140 research outputs found

    Excitation energies of superdeformed states in 196Pb: towards a systematic study of the second well in Pb isotopes

    No full text
    The excitation energy of the lowest-energy superdeformed band in 196Pb is established using the techniques of time-correlated γ-ray spectroscopy. Together with previous measurements on 192Pb and 194Pb, this result allows superdeformed excitation energies, binding energies, and two-proton and two-neutron separation energies to be studied systematically, providing stringent tests for current nuclear models. The results are examined for evidence of a “superdeformed shell gap.

    Confirmation of a new resonance in 26Si and contribution of classical novae to the galactic abundance of 26Al

    Get PDF
    © 2023 The Author(s). Published by the American Physical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The 25Al(p ,γ ) reaction has long been highlighted as a possible means to bypass the production of 26Al cosmic γ rays in classical nova explosions. However, uncertainties in the properties of key resonant states in 26Si have hindered our ability to accurately model the influence of this reaction in such environments. We report on a detailed γ -ray spectroscopy study of 26Si and present evidence for the existence of a new, likely ℓ =1 , resonance in the 25Al + p system at Er=153.9 (15 ) keV. This state is now expected to provide the dominant contribution to the 25Al(p ,γ ) stellar reaction rate over the temperature range, T ≈0.1 −0.2 GK. Despite a significant increase in the rate at low temperatures, we find that the final ejected abundance of 26Al from classical novae remains largely unaffected even if the reaction rate is artificially increased by a factor of 10. Based on new, galactic chemical evolution calculations, we estimate that the maximum contribution of novae to the observed galactic abundance of 26Al is ≈0.2 M⊙ . Finally, we briefly highlight the important role that super-asymptotic giant branch stars may play in the production of 26Al.Peer reviewe

    Quadrupole collectivity in Ca 42 from low-energy Coulomb excitation with AGATA

    Get PDF
    A Coulomb-excitation experiment to study electromagnetic properties of Ca42 was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in Ca42 were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E2 matrix elements coupling six low-lying states in Ca42, including the diagonal E2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2+ and 21,2+ states, as well as triaxiality for 01,2+ states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in Ca42. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in Ca42

    Shape evolution in the neutron-rich osmium isotopes:Prompt γ-ray spectroscopy of Os 196

    Get PDF
    The shape transition in the neutron-rich Os isotopes is studied by investigating the neutron-rich 196Os nucleus through in-beam γ-ray spectroscopy using a two-proton transfer reaction from a 198Pt target to a 82Se beam. The beam-like recoils were detected and identified with the large-acceptance magnetic spectrometer PRISMA, and the coincident γ rays were measured with the advanced gamma tracking array (AGATA) demonstrator. The de-excitation of the low-lying levels of the yrast-band of 196Os were identified for the first time. The results are compared with state-of-the-art beyond-mean-field calculations, performed for the even-even 188-198Os isotopes. The new results suggest a smooth transition in the Os isotopes from a more axial rotational behavior towards predominately vibrational nuclei through triaxial configurations. An almost perfect γ-unstable/triaxial rotor yrast band is predicted for 196Os which is in agreement with the experimentally measured excited state

    Superdeformed and Triaxial States in Ca 42

    Get PDF
    Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∼40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time

    Lifetime measurement of neutron-rich even-even molybdenum isotopes

    Get PDF
    Background: In the neutron-rich A approximate to 100 mass region, rapid shape changes as a function of nucleon number as well as coexistence of prolate, oblate, and triaxial shapes are predicted by various theoretical models. Lifetime measurements of excited levels in the molybdenum isotopes allow the determination of transitional quadrupole moments, which in turn provides structural information regarding the predicted shape change. Purpose: The present paper reports on the experimental setup, the method that allowed one to measure the lifetimes of excited states in even-even molybdenum isotopes from mass A = 100 up to mass A = 108, and the results that were obtained. Method: The isotopes of interest were populated by secondary knock-out reaction of neutron-rich nuclei separated and identified by the GSI fragment separator at relativistic beam energies and detected by the sensitive PreSPEC-AGATA experimental setup. The latter included the Lund-York-Cologne calorimeter for identification, tracking, and velocity measurement of ejectiles, and AGATA, an array of position sensitive segmented HPGe detectors, used to determine the interaction positions of the gamma ray enabling a precise Doppler correction. The lifetimes were determined with a relativistic version of the Doppler-shift-attenuation method using the systematic shift of the energy after Doppler correction of a gamma-ray transition with a known energy. This relativistic Doppler-shift-attenuation method allowed the determination of mean lifetimes from 2 to 250 ps. Results: Even-even molybdenum isotopes from mass A = 100 to A = 108 were studied. The decays of the low-lying states in the ground-state band were observed. In particular, two mean lifetimes were measured for the first time: tau = 29.7(-9.1)(+11.3) ps for the 4(+) state of Mo-108 and tau = 3.2(-0.7)(+ 0.7) ps for the 6(+) state of Mo-102. Conclusions: The reduced transition strengths B(E2), calculated from lifetimes measured in this experiment, compared to beyond-mean-field calculations, indicate a gradual shape transition in the chain of molybdenum isotopes when going from A = 100 to A = 108 with a maximum reached at N = 64. The transition probabilities decrease for Mo-108 which may be related to its well-pronounced triaxial shape indicated by the calculations

    Excitation energies of superdeformed states in Pb-196: towards a systematic study of the second well in Pb isotopes

    Get PDF
    The excitation energy of the lowest-energy superdeformed band in Pb-196 is established using the techniques of time-correlated gamma-ray spectroscopy. Together with previous measurements on Pb-192 and Pb-194, this result allows superdeformed excitation energies, binding energies, and two-proton and two-neutron separation energies to be studied systematically, providing stringent tests for current nuclear models. The results are examined for evidence of a "superdeformed shell gap.

    First candidates for γ vibrational bands built on the [505] 11/2− neutron orbital in odd-A Dy isotopes:

    Get PDF
    Rotational structures have been measured using the Jurogam II and GAMMASPHERE arrays at low spin following the 155Gd(α,2n)157Dy and 148Nd(12C,5n)155Dy reactions at 25 and 65 MeV, respectively. We report high-K bands, which are conjectured to be the first candidates of a Kπ=2+γ vibrational band, built on the [505]11/2− neutron orbital, in both odd-A155,157Dy isotopes. The coupling of the first excited K=0+ states or the so-called β vibrational bands at 661 and 676 keV in 154Dy and 156Dy to the [505]11/2− orbital, to produce a Kπ=11/2− band, was not observed in both 155Dy and 157Dy, respectively. The implication of these findings on the interpretation of the first excited 0+ states in the core nuclei 154Dy and 156Dy are also discussed
    corecore