307 research outputs found

    The Lasting Impact of Deinstitutionalization: Policing and the Mental Health Crisis

    Get PDF
    Society is combating the detrimental effects of the deinstitutionalization policy, which transferred the treatment of mentally ill patients from state-run psychiatric hospitals to community-run psychiatric facilities. These patients frequently fall into relapses and are more likely to experience risky encounters with law enforcement officials who have no formal training in dealing with them. The paper analyzes the criminalization of mentally ill people, many with substance abuse and alcohol addictions, receiving treatment in jails and state prisons. Incarcerating people with mental illness, though reducing the homeless population from the street and disturbances faced by the public, still does not address the underlying problem. The consequences and challenges of the deinstitutionalization policy have directly impacted law enforcement and the mentally ill and homeless population. Implementing a national database with law enforcement medical agencies can be life-changing for those impacted by this predicament and gathering gather consistent and thorough health reports on the released incarcerated population within the community while accessing other vital needs such as housing, food, and employment can help avoid remission and homelessness

    Turbulent Transport in Global Models of Magnetized Accretion Disks

    Get PDF
    The modern theory of accretion disks is dominated by the discovery of the magnetorotational instability (MRI). While hydrodynamic disks satisfy Rayleigh's criterion and there exists no known unambiguous route to turbulence in such disks, a weakly magnetized disk of plasma is subject to the MRI and will become turbulent. This MRI-driven magnetohydrodnamic turbulence generates a strong anisotropic correlation between the radial and azimuthal magnetic fields which drives angular momentum outwards. Accretion disks perform two vital functions in various astrophysical systems: an intermediate step in the gravitational collapse of a rotating gas, where the disk transfers angular momentum outwards and allows material to fall inwards; and as a power source, where the gravitational potential energy of infalling matter can be converted to luminosity. Accretion disks are important in astrophysical processes at all scales in the universe. Studying accretion from first principles is difficult, as analytic treatments of turbulent systems have proven quite limited. As such, computer simulations are at the forefront of studying systems this far into the non-linear regime. While computational work is necessary to study accretion disks, it is no panacea. Fully three-dimensional simulations of turbulent astrophysical systems require an enormous amount of computational power that is inaccessible even to sophisticated modern supercomputers. These limitations have necessitated the use of local models, in which a small spatial region of the full disk is simulated, and constrain numerical resolution to what is feasible. These compromises, while necessary, have the potential to introduce numerical artifacts in the resulting simulations. Understanding how to disentangle these artifacts from genuine physical phenomena and to minimize their effect is vital to constructing simulations that can make reliable astrophysical predictions and is the primary concern of the work presented here. The use of local models is predicated on the assumption that these models accurately capture the dynamics of a small patch of a global astrophysical disk. This assumption is tested in detail through the study of local regions of global simulations. To reach resolutions comparable to those used in local simulations an orbital advection algorithm, a semi-Lagrangian reformulation of the fluid equations, is used which allows an order of magnitude increase in computational efficiency. It is found that the turbulence in global simulations agrees at intermediate- and small-scales with local models and that the presence of magnetic flux stimulates angular momentum transport in global simulations in a similar manner to that observed for local ones. However, the importance of this flux-stress connection is shown to cast doubt on the validity of local models due to their inability to accurately capture the temporal evolution of the magnetic flux seen in global simulations. The use of orbital advection allows the ability to probe previously-inaccessible resolutions in global simulations and is the basis for a rigorous resolution study presented here. Included are the results of a study utilizing a series of global simulations of varying resolutions and initial magnetic field topologies where a collection of proposed metrics of numerical convergence are explored. The resolution constraints necessary to establish numerical convergence of astrophysically-important measurements are presented along with evidence suggesting that the use of proper azimuthal resolution, while computationally-demanding, is vital to achieving convergence. The majority of the proposed metrics are found to be useful diagnostics of MRI-driven turbulence, however they suffer as metrics of convergence due to their dependence on the initial magnetic field topology. In contrast to this, the magnetic tilt angle, a measure of the planar anisotropy of the magnetic field, is found to be a powerful tool for diagnosing convergence independent of initial magnetic field topology

    An Analysis of Service Ontologies

    Get PDF
    Services are increasingly shaping the world’s economic activity. Service provision and consumption have been profiting from advances in ICT, but the decentralization and heterogeneity of the involved service entities still pose engineering challenges. One of these challenges is to achieve semantic interoperability among these autonomous entities. Semantic web technology aims at addressing this challenge on a large scale, and has matured over the last years. This is evident from the various efforts reported in the literature in which service knowledge is represented in terms of ontologies developed either in individual research projects or in standardization bodies. This paper aims at analyzing the most relevant service ontologies available today for their suitability to cope with the service semantic interoperability challenge. We take the vision of the Internet of Services (IoS) as our motivation to identify the requirements for service ontologies. We adopt a formal approach to ontology design and evaluation in our analysis. We start by defining informal competency questions derived from a motivating scenario, and we identify relevant concepts and properties in service ontologies that match the formal ontological representation of these questions. We analyze the service ontologies with our concepts and questions, so that each ontology is positioned and evaluated according to its utility. The gaps we identify as the result of our analysis provide an indication of open challenges and future work

    Towards a Unifying Process Framework for Services Knowledge Management

    Get PDF
    Activities concerned with the design, planning and execution of services are becoming increasingly complex. This is due to the involvement of many different stakeholders, the complexity of the service systems themselves, and the dynamic nature of their organizational and ICT environments. Service knowledge management helps share and reuse relevant knowledge among the different stakeholders, and therefore emerges as a critical factor to perform service activities with required efficiency and quality. Recent advances in knowledge management provide promising opportunities to support individual service activities within a single domain. Yet, sharing knowledge throughout the service life-cycle and across service domains is still very challenging. The source of service knowledge, its usage, update frequency, encoding and associated stakeholders may vary depending upon the service activity and the service domain. Based on a critical analysis of currently proposed frameworks, we argue that a process framework approach is beneficial for service knowledge management. To support our claim, we offer an abstract template and a typical service life-cycle that can be adopted to integrate heterogeneous service knowledge from diverse sources

    Behrami v. France: An Unfortunate Step Backwards in the Protection of Human Rights

    Get PDF

    Service Semantics Classification: an Approach Towards Modular Service Ontology

    Get PDF
    Since service systems are becoming increasingly complex in emerging technology, business, legal and economics environments, service abstractions are necessary to master this complexity. However, the term ‘service’ means different things to different people in different disciplines, which implies that any attempt to define general purpose service abstractions must address the disambiguation of the term. Service ontologies and service knowledge management efforts mainly aim at elucidating service semantics. Each discipline has multiple biased service-related concepts, so that in order to build comprehensive multi-disciplinary service models, the service-related concepts of the involved disciplines have to be integrated and structured in a consistent way. We claim that this requires a modular approach in which general purpose service semantics can be further extended or specialised with domain-specific concepts. Service-related and domain-specific concepts can be integrated and structured in many different ways. This paper proposes a semantics classification scheme based on service aspects that are essential for a services ecosystem

    Formulation and characterization of polyimide resilient foams of various densities for aircraft seating applications

    Get PDF
    Light weight, heat and fire resistant low smoke generating polyimide foams are developed for aircraft seating applications. The material is upgraded and classified into groups for fabrication of cushions possessing acceptable comfort properties. Refinement and selection of foaming processes using a variety of previously developd foaming techniques and definition of property relationships to arrive at the selection and classfication of polyimide foams into five groups in accordance with predetermined ILD values are emphasized

    Transiliac hernia: a case report with short review of literature

    Get PDF
    The Iliac crest is considered gold standard among all types of bone graft available-natural or synthetic. There are many reported complications of bone graft harvestation but one of the rarely reported ones is hernia from the donor site. Not more than 15-20 cases have been reported in the last 10 years. We hereby report a case of hernia from the iliac crest used to harvest bone graft for a case of Femur shaft non-union and also review the relevant literature. The risk factors for this particular complication to occur are morbid obesity, female sex and old age. Bone graft substitutes should therefore be strongly considered in these patients. When harvested, the periosteum and soft tissue should be meticulously closed and repaired. CT scan is a fairly conclusive investigation for diagnosis
    • 

    corecore