata and 

P. chrysosporium partially prevents the yellowing of mechanical pulp (Hatakka et al. 

1994).   

 

Vanillyl alcohol oxidases (VAOs) convert a wide range of para-substituted phenols 

producing e.g. vanillin, coniferyl alcohol and chiral aryl alcohols. VAOs are classified 

into AA4 family in the CAZy database. In the Basidiomycota genomes, only 

Agaricomycotina contain putative VAO encoding genes (Gygli et al. 2018). However, 

the only biochemically studied VAO is from an ascomycete species Penicillium 

simplicissimum. 

4. Current status of basidiomycete genomics  

In 2004, P. chrysosporium, the model species for lignin and white rot wood degradation 

was genome-sequenced as the first species from the phylum Basidiomycota (Martinez 

et al. 2004). Since that the genomics era has already provided more than 400 

basidiomycete genome sequences (JGI MycoCosm, 5th April 2019, 

https://genome.jgi.doe.gov/programs/fungi/index.jsf), most of which (362) are from 

species from the subphylum Agaricomycotina (Fig. 2) that includes majority of the plant 

biomass degrading basidiomycete fungi. At the same time, MycoCosm portal of the 

Joint Genome Institute (JGI) of the U.S. Department of Energy has become an 

invaluable fungal genomics resource, which gives access to numerous fungal genome 

sequences as well as provides tools for analysis of individual genomes and comparative 

genomics (Grigoriev et al. 2014). After P. chrysosporium, the second genome-

sequenced wood degrading basidiomycete was the model brown rot species P. placenta 

(Rhodonia placenta) (Martinez et al. 2009), and release of its whole genome sequence 

enabled the first genome level comparative studies between the two wood decay types, 

https://genome.jgi.doe.gov/programs/fungi/index.jsf
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white and brown rot (Vanden Wymelenberg et al. 2010; Vanden Wymelenberg et al. 

2011). These pioneering studies were followed by public releases of the genomes of the 

selectively lignin degrading white rot fungus Ceriporiopsis subvermispora (Fernández-

Fueyo et al. 2012), the medicinal white rot fungus Ganoderma lucidum (Liu et al. 2012) 

and the litter-decomposing white button mushroom Agaricus bisporus (Morin et al. 

2012), amongst others. More recently, genome sequencing has expanded to cover 

multiple strains of the same species, and the white rot fungus D. squalens with four 

available genome sequences from different strains 

(https://genome.jgi.doe.gov/programs/fungi/index.jsf) provides the best coverage of a 

filamentous basidiomycete species at the moment. The availability of multiple genome 

sequences of an individual species will enable e.g. detailed molecular level studies on 

intraspecies diversity in basidiomycete plant biomass degradation, which is of 

importance for instance when selecting strains for biotechnology applications.  

 

The first genome sequences of the saprobic basidiomycete fungi supported the 

biochemically observed differences between white and brown rot wood decay types 

(Martinez et al. 2004; Martinez et al. 2009). However, extensive genome comparisons 

of saprobic basidiomycetes (Riley et al. 2014; Floudas et al. 2015) enabled more defined 

division for different types of fungal wood decay and life-styles based on the content of 

the CAZyme encoding genes in these species. As already mentioned in the previous 

section, the classical dichotomous division of the wood rot types was shown to be 

inadequate to cover the whole spectrum of the degradation strategies of wood degrading 

basidiomycetes (Riley et al. 2014; Floudas et al. 2015), and thus species that have 

intermediate decay capabilities were described as species causing uncertain type of rot 

or grey rot. 

 

The genomes of the saprobic white rot basidiomycetes have been shown to be rich in 

genes (Riley et al. 2014) encoding enzymes that cover depolymerization of plant cell 

wall polysaccharides as well as the aromatic lignin polymer (Floudas et al. 2012; Rytioja 

et al. 2014). The presence of the genes encoding class II fungal heme peroxidases, i.e. 

MnPs, LiPs or VPs from family AA2, as well the enzymes acting on crystalline 

cellulose, i.e. GH6 and 7 CBHs, and AA9 LPMOs (Table 1) have been shown to be 

characteristic for the white rot fungal genomes. Compared to white rot fungi, the lignin-

modifying peroxidases encoding genes are absent from brown rot fungal genomes. In 

addition, the number of cellulase genes is strongly reduced in brown rot genomes, thus 

highlighting their focus on non-enzymatic strategy for cellulase depolymerization. In 

contrast, the grey rot species, such as Botryobasidium botryosum, Cylindrobasidium 

torrendii, Jaapia argillacea and Schizophyllum commune, do not possess lignin-

modifying peroxidase enzymes, but have diverse enzymes for depolymerization of 

crystalline cellulose (Riley et al. 2014; Floudas et al. 2015).  

https://genome.jgi.doe.gov/programs/fungi/index.jsf
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While the overall CAZy gene content can be considered largely comparable between 

fungal species representing a certain wood rot type, variable numbers of genes encoding 

enzymes with certain (putative) activity are present in these species (Table 1). For 

example, several white rot genomes are particularly rich in laccase encoding genes, 

whereas P. chrysosporium, Phanerochaete carnosa, Phlebiopsis gigantea and 

Bjerkandera adusta lack sensu stricto laccases, thus showing that these enzymes are not 

required for efficient lignin degradation. This is further confirmed by the presence of 

laccase genes in almost all studied brown rot fungi as well as in the species with 

intermediate wood decay abilities. White rot fungi also have differences in their set of 

lignin-modifying heme peroxidases. MnPs are the most common ligninolytic 

peroxidases, while LiP and VP encoding genes are relatively rare in the white rot fungal 

genomes (Table 1). Interestingly, a high number of LiP encoding genes, form 10 to 12, 

are present in P. chrysosporium, Trametes versicolor and B. adusta. This redundancy 

of certain plant cell wall degradation related CAZy genes is not yet understood, but it 

may endow basidiomycetes with e.g. adaptability in changing environmental 

conditions. 

 

In addition to cataloguing the gene content related to plant biomass degradation, the 

comparative genomics studies on different basidiomycete fungi have shed light on 

evolutionary patterns leading to the currently existing plant cell wall degradation 

approaches among basidiomycetes (Floudas et al. 2012; Floudas et al. 2015; Nagy et al. 

2016). First, the brown rot fungi were shown to be evolved several times from an 

ancestor white rot species (Floudas et al. 2012), and more recently, comparative 

genomics of early-diverging mushroom forming fungi suggested that most of the white 

rot fungal lignin-degrading oxidative enzymes have appeared after the origin of the first 

white rot species (Nagy et al. 2016). 

 

Although the intracellular aromatic metabolic enzymes and their encoding genes of 

wood-rotting basidiomycetes have gained relatively little attention (Mäkelä et al. 2015), 

their genomes have been shown to be particularly rich in genes encoding putative 

cytP450s. For example, the white rot fungi P. chrysosporium (Doddapaneni et al. 2005) 

and D. squalens (Morel et al. 2013) possess 149 and 200 cytP450 genes, respectively, 

while even a higher number, 236, is present in the genome of the brown rot fungus P. 

placenta (Martinez et al. 2009). So far, the most significant expansion of cytP450s is 

reported for the white rot fungus P. carnosa with 266 candidate cytP450s (Suzuki et al. 

2012). This enrichment could be advantageous for growth on substrates that have high 

content of lignin and extractives, such as coniferous heartwood (Jurak et al. 2018). 

Brown rot fungi are primarily found associated with conifers, although there are also 

some brown rot species that attack hardwoods (Eriksson et al. 1990). 
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It should be noted that approximately one-half of the proteins predicted to be encoded 

by the basidiomycete genome sequences do not have a known or putative function 

(Riley et al. 2014). Conceivably, part of these candidate enzymes plays a role in 

lignocellulose conversion. For example, the phylogenomic analysis by Nagy et al. 

(2017) revealed 73 gene families without any known domains in the Pfam protein family 

database (El-Gebali et al. 2019) and 49 gene families that have domains of unknown 

function (DUF), which were predicted to participate in white rot fungal wood decay. 

Functional characterization of the unknown proteins is undoubtedly one of the future 

challenges in basidiomycete research.  

 

The development of genome annotation methods has produced improved fungal 

genome sequences, e.g. with respect to the number and quality of predicted gene models 

(Ohm et al. 2014). While recently the gold-standard genome of the filamentous 

ascomycete fungus Aspergillus niger strain NRRL3 was published (Aguilar-Pontes et 

al. 2018), most of the fungal genomes are still incompletely sequenced and assembled, 

containing gaps and insufficient gene annotations. In addition to the risk of missing 

genes due to gaps in the genome, lack of high-quality genome sequences crucially 

complicates the analysis of omics data as well as genetic studies, by hampering targeted 

gene deletions and modifications. Recently approved genome sequencing project at 

DOE-JGI (https://jgi.doe.gov/csp-2019-finishing-genomes/) aims to result in 

approximately 25 full fungal genomes with telomere-to-telomere validated assemblies 

of all chromosomes and manually verified gene models. These high-quality genome 

sequences, including well-studied basidiomycete species for wood degradation – the 

white rot fungus D. squalens and the brown-rot fungus P. placenta – will provide better 

references for gene prediction and functional annotation in other basidiomycete species. 

These gold-standard genomes will therefore improve the quality of other genome 

sequences and provide a better understanding of abilities and differences between the 

fungal species.  

5. Post-genomic analyses of basidiomycetes 

Shortly after the availability of the fungal genome sequences, the high-throughput 

functional genomics studies, i.e. transcriptomics and proteomics, of basidiomycete 

fungi have increased exponentially. These omics studies have contributed to harnessing 

the full potential of basidiomycetes in plant biomass based biotechnological 

applications by facilitating the exploration of key genes and enzymes that are involved 

in plant cell wall degradation, and validating functions of these enzymes. However, 

https://jgi.doe.gov/csp-2019-finishing-genomes/
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global metabolomics studies are still in their infancy in basidiomycetes, mostly due to 

lack of reference databases for fungal metabolites. Further development of analytical 

methods and bioinformatics tools will be needed to enable systems biology level studies 

on plant biomass modification by basidiomycetes.  

 

So far, transcriptome and proteome analyses have been performed for several individual 

plant biomass degrading basidiomycete species, but more extensive studies have 

focused on relatively few model species. These include e.g. the white rot fungi P. 

chrysosporium, P. carnosa and D. squalens, and the brown rot fungus P. placenta 

(Vanden Wymelenberg et al. 2009; Vanden Wymelenberg et al. 2010; MacDonald et 

al. 2011; Vanden Wymelenberg et al. 2011; Rytioja et al. 2017; Casado López et al. 

2018; Daly et al. 2018; Jurak et al. 2018). The basidiomycete omics studies have been 

conducted from variable culture conditions including liquid, semi-solid and solid 

cultivations. These cultivations have contained various types of plant biomass with 

different chemical composition as a substrate covering both non-wood and wood 

biomass (Vanden Wymelenberg et al. 2011; Miyauchi et al. 2017; Rytioja et al. 2017) 

as well as plant biomass derived mono-, oligo- and polymeric compounds (Vanden 

Wymelenberg et al. 2009; Casado López et al. 2018). In addition, the used biomass 

substrates have had highly different physical properties varying from fine-powdered 

plant biomass to wood sawdust and more intact pieces of wood such as sticks and wafers 

(Rytioja et al. 2017; Daly et al. 2018; Jurak et al. 2018; Marinović et al. 2018a; Presley 

et al. 2018). Initially, the omics studies focused on early stages of basidiomycete growth 

and degradation, and usually included sampling of an individual time point after few 

days of cultivation (Vanden Wymelenberg et al. 2009; Fernández-Fueyo et al. 2012). 

Later on, the omics analyses have also been performed from prolonged cultivations with 

several sampling points to capture the temporal dynamics of the plant biomass 

conversion and to predict the most critical genes and enzymes at early and later stages 

of the degradation process (Kuuskeri et al. 2016; Marinović et al. 2018a; Jurak et al. 

2018).  

 

In line with the content of the white rot genomes, the functional genomics studies have 

indicated a central role for class II lignin modifying peroxidases and H2O2-producing 

enzymes, together with GHs and LPMOs for white rot decay. Expectedly, the variations 

detected in CAZy gene expression and protein production by different white rot fungal 

species have been larger than those observed in the corresponding genome content. In 

the molecular level studies, several white rot species have shown preference for lignin 

degradation during early stages of growth (Patyshakuliyeva et al. 2015; Kuuskeri et al. 

2016; Rytioja et al. 2017; Marinović et al. 2018a), most probably as a prerequisite for 

getting access to plant biomass carbohydrates to warrant further growth and 

propagation. So far, no conclusive results with respect to the dogma of the selective 
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lignin degradation have been obtained from the (post)genomics studies of white rot 

fungi (Fernández-Fueyo et al. 2012; Marinović et al. 2018a). The mechanism behind 

selective ligninolysis has been suggested to possibly involve MnPs as well as 

desaturases that are putatively involved in the cleavage of dominant non-phenolic 

structures of lignin through lipid peroxidation (Fernández-Fueyo et al. 2012). In 

addition, lower expression and production of cellulolytic genes and enzymes, 

respectively, were implicated when the selective lignin degrader C. subvermispora was 

compared to the non-selective P. chrysosporium (Fernández-Fueyo et al. 2012).  

 

Transcriptome and proteome analyses have clearly shown that the ability of the 

lignocellulose degrading basidiomycete fungi to convert plant biomass is not restricted 

to substrates they encounter in their natural habitats. For example, the white rot fungus 

D. squalens shows nearly as good molecular response to non-wood as to woody biomass 

(Rytioja et al. 2017). Furthermore, D. squalens is able to partially adjust the enzyme 

sets is produces to match the composition of the wood substrate it grows on (Daly et al. 

2018). This suggests the existence of fine-tuned regulatory mechanisms behind white 

rot plant biomass and wood cell wall degradation.  

 

Although the brown rot wood decay mechanism is not fully understood yet, functional 

genomics studies have supported the important role of diffusible ROS and Fenton 

chemistry type redox system in non-enzymatic depolymerization of carbohydrates 

(Vanden Wymelenberg et al. 2010; Vanden Wymelenberg et al. 2011; Gaskell et al. 

2016). Recent transcriptome analyses have indicated that variable degradation patterns 

exist among brown rot species. While P. placenta has suggested to initiate 

lignocellulose degradation by chemical attack that is followed by the action of its 

relatively narrow set of cellulolytic and hemicellulolytic GHs (Zhang et al. 2016), this 

pattern was not observed for Fomitopsis pinicola that is a common brown rot species in 

boreal and temperate forests in the Northern Hemisphere (Wu et al. 2018). In addition, 

Wolfiporia cocos and P. placenta that both are members of the clade Antrodia, were 

detected to express and upregulate a diverge set of genes putatively related to redox 

cycling (Gaskell et al. 2016). This may indicate that even the closely related brown rot 

species have differences in their approaches for lignocellulose conversion. 

Transcriptome and proteome data from various species combined with detailed 

metabolomics analyses will be needed to further clarify the brown rot mechanisms of 

wood decay. 

 

Typically, brown rot fungi strongly decrease the methoxyl content of lignin in wood 

(Eriksson et al. 1990), and therefore, the demeth(ox)ylation mechanisms of these fungi 

are of great interest, and most probably a high number of cytP450s reflects these 

activities. Variability among different brown rot species is also expected in the 
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regulation and extent of demeth(ox)ylation. When demethoxylation reactions in the 

cultures of the brown rot fungi Gloeophyllum trabeum and P. placenta were studied by 

determining the evolution of 14CO2 from a non-phenolic β–O–4 lignin model dimer, 

[O14CH3]-labelled at position 4 in the A ring, and from [O14CH3]-labelled vanillic acid, 

the results indicated that these common brown rot species possess different mechanisms 

for demeth(ox)ylation of lignin model compounds (Niemenmaa et al. 2008). 

 

In line with the basidiomycete genome content, the putative cytP450s encoding genes 

have been shown to be abundantly expressed and upregulated during fungal growth on 

lignocellulosic substrates. For example, approximately 25% of the cytP450s of the white 

rot fungus P. carnosa were highly expressed when the fungus was cultivated on aspen 

and spruce as carbon sources (Jurak et al. 2018). In several white and brown rot species, 

including D. squalens (Daly et al. 2018), Pycnoporus coccineus (Couturier et al. 2015), 

P. placenta (Vanden Wymelenberg et al. 2011) and W. cocos (Gaskell et al. 2016), 

cytP450s have been detected to be upregulated on coniferous softwood compared to 

deciduous hardwood as a substrate. This could possibly reflect the role of these 

monooxygenases in detoxification of wood extractives, the composition of which differ 

between softwoods and hardwoods. 

 

Genes encoding putative non-catalytic proteins such as expansin-like proteins (or 

“loosenins”) and hydrophobins, have also been reported to be co-expressed with 

CAZymes in the lignocellulose cultures of the white rot species (Couturier et al. 2015; 

Kuuskeri et al. 2016; Rytioja et al. 2017; Jurak et al. 2018). However, exact roles of 

these proteins are not known. In plants, expansins facilitate loosening of cell walls 

during growth (Marowa et al. 2016). It may be possible that the fungal expansin-like 

proteins have a similar function during degradation of plant cell walls, thus increasing 

accessibility of CAZymes to lignocellulose polymers, as implicated by an expansin-like 

protein from B. adusta with cellulose disrupting activity (Quiroz-Castañeda et al. 2011). 

The surface-active hydrophobin proteins have been speculated to facilitate hyphal 

attachment to lignocellulose substrate (Linder et al. 2005), which could be advantageous 

for fungal colonization of biomass. 

 

Genes encoding proteins with unknown function form a major portion of basidiomycete 

genomes. Transcripts of these genes or their protein products have repeatedly been 

observed in functional genomic studies of different wood rotting fungi addressing 

lignocellulose conversion, thus supporting that a portion of this genomic “dark matter” 

contributes to plant cell wall depolymerization. In addition to upregulation and/or high 

expression levels of unknown protein encoding genes (Vanden Wymelenberg et al. 

2010; Korripally et al. 2015; Gaskell et al. 2016; Jurak et al. 2018), their co-expression 

with annotated CAZy genes in wood cultivations has been reported (Jurak et al. 2018). 
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Markedly, 146 genes representing 50% of the differentially expressed genes between 

pine and spruce cultures of F. pinicola encoded proteins with unknown functions (Wu 

et al. 2018). Determining functions of these proteins will be essential for understanding 

the basidiomycete strategies for plant biomass degradation (Couturier et al. 2018). 

 

The recent transcriptomic and exoproteomic analyses on wood degrading 

basidiomycetes have indicated that cultivation conditions and level of substrate 

processing cause larger differences in gene expression and protein production profiles 

than the use of different wood species as a substrate. This is seen when submerged 

cultures have been compared to solid state cultures, and when the use of powdered wood 

has been compared to wood sticks and wafers (Rytioja et al. 2017; Daly et al. 2018; Wu 

et al. 2018). This suggests that as the cultivation setups used for omics analyses as well 

as the experimental platforms used are heterogeneous, comparison of the datasets is 

challenging and therefore care should be taken when drawing conclusions from the 

results originating from highly divergent experimental conditions. However, the first 

larger scale meta-analysis on plant biomass degradation related basidiomycete 

transcriptome data was recently conducted, which involved 10 fungal species and 22 

individual datasets (Peng et al. 2018). This comparative analysis defined a core set of 

commonly upregulated CAZyme encoding genes in these species, thus suggesting a key 

role for the corresponding enzymes in plant biomass degradation.  

6. Challenges in basidiomycete research 

As already briefly mentioned in the previous sections, there are several hurdles to 

overcome in order to harness the full biotechnological potential of plant biomass 

converting basidiomycete fungi. In this section, we present the current knowledge on 

molecular level regulation of plant biomass related enzyme production in 

basidiomycetes and in relation to this, discuss the limitations of genetic manipulation of 

basidiomycetes as well as recent developments in genome editing systems. 

6.1 Regulation of plant biomass conversion related enzyme production 

The regulatory mechanisms behind production of plant biomass degrading enzymes in 

basidiomycete fungi are poorly understood. In ascomycetes on the other hand, many 

transcription factors (TFs) that regulate expression of CAZyme encoding genes have 

been characterized (Benocci et al. 2017). These TFs respond to the environmental 



 

 

 

 

 

 

 
20 

signals (e.g. varying carbon and nitrogen source, pH, light and temperature), and bind 

to the conserved promoter elements in their target genes thus activating and/or 

repressing the expression of these genes. Several characterized TFs are sugar-specific, 

which means that they are activated only in the presence of a certain plant 

polysaccharide-derived inducer, such as mono- and disaccharides or their metabolites 

(Kowalczyk et al. 2014). Identification of sugar-specific TFs and their inducing 

compounds in filamentous ascomycete cell factories, such as A. niger and Trichoderma 

reesei, was a key step to knowledge-driven engineering of strains with improved plant 

biomass degradation capabilities (reviewed in Alazi and Ram 2018). Therefore, a better 

understanding of the regulatory mechanisms that govern expression of polysaccharide 

and lignin-degrading genes in basidiomycete fungi is crucial to fully exploit their 

biotechnological potential in future. 

 

Despite the total predicted number of genes encoding transcriptional regulators in the 

genomes of basidiomycete fungi is estimated to be between 200 and 800 (Todd et al. 

2014; Shelest 2017), identification of TFs specifically involved in plant biomass 

degradation has proven to be difficult. Similarly to ascomycetes, basidiomycete fungi 

can regulate expression of sets of CAZyme encoding genes in response to particular 

plant biomass-related substrate (Peng et al. 2018), which suggests the presence of sugar-

specific TFs in both fungal groups. However, low number of orthologs for the 

ascomycete TF proteins in the available basidiomycete genomes (Todd et al. 2014; 

Benocci et al. 2017) indicates that the regulatory systems that control expression of 

CAZy genes in these two phyla evolved independently. This is also reflected in the 

different general distribution of the TF Pfam families, with the C2H2 and CCHC classes 

being largely overrepresented in basidiomycetes compared to ascomycetes (Todd et al. 

2014). Currently, only two of the sugar-specific TFs characterized in ascomycetes, Cre1 

and ACE3, have orthologs in basidiomycete fungi (Benocci et al. 2017). The carbon 

catabolite repressor Cre1 (called Mig1/CreA/Cre-1 in Saccharomyces cerevisiae, 

Aspergillus species and Neurospora crassa, respectively) has been studied in many 

ascomycetes, in which it downregulates expression of genes encoding enzymes 

degrading complex carbon sources in the presence of energetically more favourable 

sugars (e.g. D-glucose, D-xylose). However, the regulatory role of Cre1 seems to be 

much broader in these fungi as it also controls expression of several TF-encoding genes 

including amyR, xlnR and clrB in various ascomycetes (Tani et al. 2001; Mach-Aigner 

et al. 2008; Tamayo et al. 2008; Li et al. 2015), and affects chromatin accessibility of 

xyr1 promoter in T. reesei (Mello-de-Sousa et al. 2016). The influence of Cre1 

modifications on activity and secretion of plant biomass degrading enzymes was 

recently evaluated in the basidiomycete fungus P. ostreatus (Yoav et al. 2018). Deletion 

and overexpression of cre1 in this fungus caused carbon source-dependent changes in 

secreted activity of key CAZymes and indicated presence of a complex regulatory 
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system in which Cre1 could act (directly or indirectly) as repressor or activator (Yoav 

et al. 2018). The second orthologous protein, an activator of cellulase expression ACE3, 

upregulates expression of genes encoding cellulases and partially xylanases in T. reesei 

(Häkkinen et al. 2014), however it has not been studied in any basidiomycete species 

yet. While the TFs involved in degradation of the same plant polysaccharide substrates 

in basidiomycetes and ascomycetes evolved in parallel, the induction mechanisms 

involved in their activation could be similar. An interesting example of such similarity 

is expression of several cellulolytic genes, which was shown to be upregulated in the 

presence of disaccharide cellobiose in some Aspergillus species (Marui et al. 2002; 

Kunitake et al. 2013) as well as in the brown rot fungus P. placenta (Zhang and Schilling 

2017) and white rot fungus D. squalens (Casado López et al. 2018). 

 

Additionally, white rot basidiomycetes produce variety of lignin-degrading enzymes, 

expression of which can be affected by several factors, such as metal ions, nitrogen and 

cAMP levels (Boominathan and Reddy 1992; Boominathan et al. 1993; Van der Woude 

et al. 1993; Alvarez et al. 2009; Feldman et al. 2017). Several post-genomics studies 

showed that genes encoding lignin- and polysaccharide-depolymerizing enzymes in 

these fungi were often expressed independently from each other and therefore could 

respond to different environmental inducers (MacDonald et al. 2011; Fernández-Fueyo 

et al. 2012; Rytioja et al. 2017). This suggests that the development of the lignin-

degrading machinery has been accompanied by the development of a separate 

regulatory system, rather than linking them to the carbohydrate-related regulatory 

systems. Recently, Nakazawa and colleagues adapted the forward genetic approach to 

search for novel TF-encoding genes linked to lignin degradation in P. ostreatus, leading 

to identification of several genes, including pex1 encoding a peroxisome biogenesis 

factor, chd1 encoding a putative chromatin modifier, as well as wtr1 and gat1 encoding 

putative DNA-binding TFs (Nakazawa et al. 2017a; Nakazawa et al. 2017b; Nakazawa 

et al. 2018). Deletion of putative TF encoding gene wtr1 in P. ostreatus abolished 

expression of mnp2 gene, and partially reduced its ability to degrade lignin in sawdust 

medium (Nakazawa et al. 2017b), while deletion of gat1 caused stronger reduction in 

degradation of lignin, but not in the polysaccharide-part present in beech wood sawdust 

medium. Interestingly, Gat1 was initially identified as a TF linked to fruiting body 

development in S. commune (Ohm et al. 2011). In addition to ligninolytic system 

deficiencies, gat1 mutation completely abolished fruiting in P. ostreatus dikaryon. 

However, the molecular basis of observed defects remains to be solved. While our 

knowledge about the regulation of plant biomass degradation in basidiomycete fungi is 

slowly growing, many pieces of the puzzle are still missing to fully understand this 

intricate system. 
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6.2 Transformation systems 

Genetic manipulations of fungi are essential to study the function of a certain protein in 

vivo and could facilitate construction of strains with enhanced lignocellulolytic 

capabilities. However, this has been restricted to a few model basidiomycete species, in 

which an efficient transformation system has been developed. The outcome of each 

transformation depends on success of the following steps: engineering of host strains 

with a desired selective marker, construction of exogenous DNA (linear or circular), 

removal of host cell wall, and introduction of the exogenous DNA inside the cell and its 

integration into host genomic DNA or maintenance in an autonomous vector inside the 

host cell (reviewed in Kim et al. 2015).  

 

One of the limitations in genetic manipulations of basidiomycete fungi is still the lack 

of versatile molecular tools, such as selection markers and plasmids that can be used in 

several species. Selection markers are necessary for identification of transformants with 

foreign DNA. Several synthetic plasmids that carry the drug-resistance genes and 

incorporate into the genome have been constructed for basidiomycete transformation. 

The use of antibiotic resistance is advantageous, as it does not require prior engineering 

of an auxotrophic recipient strain. However, only few antibiotics, i.e. hygromycin, 

phleomycin, nourseothricin, carboxin and geneticin, are utilized in basidiomycetes, 

which introduces restrictions in the number of modifications they allow. Additionally, 

since only small number of basidiomycete promoters are functional across the phylum, 

construction of many selection markers often requires additional screening for strong 

constitutive promoters to drive their expression (Kim et al. 2015). The use of selectable 

auxotrophic markers is difficult in basidiomycete fungi without a well-established 

transformation system, as it requires an additional engineering step of the host strain. 

For example, few markers for complementation of trp1/trp2/trp3, ade8 and pab1 

auxotrophy were constructed in the well-studied basidiomycetes Coprinopsis cinerea, a 

model species for regulation of multicellular development and mushroom formation, 

and P. chrysosporium (leu2, ade1/ade2, ura3/ura5, trpC auxotrophy), a model species 

for white rot lignin degradation (for references see Gold and Alic 1993; Dörnte and 

Kües 2016). One way to overcome this limitation is isolation of uridine/uracil 

auxotrophic strains with spontaneous mutation(s) in pyrimidine biosynthesis pathway 

genes induced by a combination of UV-irradiation and selection on 5-fluoroorotic acid 

(5-FOA) as shown for S. cerevisiae (Boeke et al. 1984), A. niger (van Hartingsveldt et 

al. 1987), P. chrysosporium (Akileswaran et al. 1993) and P. ostreatus (Nakazawa et al. 

2016), among others. An added advantage of using uridine/uracil auxotrophic marker is 

that it is counter-selectable, and thus leaves no mark on the genome. Recently, this 

method was adapted in the white rot fungus P. ostreatus, where addition of two 
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homologous direct repeat sequences on each side of the orotidine-5-phosphate 

decarboxylase gene (PopyrG) allowed marker recycling via 5-FOA-induced single 

crossover between the direct repeats (Nakazawa et al. 2016).  

 

Successful integration of an exogenous DNA in a desired locus in the genome is usually 

based on homology-directed recombination (HDR). However, HDR is extremely rare 

in higher fungi, which prefer to repair the double strand DNA breaks via non-

homologous end joining (NHEJ) resulting in ectopic integrations (for review see 

Weterings and Chen 2008). Therefore, fungal defense mechanisms itself are a huge 

problem for targeted genetic modification. In ascomycete model fungus N. crassa, 

increased HDR frequencies were observed after disruption of ku70/ku80 genes essential 

for NHEJ pathway (Ninomiya et al. 2004). Shortly after, Δku70 or Δku80 NHEJ-

deficient strains were engineered in many other species, including few basidiomycete 

fungi with well-established transformation systems. For example, construction of 

recipient strains with improved gene targeting has been successfully performed via 

deletion of ku80 in S. commune (de Jong et al. 2010) and P. ostreatus (Salame et al. 

2012) or RNAi-mediated silencing of ku70 and lig4 in C. cinerea (Nakazawa et al. 

2011). However, due to low efficiency and the fact that Δku70/ku80 are phenotypically 

indistinguishable from the wild type, this requires screening of multiple colonies to find 

the correct mutants. Another drawback is potential increased sensitivity of NHEJ-

deficient strains to DNA damage and aging.  

 

Another obstacle to overcome when performing genetic manipulations in basidiomycete 

fungi originates in their distinct life cycle. Basidiomycetes spend most of their life as 

dikaryotic mycelium (n+n), containing two different nuclei with compatible mating 

types in every cell. Simultaneous introduction of foreign DNA into two nuclei of a 

dikaryotic cell is obviously difficult; therefore, the use of monokaryotic cells 

(basidiospores or young monokaryotic mycelium) seems more advantageous. However, 

there is still high chance of obtaining heterokaryotic colonies caused by transformation 

of multi-nucleated protoplasts (da Silva Coelho et al. 2010), fusion of uni-nucleated 

protoplasts during transformation (Gold et al. 1983) or interleaved growth of 

transformed protoplasts together with untransformed background. Heterokaryotic 

colonies will require additional purification, such as re-protoplasting or fruiting and 

selection of single basidiospores, to obtain mono-nucleated transformants that could be 

screened for a desired genetic modification.  

6.3 Application of CRISPR/Cas9 in basidiomycetes 
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Development of a powerful genome editing technique CRISPR/Cas9 for several fungal 

species (Liu et al. 2015; Nødvig et al. 2015; Pohl et al. 2016; Liu et al. 2017 to name a 

few) has opened new possibilities for precise and efficient gene modifications in 

transformable basidiomycetes. CRISPR/Cas9 system relies on a synthetic guide RNA 

(gRNA) to target the Cas9 endonuclease to a specific genomic locus, where it introduces 

double-strand DNA breaks. The DNA breaks are then repaired by the host’s repair 

mechanisms: NHEJ or, if supplied, with a selectable repair cassette that harbours certain 

homology, HDR. Successful application of this method in basidiomycete fungi depends 

on simultaneous delivery of functional gRNA and Cas9 into the nucleus. Functional 

Cas9 can be achieved by codon optimization of cas9 from Streptococcus pyogenes and 

its fusion with a strong constitutive promoter and nuclear localization signals as 

previously shown for T. reesei (Liu et al. 2015). In basidiomycete fungi, similarly 

constructed cas9 expressing vectors were functional after randomly introduced into the 

genome in C. cinerea (Sugano et al. 2017) and Ganoderma sp. (Qin et al. 2017). 

However, the long-term effects of cas9 expression in these species are currently 

unknown. To overcome potential harmful effects originating from integrating of the 

cas9 gene into the genome, the plasmids containing self-replicating elements could be 

used. While certainly beneficial, such plasmids are extremely rare in fungi. In 

basidiomycete corn pathogen Ustilago maydis, a ground-breaking discovery of DNA 

sequence similar to autonomously replicating sequences (ARS) of S. cerevisiae led to 

construction the first basidiomycete self-replicating plasmid (Tsukuda et al. 1988). In 

P. chrysosporium (Randall et al. 1991) and P. ostreatus (Peng et al. 1992), possibly 

extrachromosomally maintained plasmids were observed after an endogenous 

replicative sequence recombined in vivo with the initial non-replicative vector during 

transformation, however the exact reason behind such phenomena is not well 

understood. So far, expression of cas9 and gRNA from a self-replicating plasmid was 

only possible in U. maydis (Schuster et al. 2016; Schuster et al. 2018) while in Ustilago 

trichophora transient expression was presumably obtained from non-replicative 

plasmid maintained extrachromosomally (Huck et al. 2018). While application of Cas9 

or other programmable nucleases in broader number of basidiomycete species is still a 

challenge, it seems that a new era of genetic modifications is closer than ever.  

7. Concluding remarks and future perspectives 

This chapter offered an overview on the current stage and future challenges in research 

of plant biomass degradation by basidiomycete fungi. Our investigation of the PubMed 

database (https://www.ncbi.nlm.nih.gov/pubmed) using search words “basidiomycete” 

or “Basidiomycota” in combinations with “biomass” or “lignin” or “lignocellulose” 
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returned nearly 3000 publications addressing this topic in 1950-2019. The titles of these 

articles were then used to generate a word cloud (Fig. 3), which visualizes that the white 

rot basidiomycetes, especially Phanerochaete (438 hits), Pleurotus (247) and Trametes 

(158) as well as topics related to production (426) of peroxidases (383), laccases (165) 

and manganese peroxidases (124) are among the most studied in the field to date. Great 

progress has been achieved in fungal (post)genomics studies of many taxonomically 

and functionally different fungi. However, breakthrough or discovery changing 

paradigm in the understanding how fungi degrade natural lignin has not yet been shown. 

Only very few researchers have tried to analyse which enzymes are active during natural 

degradation of wood. A recent metatranscriptomic and metaproteomic study showed 

that most of the functional oxidoreductase genes were MnPs, while LiPs, VPs or 

laccases were not detected in field samples of extensively decayed wood (Hori et al. 

2018). However, also in this study, the function and significance of the unknown 

proteins remained unclear. In this respect, the development of proper analytical methods 

of lignocellulose or lignin to trace the modifications caused by individual enzymes or 

whole fungal cultures is still a challenge. For example, use of 14C-labelled lignins or 

lignin model compounds was in a key role when ligninolytic enzymes were first 

discovered (Kirk and Farrell 1987). Currently very few, if any, research groups use these 

tedious but unequivocal methods.  

 

At the moment, laccase is the only basidiomycete extracellular oxidoreductase, which 

can be produced at industrial scale, and therefore it has been the choice in many 

applications. The lack of efficient recombinant production of lignin-modifying heme 

peroxidases is still hampering their commercial use. In order to design basidiomycete 

enzyme mixtures, e.g. causing partial modifications of industrial lignins or small 

molecular weight aromatic compounds derived from biomass, a more thorough 

knowledge of the concerted action of enzymes and fungal metabolites would be needed. 

However, integration of large-scale omics data together with development of powerful 

genetic tools for gene disruption or suppression for a larger set of basidiomycete fungi 

will most certainly open up new possibilities to deeply understand the decay 

mechanisms of plant biomass degradation.  
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Figure legends 

Figure 1. Number of scientific publications related to plant biomass degradation by 

basidiomycete fungi per decade. The data was retrieved from PubMed database (5th 

April 2019) using search words "basidiomycete" or "Basidiomycota" and "biomass" or 

"lignin" or "lignocellulose". The search resulted in 2837 publications of which 21 have 

been published in 2019. However, the final number of articles in 2019 is expected to be 

higher. Number of articles per decade (in parentheses): 1950-1959 (4), 1960-1969 (12), 

1970-1979 (8), 1980-1989 (74), 1990-1999 (352), 2000-2009 (874), 2010-2019 (1513). 

 

Figure 2. Number of the sequenced fungal genomes in the phylum Basidiomycota. 

Distribution of the whole genome sequences between the Basidiomycota classes is 

shown on the left. The division of the genome sequences in the Agaricomycotina 

subphyla is depicted on the right. Data was retrieved from JGI MycoCosm 

(https://genome.jgi.doe.gov/programs/fungi/index.jsf), 5th April 2019.  

 

Figure 3. A word cloud visualizing 30 most studied terms in basidiomycete research 

related to plant biomass (1950-2019). The PubMed database was searched for all articles 

https://doi.org/10.1074/jbc.271.2.681
https://genome.jgi.doe.gov/programs/fungi/index.jsf
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containing search words “basidiomycete” or “Basidiomycota” in combination with 

“biomass” or “lignin” or “lignocellulose” in any of the fields. The search retrieved 2837 

publications (5th April 2019) and their titles were used to generate a word cloud online 

(https://www.wordclouds.com/). Top 30 terms were visualized and the size of each 

word corresponds to their relative frequency amongst the titles. The words present in 

both singular and plural versions were combined (e.g. “enzyme” and “enzymes” were 

depicted together as “enzyme”) and the words closely related to the search criteria (e.g. 

“basidiomycete”, “fungus”) were omitted.  

 

https://www.wordclouds.com/

