15 research outputs found

    Role of neutrophils in CVB3 infection and viral myocarditis

    Get PDF
    Coxsackievirus B3 (CVB3) is a globally prevalent enterovirus of the Picornaviridae family that is frequently associated with viral myocarditis (VM). Neutrophils, as first responders, may be key cells in determining viral disease outcomes; however, neutrophils have been poorly studied with respect to viral infection. Although neutrophils have been ascribed a relevant role in early cardiac inflammation, their precise role in CVB3 infection has not yet been evaluated. In this study, we aimed to determine if the interaction between human neutrophils and CVB3 could lead to viral replication and/or modulation of neutrophil survival and biological functions, and whether neutrophil depletion in a murine model has a beneficial or harmful effect on CVB3 infection. Our results show that CVB3 interacted with but did not replicate in human neutrophils. Neutrophils recognized CVB3 mainly through endosomal TLR-8, and infection triggered NFκB activation. Virus internalization resulted in increased cell survival, up-regulation of CD11b, enhanced adhesion to fibrinogen and fibronectin, and the secretion of IL-6, IL-1β, TNF-α, and IL-8. Supernatants from infected neutrophils exerted chemotactic activity partly mediated by IL-8. The infected neutrophils released myeloperoxidase and triggered neutrophil extracellular trap formation in the presence of TNF-α. In mice infected with CVB3, viral RNA was detected in neutrophils as well as in mononuclear cells. After neutrophil depletion, mice showed reduced VM reflected by a reduction in viral titers, cell exudates, and CCL-2 mRNA levels, as well as the abrogation of reactive cardiomyocyte hypertrophy. Our results indicate that neutrophils have relevant direct and indirect roles in the pathogenesis of CVB3-induced VM.Fil: Rivadeneyra, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Charó, Nancy Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Kviatcovsky, Denise. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: de la Barrera, Silvia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Gomez, Ricardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Schattner, Mirta Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentin

    Guidelines for Modeling and Reporting Health Effects of Climate Change Mitigation Actions.

    Get PDF
    BACKGROUND: Modeling suggests that climate change mitigation actions can have substantial human health benefits that accrue quickly and locally. Documenting the benefits can help drive more ambitious and health-protective climate change mitigation actions; however, documenting the adverse health effects can help to avoid them. Estimating the health effects of mitigation (HEM) actions can help policy makers prioritize investments based not only on mitigation potential but also on expected health benefits. To date, however, the wide range of incompatible approaches taken to developing and reporting HEM estimates has limited their comparability and usefulness to policymakers. OBJECTIVE: The objective of this effort was to generate guidance for modeling studies on scoping, estimating, and reporting population health effects from climate change mitigation actions. METHODS: An expert panel of HEM researchers was recruited to participate in developing guidance for conducting HEM studies. The primary literature and a synthesis of HEM studies were provided to the panel. Panel members then participated in a modified Delphi exercise to identify areas of consensus regarding HEM estimation. Finally, the panel met to review and discuss consensus findings, resolve remaining differences, and generate guidance regarding conducting HEM studies. RESULTS: The panel generated a checklist of recommendations regarding stakeholder engagement: HEM modeling, including model structure, scope and scale, demographics, time horizons, counterfactuals, health response functions, and metrics; parameterization and reporting; approaches to uncertainty and sensitivity analysis; accounting for policy uptake; and discounting. DISCUSSION: This checklist provides guidance for conducting and reporting HEM estimates to make them more comparable and useful for policymakers. Harmonization of HEM estimates has the potential to lead to advances in and improved synthesis of policy-relevant research that can inform evidence-based decision making and practice. https://doi.org/10.1289/EHP6745

    International Nonregimes: A Research Agenda1

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146934/1/j.1468-2486.2007.00672.x.pd

    Guidelines for Modeling and Reporting Health Effects of Climate Change Mitigation Actions

    Get PDF
    BACKGROUND: Modeling suggests that climate change mitigation actions can have substantial human health benefits that accrue quickly and locally. Documenting the benefits can help drive more ambitious and health-protective climate change mitigation actions; however, documenting the adverse health effects can help to avoid them. Estimating the health effects of mitigation (HEM) actions can help policy makers prioritize investments based not only on mitigation potential but also on expected health benefits. To date, however, the wide range of incompatible approaches taken to developing and reporting HEM estimates has limited their comparability and usefulness to policymakers. OBJECTIVE: The objective of this effort was to generate guidance for modeling studies on scoping, estimating, and reporting population health effects from climate change mitigation actions. METHODS: An expert panel of HEM researchers was recruited to participate in developing guidance for conducting HEM studies. The primary literature and a synthesis of HEM studies were provided to the panel. Panel members then participated in a modified Delphi exercise to identify areas of consensus regarding HEM estimation. Finally, the panel met to review and discuss consensus findings, resolve remaining differences, and generate guidance regarding conducting HEM studies. RESULTS: The panel generated a checklist of recommendations regarding stakeholder engagement: HEM modeling, including model structure, scope and scale, demographics, time horizons, counterfactuals, health response functions, and metrics; parameterization and reporting; approaches to uncertainty and sensitivity analysis; accounting for policy uptake; and discounting. DISCUSSION: This checklist provides guidance for conducting and reporting HEM estimates to make them more comparable and useful for policymakers. Harmonization of HEM estimates has the potential to lead to advances in and improved synthesis of policy-relevant research that can inform evidence-based decision making and practice. https://doi.org/10.1289/EHP6745
    corecore