144 research outputs found

    Global baryon number conservation encoded in net-proton fluctuations measured in Pb–Pb collisions at √sNN = 2.76 TeV

    Get PDF
    Experimental results are presented on event-by-event net-proton fluctuation measurements in Pb–Pb collisions at √SNN=2.76 TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions.publishedVersio

    Measurement of jet radial profiles in Pb\u2013Pb collisions at 1asNN = 2.76 TeV

    Get PDF
    The jet radial structure and particle transverse momentum (pT) composition within jets are presented in centrality-selected Pb\u2013Pb collisions at 1asNN = 2.76 TeV. Track-based jets, which are also called charged jets, were reconstructed with a resolution parameter of R = 0.3 at midrapidity |\u3b7ch jet| < 0.6 for transverse momenta pT, ch jet = 30\u2013120 GeV/c. Jet\u2013hadron correlations in relative azimuth and pseudorapidity space (\u3c6,\u3b7) are measured to study the distribution of the associated particles around the jet axis for different pT,assoc-ranges between 1 and 20 GeV/c. The data in Pb\u2013Pb collisions are compared to reference distributions for pp collisions, obtained using embedded PYTHIA simulations. The number of high-pT associate particles (4 < pT,assoc < 20 GeV/c) in Pb\u2013Pb collisions is found to be suppressed compared to the reference by 30 to 10%, depending on centrality. The radial particle distribution relative to the jet axis shows a moderate modification in Pb\u2013Pb collisions with respect to PYTHIA. High-pT associate particles are slightly more collimated in Pb\u2013Pb collisions compared to the reference, while low-pT associate particles tend to be broadened. The results, which are presented for the first time down to pT, ch jet = 30 GeV/c in Pb\u2013Pb collisions, are compatible with both previous jet\u2013hadron-related measurements from the CMS Collaboration and jet shape measurements from the ALICE Collaboration at higher pT, and add further support for the established picture of in-medium parton energy loss

    Study of the \u39b\u2013\u39b interaction with femtoscopy correlations in pp and p\u2013Pb collisions at the LHC

    Get PDF
    This work presents new constraints on the existence and the binding energy of a possible \u39b\u2013\u39b bound state, the H-dibaryon, derived from \u39b\u2013\u39b femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in (Figure presented.) collisions at s=13 TeV and p\u2013Pb collisions at sNN=5.02 TeV, combined with previously published results from (Figure presented.) collisions at s=7 TeV. The \u39b\u2013\u39b scattering parameter space, spanned by the inverse scattering length f0 121 and the effective range d0, is constrained by comparing the measured \u39b\u2013\u39b correlation function with calculations obtained within the Lednick\ufd model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the \u39b\u2013\u39b interaction. The region in the (f0 121,d0) plane which would accommodate a \u39b\u2013\u39b bound state is substantially restricted compared to previous studies. The binding energy of the possible \u39b\u2013\u39b bound state is estimated within an effective-range expansion approach and is found to be B\u39b\u39b=3.2 122.4+1.6(stat) 121.0+1.8(syst) MeV

    Pion-kaon femtoscopy and the lifetime of the hadronic phase in Pb-Pb collisions at root(S)(NN)=2.76 TeV

    Get PDF
    In this paper, the first femtoscopic analysis of pion-kaon correlations at the LHC is reported. The analysis was performed on the Pb-Pb collision data at root(S)(NN) = 2.76 TeV recorded with the ALICE detector. The non-identical particle correlations probe the spatio-temporal separation between sources of different particle species as well as the average source size of the emitting system. The sizes of the pion and kaon sources increase with centrality, and pions are emitted closer to the centre of the system and/or later than kaons. This is naturally expected in a system with strong radial flow and is qualitatively reproduced by hydrodynamic models. ALICE data on pion-kaon emission asymmetry are consistent with (3+1)-dimensional viscous hydrodynamics coupled to a statistical hadronisation model, resonance propagation, and decay code THERMINATOR 2 calculation, with an additional time delay between 1 and 2 fm/c for kaons. The delay can be interpreted as evidence for a significant hadronic rescattering phase in heavy-ion collisions at the LHC. (C) 2020 The Author. Published by Elsevier B.V.Peer reviewe

    Polarization of Λ and Λ¯ Hyperons along the Beam Direction in Pb-Pb Collisions at √sNN = 5.02 TeV

    Get PDF
    The polarization of the Lambda and (Lambda) over bar hyperons along the beam (z) direction, P-z, has been measured in Pb-Pb collisions at root s(NN) = 5.02 TeV recorded with ALICE at the Large Hadron Collider (LHC). The main contribution to P-z comes from elliptic flow-induced vorticity and can be characterized by the second Fourier sine coefficient P-z,P-s2 = &lt; P-z sin(2 phi - 2 Psi(2))&gt;, where phi is the hyperon azimuthal emission angle and Psi(2) is the elliptic flow plane angle. We report the measurement of P-z,P-s2 for different collision centralities and in the 30%-50% centrality interval as a function of the hyperon transverse momentum and rapidity. The P-z,P-s2 is positive similarly as measured by the STAR Collaboration in Au-Au collisions at root s(NN) = 200 GeV, with somewhat smaller amplitude in the semicentral collisions. This is the first experimental evidence of a nonzero hyperon P-z in Pb-Pb collisions at the LHC. The comparison of the measured P-z,P-s2 with the hydrodynamic model calculations shows sensitivity to the competing contributions from thermal and the recently found shear-induced vorticity, as well as to whether the polarization is acquired at the quark-gluon plasma or the hadronic phase

    Longitudinal and azimuthal evolution of two-particle transverse momentum correlations in Pb-Pb collisions at root √sNN=2.76 TeV

    Get PDF
    This paper presents the first measurements of the charge independent (CI) and charge dependent (CD) two-particle transverse momentum correlators G2CI and G2CD in Pb–Pb collisions at sNN=2.76TeV by the ALICE collaboration. The two-particle transverse momentum correlator G2 was introduced as a measure of the momentum current transfer between neighboring system cells. The correlators are measured as a function of pair separation in pseudorapidity (Δη) and azimuth (Δφ) and as a function of collision centrality. From peripheral to central collisions, the correlator G2CI exhibits a longitudinal broadening while undergoing a monotonic azimuthal narrowing. By contrast, G2CD exhibits a narrowing along both dimensions. These features are not reproduced by models such as HIJING and AMPT. However, the observed narrowing of the correlators from peripheral to central collisions is expected to result from the stronger transverse flow profiles produced in more central collisions and the longitudinal broadening is predicted to be sensitive to momentum currents and the shear viscosity per unit of entropy density η/s of the matter produced in the collisions. The observed broadening is found to be consistent with the hypothesized lower bound of η/s and is in qualitative agreement with values obtained from anisotropic flow measurements

    Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb-Pb collisions at √ s(NN)=5.02 TeV

    Get PDF
    The differential invariant yield as a function of transverse momentum (pT) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0\u201310%), semi-central (30\u201350%) and peripheral (60\u201380%) lead\u2013lead (Pb\u2013Pb) collisions at sNN=5.02 TeV in the pT intervals 0.5\u201326 GeV/c (0\u201310% and 30\u201350%) and 0.5\u201310 GeV/c (60\u201380%). The production cross section in proton\u2013proton (pp) collisions at s=5.02 TeV was measured as well in 0.5<10 GeV/c and it lies close to the upper band of perturbative QCD calculation uncertainties up to pT=5 GeV/c and close to the mean value for larger pT. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon\u2013nucleon collisions is evaluated by measuring the nuclear modification factor RAA. The measurement of the RAA in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The RAA shows a suppression with respect to unity at intermediate pT, which increases while moving towards more central collisions. Moreover, the measured RAA is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low pT in heavy-ion collisions at LHC

    A(c)(+) Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at root S-NN=5.02 TeV at the LHC

    Get PDF
    The prompt production of the charm baryon \u39bc+ and the \u39bc+/D0 production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sNN=5.02 TeV. These new measurements show a clear decrease of the \u39bc+/D0 ratio with increasing transverse momentum (pT) in both collision systems in the range 2<12 GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/\u3c0 and \u39b/KS0. At low pT, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e+e- and e-p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies

    A(c)(+) Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at root S-NN=5.02 TeV at the LHC

    Get PDF
    The prompt production of the charm baryon Λ_{c}^{+} and the Λ_{c}^{+}/D^{0} production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sqrt[s_{NN}]=5.02  TeV. These new measurements show a clear decrease of the Λ_{c}^{+}/D^{0} ratio with increasing transverse momentum (p_{T}) in both collision systems in the range 2<p_{T}<12  GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/π and Λ/K_{S}^{0}. At low p_{T}, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e^{+}e^{-} and e^{-}p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe
    corecore