377 research outputs found

    Black Hole Spectrum: Continuous or Discrete?

    Get PDF
    We formulate a qualitative argument, based on Heisenberg's uncertainty principle, to support the claim that when the effects of matter fields are assumed to overshadow the effects of quantum mechanics of spacetime, the discrete spectrum of black hole radiation, as such as predicted by Bekenstein's proposal for a discrete black hole area spectrum, reduces to Hawking's black-body spectrum.Comment: 7 pages, no figure

    Discrete Black-Hole Radiation and the Information Loss Paradox

    Get PDF
    Hawking's black hole information puzzle highlights the incompatibility between our present understanding of gravity and quantum physics. However, Hawking's prediction of black-hole evaporation is at a semiclassical level. One therefore suspects some modifications of the character of the radiation when quantum properties of the {\it black hole itself} are properly taken into account. In fact, during the last three decades evidence has been mounting that, in a quantum theory of gravity black holes may have a discrete mass spectrum, with concomitant {\it discrete} line emission. A direct consequence of this intriguing prediction is that, compared with blackbody radiation, black-hole radiance is {\it less} entropic, and may therefore carry a significant amount of {\it information}. Using standard ideas from quantum information theory, we calculate the rate at which information can be recovered from the black-hole spectral lines. We conclude that the information that was suspected to be lost may gradually leak back, encoded into the black-hole spectral lines.Comment: 12 page

    Black-hole radiation, the fundamental area unit, and the spectrum of particle species

    Get PDF
    Bekenstein and Mukhanov have put forward the idea that, in a quantum theory of gravity a black hole should have a discrete mass spectrum with a concomitant {\it discrete} line emission. We note that a direct consequence of this intriguing prediction is that, compared with blackbody radiation, black-hole radiance is {\it less} entropic. We calculate the ratio of entropy emission rate from a quantum black hole to the rate of black-hole entropy decrease, a quantity which, according to the generalized second law (GSL) of thermodynamics, should be larger than unity. Implications of our results for the GSL, for the value of the fundamental area unit in quantum gravity, and for the spectrum of massless particles in nature are discussed.Comment: 4 page

    Implications of primordial black holes on the first stars and the origin of the super--massive black holes

    Full text link
    If the cosmological dark matter has a component made of small primordial black holes, they may have a significant impact on the physics of the first stars and on the subsequent formation of massive black holes. Primordial black holes would be adiabatically contracted into these stars and then would sink to the stellar center by dynamical friction, creating a larger black hole which may quickly swallow the whole star. If these primordial black holes are heavier than 1022g\sim 10^{22} {\rm g}, the first stars would likely live only for a very short time and would not contribute much to the reionization of the universe. They would instead become 10103M10 - 10^3 M_\odot black holes which (depending on subsequent accretion) could serve as seeds for the super--massive black holes seen at high redshifts as well as those inside galaxies today.Comment: 16 pages, 2 figures. v2: refereed versio

    Implications of Space-Time foam for Entanglement Correlations of Neutral Kaons

    Full text link
    The role of CPTCPT invariance and consequences for bipartite entanglement of neutral (K) mesons are discussed. A relaxation of CPTCPT leads to a modification of the entanglement which is known as the ω\omega effect. The relaxation of assumptions required to prove the CPTCPT theorem are examined within the context of models of space-time foam. It is shown that the evasion of the EPR type entanglement implied by CPTCPT (which is connected with spin statistics) is rather elusive. Relaxation of locality (through non-commutative geometry) or the introduction of decoherence by themselves do not lead to a destruction of the entanglement. So far we find only one model which is based on non-critical strings and D-particle capture and recoil that leads to a stochastic contribution to the space-time metric and consequent change in the neutral meson bipartite entanglement. The lack of an omega effect is demonstrated for a class of models based on thermal like baths which are generally considered as generic models of decoherence

    The Magnetic Fields of Millisecond Pulsars in Globular Clusters

    Full text link
    Many of the characteristic properties of the millisecond pulsars found in globular clusters are markedly different from those in the Galactic disc. We find that one such physical parameter is the surface magnetic field strength. Even though the average spin-periods do not differ much the average surface magnetic field is 2-5 times larger in the globular cluster pulsars. This effect could be apparent, arising due to one or more of several biases. Alternatively, if future observations confirm this effect to be real, then this could be interpreted as a preferential recycling of pulsars in tight binaries where the mass transfer takes place at high accretion rates.Comment: 11 pages, 6 figures : final published versio

    General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    Full text link
    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height HH to cylindrical radius RR ratio of H/R0.21|H/R|\sim 0.2--1) accretion flows around BHs with various dimensionless spins (a/Ma/M, with BH mass MM) and with initially toroidally-dominated (ϕ\phi-directed) and poloidally-dominated (RzR-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough a/M|a/M|, coherent large-scale (i.e. H\gg H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. For sufficiently high a/M|a/M| or low H/R|H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric "magnetically choked accretion flow" (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with 100\gtrsim 100% efficiency for a/M0.9|a/M|\gtrsim 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk quasi-periodic oscillation (JD-QPO) mechanism. The high-frequency QPO has spherical harmonic m=1|m|=1 mode period of τ70GM/c3\tau\sim 70GM/c^3 for a/M0.9a/M\sim 0.9 with coherence quality factors Q10Q\gtrsim 10. [abridged]Comment: 32 pages + acks/appendix/references, 22 figures, 10 tables. MNRAS in press. High-Res Version: http://www.slac.stanford.edu/~jmckinne/mcaf.pdf . Fiducial Movie: http://youtu.be/V2WoJOkIin

    Very high frequency gravitational wave background in the universe

    Full text link
    Astrophysical sources of high frequency gravitational radiation are considered in association with a new interest to very sensitive HFGW receivers required for the laboratory GW Hertz experiment. A special attention is paid to the phenomenon of primordial black holes evaporation. They act like black body to all kinds of radiation, including gravitons, and, therefore, emit an equilibrium spectrum of gravitons during its evaporation. Limit on the density of high frequency gravitons in the Universe is obtained, and possibilities of their detection are briefly discussed.Comment: 14 page

    General-relativistic model of hot accretion flows with global Compton cooling

    Full text link
    We present a model of optically thin, two-temperature, accretion flows using an exact Monte Carlo treatment of global Comptonization, with seed photons from synchrotron and bremsstrahlung emission, as well as with a fully general relativistic description of both the radiative and hydrodynamic processes. We consider accretion rates for which the luminosities of the flows are between ~0.001 and 0.01 of the Eddington luminosity. The black hole spin parameter strongly affects the flow structure within the innermost 10 gravitational radii. The resulting large difference between the Coulomb heating in models with a non-rotating and a rapidly rotating black hole is, however, outweighed by a strong contribution of compression work, much less dependent on spin. The consequent reduction of effects related to the value of the black spin is more significant at smaller accretion rates. For a non-rotating black hole, the compressive heating of electrons dominates over their Coulomb heating, and results in an approximately constant radiative efficiency of approximately 0.4 per cent in the considered range of luminosities. For a rapidly rotating black hole, the Coulomb heating dominates, the radiative efficiency is ~1 per cent and it slightly increases (but less significantly than estimated in some previous works) with increasing accretion rate. We find an agreement between our model, in which the synchrotron emission is the main source of seed photons, and observations of black-hole binaries in their hard states and AGNs at low luminosities. In particular, our model predicts a hardening of the X-ray spectrum with increasing luminosity, as indeed observed below ~0.01 of the Eddington luminosity in both black-hole binaries and AGNs. Also, our model approximately reproduces the luminosity and the slope of the X-ray emission in Cen A.Comment: 13 pages, MNRAS, accepte

    The spectrum of quantum black holes and quasinormal modes

    Get PDF
    The spectrum of multiple level transitions of the quantum black hole is considered, and the line widths calculated. Initial evidence is found for these higher order transitions in the spectrum of quasinormal modes for Schwarzschild and Kerr black holes, further bolstering the idea that there exists a correspondence principle between quantum transitions and classical ``ringing modes''. Several puzzles are noted, including a fine-tuning problem between the line width and the level degeneracy. A more general explanation is provided for why setting the Immirzi parameter of loop quantum gravity from the black hole spectrum necessarily gives the correct value for the black hole entropy.Comment: 5 pages, 5 figures, version to appear in Phys. Rev.
    corecore