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Spectrum of quantum black holes and quasinormal modes
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The spectrum of multiple level transitions of a quantum black hole is considered and the linewidths calcu-
lated. Initial evidence is found for these higher order transitions in the spectrum of quasinormal modes for
Schwarzschild and Kerr black holes, further bolstering the idea that there exists a correspondence principle
between quantum transitions and classical ‘‘ringing modes.’’ Several puzzles are noted, including a fine-tuning
problem between the linewidth and level degeneracy. A more general explanation is provided for why setting
the Immirzi parameter of loop quantum gravity from the black hole spectrum necessarily gives the correct
value for the black hole entropy.
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Although there is a lack of experimental data on which
base attempts to construct a quantum theory of gravity,
commonly regarded that the theory must give a correct
counting for black hole entropy. The fact that black hole e
tropy is a quarter of the black hole area then plays the rol
an experimental data point on which to test any theo
String theory gives the correct prediction for extremal bla
holes@1#, and loop quantum gravity gives the entropy up to
proportionality constant@2,3# known as the Immirzi param
eter. In general, the area scaling of entropy is rather gen
for gravitating systems@4#.

A less ambitious program involves attempting to quant
a black hole. As early as 1974, Bekenstein@5,6# made the
case that the areaA of a quantum black hole is quantize
WITH equal spacing between levels,

A5a0n, n51,2,3. . . , ~1!

in units whereG5\5kB51 anda0 a constant@7#. This has
been the standard starting point for the quantum black h
@8,9#, as it is based on general arguments rather than o
particular model. Bekenstein argued that since classically
black hole’s area is an adiabatic invariant, it should be qu
tized ~following an insight of Ehrenfest@10#!. Furthermore,
for nonextremal black holes, he argued that the minim
change in area is independent of the black hole mass, ch
and angular momentum, which naturally leads to Eq.~1!.

Even in his original paper~also @6#!, Bekenstein noted
that Bohr’s correspondence principle implies that transitio
in energy levels of a quantum black hole correspond to
black hole’s quasinormal ‘‘ringing modes’’~QNMs! @11#. For
largen, one expects a quantum black hole to correspond
classical black hole just as a quantized oscillator in the la
mass limit should give the correct normal modes of a cla
cal oscillator. Since the massM of a black hole is given by
AA/16p, the energyv05DM emitted when the black
hole looses one area quantum is given by

v05
a0

32pM
. ~2!

It was noted by Bekenstein and Mukhanov@8,12# that the
constanta0 should be 4 times the logarithm of a natur
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number if one is to interpret the quantum levels of the bla
hole as giving rise to the Bekenstein-Hawking entropyS:

S5
1

4
A. ~3!

We can use the fact that that the entropy of a black hole
ln gn wheregn is the number of states at leveln. Defining the
ground state degeneracy ask5g1, we can use Eqs.~1! and
~3! to fix a054 lnk with k a natural number:

v05
ln k

8pM
. ~4!

Hod @13# then noticed that the QNM spectrum for
Schwarzschild black hole had a frequency whose real
numerically approached Eq.~4! with k53 in the limit of
infinite imaginary frequency. Motl@14# later confirmed this
analytically. In light of this, Dreyer@15# proposed changing
the gauge group of loop quantum gravity from SU~2! to
SO~3!. He then advocated using the spacing of quasinor
modes to fix the undetermined Immirzi parameter. He arg
that the value that fixes the energy spacing also yields
correct value for the black hole entropy, thus claiming bla
hole entropy a prediction of the theory. This has generate
great level of excitement in the field, and since then, a la
number of studies have been conducted both to extend
understanding of quasinormal modes@16# and to further un-
derstand the quantum black hole in this context@17#.

To learn about quantum black holes by studying t
QNM structure of classical black holes is certainly a spe
lative undertaking. Nonetheless, given the highly intrigui
numerical coincidences which are emerging and the lack
real experimental data on which to base a quantum theor
gravity, there is merit in taking the preceding arguments
riously and seeing how far they can be pushed. Certain
study of the phonon modes of a solid would give one insi
into their quantization. Whether the QNM spectrum of t
black hole can be treated in the same way as Bohr tre
experimental data from the hydrogen atom remains to
seen. In the remainder of the paper, I will essentially assu
that such a correspondence holds.
©2004 The American Physical Society12-1
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Thus far, researchers have only looked for transitions
volving one area quantum and focused on the QNM sp
trum in the limit of large damping. No convincing explan
tion exists as to why this should be the significant regim
although some suggestions have been made~e.g., @18#!. If
one believes that the quasinormal modes arise from the
derlying quantum structure, then one expects that this co
spondence principle should apply to all modes. There d
not appear to be any reason to single out the highly dam
modes as arising from the quantum structure and the re
the modes as arising from some other structure. One is th
fore forced to look for an explanation for the less damp
mode as well.

Furthermore, there has been no attempt to link the ima
nary part of the spectrum with the quantum black hole. M
@14# has noted that the spacing of the imaginary part co
sponds to the expected poles in the thermal Green’s func
It is unclear why this correspondence also only appear
large damping or how it arises from the quantum structure
the black hole.

If one takes Bohr’s correspondence principle seriously
is natural that the linewidth of the quantum black hole wou
be associated with the imaginary part of the QNMs~since
one expects classical damping or dispersion to correspon
the line broadening of the quantum transition@19#!. I will
thus first reexamine the quantum black hole and calculate
line broadening for multiple level transitions. One other o
servation is that one expects not only transitions in which
black hole jumps one level, but also higher level transitio
in which the black hole jumpsd levels. Then, taking the
correspondence between QNMs and quantum black h
seriously one expects to see QNMs with a real frequenc
dv0. Indeed, I then find that the QNM spectrum conta
some evidence for multiple level transitions in addition to t
single level transition so far observed. I will present da
from both Schwarzschild and Kerr, which, although not
clean as the data in the asymptotic regime, show initial e
dence for these multiple level transitions. With regard to
imaginary part of the QNM spectrum, the expected scalin
observed for the multiple level transitions, but seve
puzzles remain.

After presenting the data, I return to some theoretical
pects of the quantum black hole and note a fine-tuning pr
lem which exists in the physics governing the line broad
ing of the spectrum. I then discuss a puzzle, particularly
k53, concerning suppression of Hawking radiation. Fina
I note that there is a general explanation~in terms of the
Bekenstein model! for why fixing the Immirzi parameter
from the quantum black hole spectrum necessarily gives
correct result for the black hole entropy.

Let us consider a spontaneous emission process in w
a black hole withn area quanta decaysd levels. If the prob-
ability per unit time of a spontaneous decay between
levelsn andn2d8 is pn,d8 , then under the assumption th
these transitions give rise to the thermal character of bl
hole radiation, one expects

pn,d8
pn,d

5eb(d2d8)v0S d8

d D 2

, ~5!
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whereb is the inverse Hawking temperature,

b58pM , ~6!

and the factor (d8/d)2 comes from the phase space@e.g.,
(dv0)2] of the emitted radiation. One also gets such a pro
ability distribution if one assumes that the degeneracygn is
what dominates the transition. We can then use Eq.~4! to
write

pn,d85k(12d8)d82pn,1 . ~7!

Then the total probabilityGn per unit time for the decay o
the nth level is

Gnd5 (
d851

n

pn,d8

5
pn,1k

2~11k!

~k21!3
1O~n2k2n!,

~8!

where we henceforth drop terms which are exponentia
suppressed for largen. Using the methods of Weisskopf an
Wigner @19,20#, the linewidthgnd of the transition fromn to
n2d is given by

gnd5Gn1Gn2d

5
k2~11k!

~k21!3
~pn,11pn2d,1!,

~9!

while the difference between two linewidths of a black ho
with fixed n is

gnd2gn,d85
k2~11k!

~k21!3
~pn2d,12pn2d8,1). ~10!

From the Stefan-Boltzmann law and the Hawking te
perature, one can see that the classical black hole evapo
its mass at a rate proportional to 1/M2 ~i.e., 1/n) @21#. Bek-
enstein and Mukhanov@12# have calculated the probabilit
distribution of the quantum black hole to make various tra
sitions. They use the classical result to fix the decay rate
single level transitions~which dominate!. Were we to follow
this reasoning, we could set the total luminosity to the cl
sical result

v0(
d

pndd}1/n, ~11!

where a constant of proportionality accounts for the nonc
tinuous nature of the spectrum and would depend on
particular particle being emitted~with different values of the
proportionally constant being advocated by different auth
@12,22,23#!.

Using Eq.~7!, this gives
2-2
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pn,15
~k21!4

k2~114k1k2!

b

An ln k
, ~12!

with b being the constant of proportionality. This can now
substituted into Eq.~9! to give the line breadth of black
hole transitions.

Now that we have the line breadth and energy spacing
multiple level transitions, let us turn to whether they a
reflected in the QNM spectrum.

Figure 1 shows the gravitational perturbation with lowe
angular momentuml 52. In addition to the level at infinite
damping (d51), one sees evidence for multiple transitio
which occur close to the predicted valuesdv0 ~for d
52, . . . ,9). TheQNMs which lie close to these theoretic
predictions are then51, . . . ,8QNM’s which have increas-
ingly larger imaginary part. The agreement with the theor
cally predicted result is within 5%. Strongest disagreem
occurs at the highest energy transition. The reason that
spectrum ends here is explained by the fact that one doe
have dv0. l /3A3M ~the peak of the black hole potentia!
since this is when the energy of the mode is larger than
peak of the black hole potential. At this energy, the mo
must become either purely outgoing or purely ingoing~while
QNMs are defined to be outgoing at infinity and ‘‘ingoing
at the horizon—i.e., falling into the black hole at the ho
zon!.

The n59 QNM is the ‘‘algebraically special’’ mode a
Re(v)50. Whether the latter mode is in fact a QNM is
matter of some debate@11#. Following this mode, the spec
trum n510,11,12, . . . gradually asymptotes to thed51
line.

Since the imaginary part of the QNM should correspo
to the linewidth of the quantum black hole, one expects
imaginary part of the QNM spectrum to be given by Eq.~9!.
It is perhaps encouraging that the higher order transitions
have an imaginary part which is proportional to 1/An as Eq.
~12! predicts. However, the spacing of Im(vQN) between
different modes does not correspond to Eq.~10!. The entire
QNM spectrum scales like 1/M ~i.e., 1/An). From Eqs.~9!
and ~10! we see that ifgnd scales like 1/M , then the differ-
ence in linewidth between two successive transitions of

FIG. 1. Im(MvQN) vs Re(MvQN) for the Schwarzschild,l
52 quasinormal modes@24#. The vertical lines are the theoreticall
predicted valuesMdv0.
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ferentd should essentially be the derivative ofgnd and one
would expect Im(vQN) to have a term which scales lik
2d/M2. This is not observed, although the slope
Im(vQN) does go in the expected direction in that high
order transitions are sharper. There are sets of modes w
occur at roughly equal Im(vQN) as in Eq.~9!, but these are
at higherl.

The behavior of the QNMs which would correspond
multiple level transitions are in stark contrast to the QN
meant to correspond to the transition atv0. The latter is
infinitely broad ~occurring at infinite imaginary frequency!
and surrounded by a huge degeneracy of other modes. W
one can find many possible explanations for the splitting
the energy levels or to explain why particular transitio
should be broad or narrow, I know of no general argume
which could consistently and convincingly explain the diffe
ent behavior~witnessed in the QNM spectrum! between the
first level transition and the multiple level ones.

While the d51 QNM corresponds exactly tov0, the
data ford.1 are not exact. This could be for a number
reasons. One expects the energy levels of the black hol
be shifted because of their coupling to fields. Additionally
is not at all clear the extent to which QNMs are probing t
structure of the black hole horizon. The considerations h
are at best an approximation to the actual quantum struc
of the black hole.

Preliminary analysis of perturbations of higherl show
mixed results. The QNM data for Kerr, initially calculate
by Leaver@24#, also are less clear, having a very rich stru
ture. Data from Ref.@25# are plotting in Figs. 2, 3, and 4. Th
theoretical prediction@5,6#

dv05THln kd14pJ/~MA!m ~13!

~with TH the Hawking temperature andJ the black hole’s
angular momentum! is also shown. Thus far, researche
have focused their attention on modes in the asymptotic
gime, thus concluding that the Kerr spectrum does not sh
evidence for black hole quanta@since only the 4pJ/(MA)m
term is found in this limit# @18,25#. However, by taking into
consideration the nonasymptotic part of the QNM spectru
I would argue that the behavior of the quasinormal modes

FIG. 2. Im(MvQN) vs Re(MvQN) for Kerr J/M50.15,
l 5m52 @25#.
2-3
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Kerr suggests the existence of transitions where the b
hole area changes by some number of quanta.

One does observe fairly equal spacing as theoretic
predicted, although~for example! the levels ofJ/M50.2 oc-
cur at the half-tones. The behavior of these plots is fa
typical, with a set of modes at gradually slopping line broa
ening ~imaginary part!, followed by a sudden~and remark-
able! change at thed51 level. The spectrum then gradual
asymptotes from thed51 level to thed50 level.

Let us now turn to two theoretical aspects of the quant
black hole which do not depend on the QNM spectrum
on which the QNM spectrum might shed light. First, there
an interesting fine-tuning problem with expression~12!
which is worth noting. As explained in the discussion p
ceding this equation, if one wantspn,1 to agree with the
classical result, then we require that it scale like 1/An. On
the other hand, if we assume that we can apply Ferm
golden rule to the black hole~this only requires that the de
cay be governed by some transition Hamiltonian!, then we
seem to get different behavior. Namely,

pn,15~2p!2v0
2gnTn,n21

2

5
4pknln k

n
Tn,n21

2 , ~14!

FIG. 3. Im(MvQN) vs Re(MvQN) for Kerr J/M50.2,
l 5m52 @25#.

FIG. 4. Im(MvQN) vs Re(MvQN) for Kerr J/M50.5, l 5m
52 @25#.
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where Tn,n21 is the transition matrix from thenth black
hole state to the (n21)th state. Since presumably th
strengthTn,n21 of the transition matrix and the degenera
gn of the levels are independent of each other, it is rat
surprising that they should conspire in precisely the ex
way to give Eq.~12!. One possibility is that something like
Eq. ~14! is correct and that some other processes are
volved in determining the classical emission rate. This wo
then explain the fact that the real part of the QNM spectr
approachesv0 only in the limit of infinite damping, since
here the absorption time is exponentially fast inn. Such a
mechanism, however, would not explain why the high
level transitions do have a lifetime of 1/An according to the
QNM spectrum. There is a natural model to circumvent t
problem: assume the that decay is dominated by transit
with little change in the degrees of freedom associated w
each quanta. If we label thek degrees of freedom of eac
area quanta bysi , then it is rather natural to regard a trans
tion as the disappearance of a single quantum where non
the other quanta changesi , i.e., the other area quanta rema
as passive observers of the transition. This leads to an e
tive degeneracy of the transition ofn rather thankn, since
this process can occur by any of the quanta being ann
lated. This would not affect the entropy, since there are s
kn possible states. It is arguably also more simple than
Bekenstein-Mukhanov transition, since only one quantum
involved in each decay, rather than a large collective proc
which involves the entiren quanta.Tn(n21)

2 would then just
have to behave like 1/M , which rather naturally occurs in
simple harmonic-oscillator-type transitions. However, th
model has the disadvantage that it is harder to explain
thermal character of the emitted radiation.

Another interesting puzzle worth pointing out puts in
question the thermal character of the radiation of the qu
tum black hole. Ifk53 ~as is popularly supposed!, then the
thermal emission of the classical black hole will be subst
tially suppressed. This is because the smallest possible e
sion ~corresponding tov0) occurs at an energy almost iden
tical to 1/b. The Hawking radiation of this quanta i
therefore suppressed by an amount 1/e. Higher level transi-
tions, such as those we have discussed, will be exponent
suppressed. Most of the Hawking emission will therefo
occur at a single frequency. This also occurs fork52 al-
though to a lesser extent. The fact that these higher le
transitions are so weak, lying outside the peak of the ther
spectrum, might play a role in explaining the difference b
tween these levels, which are sharp, and the huge degene
of broad levels which occur at large imaginary part. This
in addition to the well-known issue that the Hawking spe
trum is continuous while the Bekenstein model gives a d
crete spectrum.

Finally, we address Dreyer’s proposal to change the ga
group of loop quantum gravity~LQG! from SU~2! to SO~3!
in light of the QNM spectrum. The proposal is to fix th
Immirzi parameterg usingv0. This is viewed as giving an
independent way to fixg ~instead of using the black hole en
tropy!, and therefore the fact that it also gives the corr
value for the black hole entropy is viewed as a prediction
2-4
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the theory. We now give an explanation for this which rel
on rather general arguments. I suggest that the ambiguit
g still remains, but the theory does become more testab

First, we note that Dreyer’s arguments do not depend
the details of LQG, except insofar as LQG is believed to
consistent with the Bekenstein model. Namely,~i! LQG
gives Eq.~1! with a058p l P

2gAj min( j min11) and j min the
minimum allowed spin of the spin-network edges whi
puncture the surface of the horizon~although initial conclu-
sions were that the area spectrum was not evenly sp
@26#!. ~ii ! In LQG each area quantum contributes a
amount of entropy lnk @with k5(2 j min11)]. ~iii ! Dreyer
assumes that black hole emission is given by the disapp
ance of one of these punctures~i.e., a decrease inn). These
are precisely the same conditions that gave rise to Eq.~2!.

The Bekenstein model has two undetermined parame
a0 andk which one can fix by settinga0 to match the black
hole entropy—i.e.,a054 logk—and then perhaps fixingk
from the QNM spectrum. Likewise, in LQG, one can fir
setg to give a054 logk ~as was previously done, althoug
for a fixed k) and then setk53 to match the QNM data
Here, one sees that LQG has two undetermined param
which must be set to the data. This way of setting the par
eters is physically equivalent to Dreyer’s method; just
order is reversed.

However, what makes Dreyer’s result very interesting
that it does provide a potential test for LQG—namely, t
extent to whichk can arise naturally. It might have been th
one could not have three degrees of freedom per punc
thus, one hurdle has already been cleared. Although a n
ev

-

a

a
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ber of hurdles remain, strong arguments in favor ofk53
would provide a boost to LQG. Presumably,j min is more
tightly constrained thang, making the prospect for con
straining the theory in this regard brighter.

Furthermore, the fact that the QNM spectrum seems to
with Bekenstein’s prediction supports the equal area spa
model and, indeed, any quantum theory of gravity wh
gives rise to the same spectrum@such as LQG with assump
tion ~iii !#. The fact that one finds some evidence for multip
level transitions further bolsters this contention, although
evidence is not unambiguous. Certainly one should reta
degree of healthy skepticism about the project of mak
predictions using the QNM spectrum. A number of puzz
still remain, and regardless of the QNM spectrum, we ha
seen that there are many open questions concerning
quantization of black holes which can perhaps serve a
guide in constructing a quantum theory of gravity.
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