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Spectrum of quantum black holes and quasinormal modes
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The spectrum of multiple level transitions of a quantum black hole is considered and the linewidths calcu-
lated. Initial evidence is found for these higher order transitions in the spectrum of quasinormal modes for
Schwarzschild and Kerr black holes, further bolstering the idea that there exists a correspondence principle
between quantum transitions and classical “ringing modes.” Several puzzles are noted, including a fine-tuning
problem between the linewidth and level degeneracy. A more general explanation is provided for why setting
the Immirzi parameter of loop quantum gravity from the black hole spectrum necessarily gives the correct
value for the black hole entropy.
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Although there is a lack of experimental data on which tonumber if one is to interpret the quantum levels of the black
base attempts to construct a quantum theory of gravity, it ifiole as giving rise to the Bekenstein-Hawking entr&y
commonly regarded that the theory must give a correct ac-
counting for black hole entropy. The fact that black hole en- 1
tropy is a quarter of the black hole area then plays the role of S=ZA (©)
an experimental data point on which to test any theory.
String theory gives the correct prediction for extremal blacl\N
holes[1], and loop quantum gravity gives the entropy up to a €
proportionality constanft2,3] known as the Immirzi param-
eter. In general, the area scaling of entropy is rather generi
for gravitating system#4].

A less ambitious program involves attempting to quantize
a black hole. As early as 1974, Bekenstfin6] made the _Ink 4
case that the areA of a quantum black hole is quantized 0T gaM @
WITH equal spacing between levels,

can use the fact that that the entropy of a black hole is

In g, whereg, is the number of states at leuelDefining the
round state degeneracy ks g;, we can use Egg1) and

3) to fix ag=4 Ink with k a natural number:

Hod [13] then noticed that the QNM spectrum for a

A=aon, n=123..., (1 Schwarzschild black hole had a frequency whose real part
, ) ) numerically approached Ed4) with k=3 in the limit of
in units whereG=7%=kg=1 anda, a constanf7]. This has  jnfinite imaginary frequency. Mofl14] later confirmed this
been the_st_andard starting point for the quantum black ho"énalytically. In light of this, Dreyef15] proposed changing
[8,9], as it is based on general arguments rather than on g¢ gauge group of loop quantum gravity from @Uto
particular model. Bekenstein argued that since classically thgo(3)_ He then advocated using the spacing of quasinormal
black hole’s area is an adiabatic invariant, it should be quangages to fix the undetermined Immirzi parameter. He argued
tized (following an insight of Ehrenfesf10]). Furthermore, ot the value that fixes the energy spacing also yields the
for nonextremal black holes, he argued that the minimumyqrect value for the black hole entropy, thus claiming black
change in area is independent of the black hole mass, charggyie entropy a prediction of the theory. This has generated a
and angular momentum, which naturally leads to €9. great level of excitement in the field, and since then, a large

Even in his original papefalso [6]), Bekenstein noted pmper of studies have been conducted both to extend our

that Bohr’s correspondence principle implies that tra”Sition%nderstanding of quasinormal modds] and to further un-
in energy levels of a quantum black hole correspond to theiarstand the quantum black hole in this con{ex].

black hole’s quasinormal “ringing modesQNMs) [11]. For To learn about quantum black holes by studying the
largen, one expects a quantum black hole to correspond to g\ structure of classical black holes is certainly a specu-
classical black hole just as a quantized oscillator in the larggjye undertaking. Nonetheless, given the highly intriguing

mass limit should give the correct normal modes of a classiy, merical coincidences which are emerging and the lack of

cal oscillator. Since the mad of a black hole is given by e4| experimental data on which to base a quantum theory of
VA/167, the energywo,=AM emitted when the black gravity, there is merit in taking the preceding arguments se-

hole looses one area quantum is given by riously and seeing how far they can be pushed. Certainly a
study of the phonon modes of a solid would give one insight
o= Qo 2 into their quantization. Whether the QNM spectrum of the

0 327M black hole can be treated in the same way as Bohr treated

experimental data from the hydrogen atom remains to be
It was noted by Bekenstein and Mukhan@®12] that the  seen. In the remainder of the paper, | will essentially assume
constanta, should be 4 times the logarithm of a natural that such a correspondence holds.
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Thus far, researchers have only looked for transitions inwhere 8 is the inverse Hawking temperature,
volving one area quantum and focused on the QNM spec-
trum in the limit of large damping. No convincing explana- B=8wM, (6)
tion exists as to why this should be the significant regime, o
although some suggestions have been madg, [18]). If ~ and ”2‘9 factor §'/5)° comes from the phase spapeg.,
one believes that the quasinormal modes arise from the ud9@o)?] of the emitted radiation. One also gets such a prob-
derlying quantum structure, then one expects that this correability distribution if one assumes that the degenerggys
spondence principle should apply to all modes. There doe¥hat dominates the transition. We can then use @jto
not appear to be any reason to single out the highly dampe#yite
modes as arising from the quantum structure and the rest of

the modes as arising from some other structure. One is there- Pn,or =k 72052p, ;. )
fore forced to look for an explanation for the less damped . e
mode as well. Then the total probability’,, per unit time for the decay of

Furthermore, there has been no attempt to link the imagithe nth level is
nary part of the spectrum with the quantum black hole. Motl n
[14] has noted that the spacing of the imaginary part corre- .= E .
sponds to the expected poles in the thermal Green’s function. ne o1 n.o
It is unclear why this correspondence also only appears at
large damping or how it arises from the quantum structure of pn K2(1+K)
the black hole. =
If one takes Bohr’s correspondence principle seriously, it (k=1)
is natural that the linewidth of the quantum black hole would ®)
be associated with the imaginary part of the QNkénce

+0(n2k™ M),

. . : . where we henceforth drop terms which are exponentially
one expects classical damping or dispersion to correspond gchppressed for large Using the methods of Weisskopf and

the Ilne broaden'lng of the quantum transititre]). | wil Wigner[19,20, the linewidthy,; of the transition fronm to
thus first reexamine the quantum black hole and calculate the ™ is given by

line broadening for multiple level transitions. One other ob-
servation is that one expects not only transitions in which the =T 4T

. . " Yns n n—¢
black hole jumps one level, but also higher level transitions
in which the black hole jump$ levels. Then, taking the

2
correspondence between QNMs and quantum black holes =M(pn 1+ P51,
seriously one expects to see QNMs with a real frequency of (k—1)3 ’ ’
Swq. Indeed, | then find that the QNM spectrum contains 9

some evidence for multiple level transitions in addition to the ) ) ]
single level transition so far observed. | will present dataWhile the difference between two linewidths of a black hole

from both Schwarzschild and Kerr, which, although not agwith fixed nis
clean as the data in the asymptotic regime, show initial evi-

dence for these multiple level transitions. With regard to the _KA(1+K) 10
imaginary part of the QNM spectrum, the expected scaling is Yno™ Ynor = (k—1)3 (Pn-617Pn-5r2)- (10
observed for the multiple level transitions, but several

puzzles remain. From the Stefan-Boltzmann law and the Hawking tem-

After presenting the data, I return to some theoretical asperature, one can see that the classical black hole evaporates
pects of the quantum black hole and note a fine-tuning probits mass at a rate proportional toM? (i.e., 1h) [21]. Bek-
lem which exists in the physics governing the line broadenenstein and Mukhanof12] have calculated the probability
ing of the spectrum. | then discuss a puzzle, particularly ifdistribution of the quantum black hole to make various tran-
k=3, concerning suppression of Hawking radiation. Finally,sjtions. They use the classical result to fix the decay rate of
| note that there is a general explanation terms of the  single level transitiongwhich dominate Were we to follow

Bekenstein modeglfor why fixing the Immirzi parameter this reasoning, we could set the total luminosity to the clas-
from the quantum black hole spectrum necessarily gives thejcal result

correct result for the black hole entropy.

Let us consider a spontaneous emission process in which
a black hole withn area quanta decayslevels. If the prob- “’025 Pnsd>1/n, 1D
ability per unit time of a spontaneous decay between two

levelsn andn— 6" is p, s, then under the assumption that yhere a constant of proportionality accounts for the noncon-
these transitions give rise to the thermal character of blackn,ous nature of the spectrum and would depend on the

hole radiation, one expects particular particle being emitte@vith different values of the
o proportionally constant being advocated by different authors
Pns' _ g o'yo i) 6 122223 o
Pn,s )" Using Eq.(7), this gives
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FIG. 1. ImMwqy) Vs ReMagy) for the Schwarzschild) FIG. 2. Im(Mwgn) vs ReMwgy) for Kerr J/M=0.15,

=2 quasinormal modg24]. The vertical lines are the theoretically |=m=2 [25].
predicted valued Sw.
ferent § should essentially be the derivative gfs and one
(k—1)* b 12 would 2expect Im@gn) to have a term which scales like
Pna= — —6/M<. This is not observed, although the slope of
K*(1+4k+k?) Jnink Im(wqgn) does go in the expected direction in that higher
order transitions are sharper. There are sets of modes which
occur at roughly equal Imgqy) as in Eq.(9), but these are

with b being the constant of proportionality. This can now be
substituted into Eq(9) to give the line breadth of black ;
hole transitions. at higherl.

Now that we have the line breadth and energy spacing for '€ behavior of the QNMs which would correspond to
multiple level transitions, let us turn to whether they areMultiple level transitions are in stark contrast to the QNM
reflected in the QNM spectrum. meant to correspond to the transition @§. The latter is

Figure 1 shows the gravitational perturbation with lowestinfinitely broad (occurring at infinite imaginary frequency
angular momentunh=2. In addition to the level at infinite 2nd surrounded by a huge degeneracy of other modes. While

damping ©6=1), one sees evidence for multiple transitions ©N€ can find many possible explanations for the splitting of
which occur close to the predicted valugs, (for & the energy levels or to explain why particular transitions
i 9). TheQNMs which lie close to theseotheoretical should be broad or narrow, | know of no general arguments

predictions are the=1 8QNM's which have increas- which could consistently and convincingly explain the differ-

ingly larger imaginary part. The agreement with the theoreti-e.m behavior(witnessed in the QNM spectrynbetween the

cally predicted result is within 5%. Strongest disagreemen{'rs\t/vlﬁ.\lleI ttrr]angl_tl(in arlllthhe multiple dlevel ontcles.t th
occurs at the highest energy transition. The reason that th lle the 5=1 Q corresponds exactly o, the

spectrum ends here is explained by the fact that one does ngft@ foré>1 are not exact. This could be for a number of

have Sw,>1/3y3M (the peak of the black hole potential reasons. One expects the energy levels of the black hole to

since this is when the energy of the mode is larger than tth shifted because of their coupling to fields. Additionally, it

peak of the black hole potential. At this energy, the modeS not at all clear the extent to which QNMs are probing the

must become efther prlyautgaing o urely ngogile STV 31 e back hoe hotzon, The conseraton ere
QNMs are defined to be outgoing at infinity and “ingoing” PP q

; . C . of the black hole.
itort])he horizon—i.e., falling into the black hole at the hori- Preliminary analysis of perturbations of highershow

The n=9 QNM is the “algebraically special” mode at mixed results. The QNM data for Kerr, initially calculated

7 . by Leaver[24], also are less clear, having a very rich struc-
Re(w)=0. Whether the latter mode is in fact a QNM is a A
matter of some debafd1]. Following this mode, the spec- ture. Data from Ref[25] are plotting in Figs. 2, 3, and 4. The

trum n=10,11,12... gradually asymptotes to thé=1 theoretical prediction5,6]
line.

Since the imaginary part of the QNM should correspond dwo=TyInké+47I/[(MA)mM (13
to the linewidth of the quantum black hole, one expects the
imaginary part of the QNM spectrum to be given by B9.  (with T, the Hawking temperature an#ithe black hole’s
It is perhaps encouraging that the higher order transitions dangular momentuinis also shown. Thus far, researchers
have an imaginary part which is proportional ta/a/as Eq.  have focused their attention on modes in the asymptotic re-
(12) predicts. However, the spacing of Imgy) between gime, thus concluding that the Kerr spectrum does not show
different modes does not correspond to Ef). The entire  evidence for black hole quanfsince only the 4J/(MA)m
QNM spectrum scales like W (i.e., 14/n). From Egs.(9)  term is found in this limit [18,25. However, by taking into
and (10) we see that ify, s scales like 1M, then the differ- consideration the nonasymptotic part of the QNM spectrum,
ence in linewidth between two successive transitions of dif{ would argue that the behavior of the quasinormal modes of
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0 : where T, ,_; is the transition matrix from theith black
_0.5 . hole state to the n—1)th state. Since presumably the
=~ ) strengthT, ,_, of the transition matrix and the degeneracy
5 ] g, of the levels are independent of each other, it is rather
§ -1.5 N surprising that they should conspire in precisely the exact
-2 . way to give Eq.(12). One possibility is that something like

Eq. (14) is correct and that some other processes are in-

-2.5 . - . e .
volved in determining the classical emission rate. This would
-3 ; then explain the fact that the real part of the QNM spectrum
-3.5 » approachesng only in the limit of infinite damping, since

here the absorption time is exponentially fastninSuch a
mechanism, however, would not explain why the higher
level transitions do have a lifetime of i according to the
FIG. 3. ImMwgy) Vs ReMwgy) for Kerr J/M=0.2,  QNM spectrum. There is a natural model to circumvent this
I=m=2 [25]. problem: assume the that decay is dominated by transitions
with little change in the degrees of freedom associated with
Kerr suggests the existence of transitions where the blackach quanta. If we label thie degrees of freedom of each
hole area changes by some number of quanta. area quanta byg; , then it is rather natural to regard a transi-
One does observe fairly equal spacing as theoreticallyion as the disappearance of a single quantum where none of
predicted, althouglfor example the levels ofJ/M=0.2 oc-  the other quanta changg, i.e., the other area quanta remain
cur at the half-tones. The behavior of these plots is fairlyas passive observers of the transition. This leads to an effec-
typical, with a set of modes at gradually slopping line broad+jye degeneracy of the transition afrather tharnk”, since
ening (imaginary par, followed by a sudderiand remark-  his process can occur by any of the quanta being annihi-
ablg change at thé=1 level. The spectrum then gradually |ated. This would not affect the entropy, since there are still
asymptotes from thé=1 level to the6=0 level. k" possible states. It is arguably also more simple than the
Let us now turn to two theoretical aspects of the quantunekenstein-Mukhanov transition, since only one quantum is
black hole which do not depend on the QNM spectrum bufyolved in each decay, rather than a large collective process

on which the QNM spectrum might shed light. First, there is\yhich involves the entire quanta.Tﬁ .1, would then just
an interesting fine-tuning problem with expressi¢i?) (n-1)

hich i h noting. A lained in the di _ have to behave like M, which rather naturally occurs in
which 1S vyort no'tmg.. S explained in the IScussion pre'simple harmonic-oscillator-type transitions. However, this
ceding this equation, if one wan{s,, to agree with the

5 ' ) - model has the disadvantage that it is harder to explain the
classical result, then we require that it scale like/r./ On thermal character of the emitted radiation.

the other hand, if we assume that we can apply Fermi's apother interesting puzzle worth pointing out puts into

golden rule to the black holghis only requires that the de- qestion the thermal character of the radiation of the quan-
cay be governed by some transition Hamiltonjahen we  m plack hole. Ifk=3 (as is popularly supposgdhen the

0.1 0.2 0.4

0.3
R(Mwon)

seem to get different behavior. Namely, thermal emission of the classical black hole will be substan-
tially suppressed. This is because the smallest possible emis-
Pn1=(27)%0i9, T2 01 sion (corresponding taw,) occurs at an energy almost iden-
tical to 1/8. The Hawking radiation of this quanta is
47k In k therefore suppressed by an amoure. Higher level transi-
= TTﬁ'n_l, (14)  tions, such as those we have discussed, will be exponentially

suppressed. Most of the Hawking emission will therefore
occur at a single frequency. This also occurs Ker2 al-
. though to a lesser extent. The fact that these higher level
-0.5 . : transitions are so weak, lying outside the peak of the thermal
-1 . spectrum, might play a role in explaining the difference be-
I tween these levels, which are sharp, and the huge degeneracy
of broad levels which occur at large imaginary part. This is
-2 N in addition to the well-known issue that the Hawking spec-
2.5 J trum is continuous while the Bekenstein model gives a dis-
crete spectrum.
. Finally, we address Dreyer’s proposal to change the gauge
-3.5 N group of loop quantum gravitgLQG) from SU2) to SQ(3)
in light of the QNM spectrum. The proposal is to fix the
Immirzi parametery using wg. This is viewed as giving an
independent way to fixy (instead of using the black hole en-
FIG. 4. InMwgqy) vs ReMwgy) for Kerr JIM=0.5,1=m  tropy), and therefore the fact that it also gives the correct
=2 [25]. value for the black hole entropy is viewed as a prediction of

0.3 0.3 0.45 0.5

5 0.4
R(Mwon)
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the theory. We now give an explanation for this which reliesber of hurdles remain, strong arguments in favorkef3
on rather general arguments. | suggest that the ambiguity afould provide a boost to LQG. Presumabjy,i, iS more
v still remains, but the theory does become more testable. tightly constrained thany, making the prospect for con-
First, we note that Dreyer’s arguments do not depend 0Rtraining the theory in this regard brighter.
the details of LQG, except insofar as LQG is believed to be  Furthermore, the fact that the QNM spectrum seems to fit
consistent with the Bekegste-m model. Namely, LQG  yjth Bekenstein's prediction supports the equal area spacing
gives Eq.(1) with ag=87lpyVjmin(imint1) andjmin the  model and, indeed, any quantum theory of gravity which
minimum allowed spin of the spin-network edges whichgjyes rise to the same spectriisuch as LQG with assump-
puncture the surface of the horizéaithough initial conclu-  tjon jii)]. The fact that one finds some evidence for multiple
sions were that the area spectrum was not evenly spacgg\e| transitions further bolsters this contention, although the
[26]). (i) In LQG each area quantum contributes a sefgyidence is not unambiguous. Certainly one should retain a
amount of entropy Ik [with k=(2jmint+1)]. (iii) Dreyer  gegree of healthy skepticism about the project of making
assumes that black hole emission is given by'the d'sappe%‘redictions using the QNM spectrum. A number of puzzles
ance of one of these puncturé®., a decrease in). These || remain, and regardless of the QNM spectrum, we have
are precisely the same conditions that gave rise toBq.  seen that there are many open questions concerning the
The Bekenstein model has two undetermined parameteggantization of black holes which can perhaps serve as a

ag andk which one can fix by setting, to match the black gyide in constructing a quantum theory of gravity.
hole entropy—i.e.a,=4 logk—and then perhaps fixing

from the QNM spectrum. Likewise, in LQG, one can first
sety to give ag=4 logk (as was previously done, although
for a fixedk) and then sek=3 to match the QNM data.
Here, one sees that LQG has two undetermined parameters | thank Jacob Bekenstein for many helpful and pleasur-
which must be set to the data. This way of setting the paramable discussions on the issues contained in this paper, as well
eters is physically equivalent to Dreyer’'s method; just theas for comments on the draft version. Comments by Olaf
order is reversed. Dreyer were also greatly appreciated, as were interesting dis-

However, what makes Dreyer’s result very interesting iscussions with Ryszard Horodecki, Michal Horodecki, and
that it does provide a potential test for LQG—namely, theJohn Preskill. | am also grateful to the authors of R&2f]
extent to whichk can arise naturally. It might have been thatfor generously providing the data from their work. | ac-
one could not have three degrees of freedom per punctur&nowledge the support of the Lady Davis Trust and ISF grant
thus, one hurdle has already been cleared. Although a nuni-29/00-1.

ACKNOWLEDGMENT

[1] A. Strominger and C. Vafa, Phys. Lett. &9, 99 (1996. [10] P. Ehrenfest, work mentioned in M. Bor#tomic Physics

[2] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys. Rev.
Lett. 80, 904 (1998.

[3] C. Rovelli, Phys. Rev. Letf77, 3288(1996.

[4] J. Oppenheim, Phys. Rev. &, 024020(2002.

[5] J. Bekenstein, Lett. Nuovo Cimento Soc. ltal. Fid, 467
(1974.

[6] For a review see J. Bekenstein,Rmoceedings of the 8th Mar-
cel Grossmann Meeting on General Relativigdited by T.
Piran (World Scientific, Singapore, 1998p. 92.

[7] n should not be confused with the order of the quasinormal
modes.

[8] V. Mukhanov, JETP Lett44, 63 (1986; in Complexity, En-
tropy and the Physics of Informatipredited by W. Zurek
(Addison-Wesley, New York, 1990Vol. 3.

[9] See, for example, I. Kogan, JETP Led4, 267 (1986;
hep-th/9412232; C. Lousto, Phys. Rev5D 1733(1995; M.
Maggiore, Nucl. PhysB429, 115 (1994); H. Kastrup, Phys.
Lett. B 385 75 (1996; J. Makela,ibid. 390, 115 (1997); J.
Bekenstein and G. Gour, Phys. Rev.6b, 024005(2002; A.
Barvinksy, S. Das, and G. Kunstatter, Phys. Lett5H, 415
(2002); J. Louko and J. Makela, Phys. Rev53, 4982(1996);
G. Gilad and A.J.M. Medved, Class. Quantum Gr2, 1661

(2003; T. Padmanabhan and A. Patel, hep-th/0305165; T. Pad-

manabhan, Class. Quantum GrdyL107 (1987.

044012-5

(Blacki, London, 1968

[11] For a review see K. Kokkotas and B. Schmidt, Living Rev.

Relativ. 2, 2 (1999 or H.P. Nollert, Class. Quantum Grals,
R159(1999.

[12] J. Bekenstein and V. Mukhanov, Phys. Lett3B0, 7 (1995.

[13] S. Hod, Phys. Rev. LetB1, 4293(1998.

[14] L. Motl, gr-qc/0212096.

[15] O. Dreyer, Phys. Rev. Letf0, 081301(2003.

[16] See, for example, recent work such as V. Cardoso, R. Kono-

plya, and J. Lemos, Phys. Rev. @3, 044024(2003; V. Car-
doso and J. Lemosipid. 67, 084020 (2003; A. Neitzke,
hep-th/0304080; K. Glampedakis and N. Andersson, Class.
Quantum Grav20, 3441(2003; C. Molina, Phys. Rev. 58,
064007 (2003; E. Berti and K. Kokkotasjbid. 67, 064020
(2003; R. Konoplya,ibid. 68, 024018(2003; S. Musiri and

G. Siopsis, Phys. Lett. B63 102(2003; A. Maassen van den
Brink, Phys. Rev. D68, 047501(2003; P.T. Leung, A. Maas-
sen van den Brink, K.W. Mak, and K. Young, gr-qc/0307024;
N. Andersson and C.J. Howls, gr-qc/0307020.

[17] See, for example, J. Baez, Natuteondon 421, 703 (2003;

G. Kunstatter, Phys. Rev. Lefi0, 161301(2003; D. Birming-
ham, S. Carlip, and Y. Chen, hep-th/0305113; E. Berti and K.
Kokkotas, Phys. Rev. B8, 044027(2003; A. Polychronakos,
ibid. 69, 044010(2004); A. Corichi, Phys. Rev. 67, 087502



JONATHAN OPPENHEIM PHYSICAL REVIEW D69, 044012 (2004

(2003; A. Berezin, Nucl. PhysB66, 409(2003; R. Kaul and  [22] J. Makela, Phys. Rev. B4, 4982(1996.
S. Rama, Phys. Rev. B8, 024001(2003; A. Alekseev, A.  [23] S. Hod, Phys. Lett. 299 144 (2002.
Polychronakos, and M. Smedbck, Phys. Lett.5B84, 296  [24] E. Leaver, Proc. R. Soc. Londa02, 285 (1985.

(2003. [25] E. Berti, V. Cardoso, K. Kokkotas, and H. Onozawa, Phys.

[18] S. Hod, gr-qc/0307060. Rev. D68, 124018(2003.

[19] For a review of the theory of the natural line breadth, see, fo{26] C. Rovelli and L. Smolin, Nucl. PhyB442 593 (1995; A.
example, W. HeitlerThe Quantum Theory of Radiati¢@lar- Ashtekar and J. Lewandowski, Class. Quantum GtdyA55
endon Press, Oxford, 1989 (1997; L. Lenher, S. Frittelli, and C. Rovellipid. 13, 2921

[20] V. Weisskopf and E. Wigner, Z. Phy63, 54 (1930. (1996; R. Loll, Phys. Rev. Lett75, 3048(1995; Nucl. Phys.

[21] D. Page, Phys. Rev. D3, 198(1976. B460, 143(1996.

044012-6



