2,310 research outputs found

    Optical modeling of plasma-deposited ZnO films : electron scattering at different length scales

    Get PDF
    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter "scattering frequency" instead of the parameter "mobility". The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific frequency range

    The Cryogenic System for the LHC Test String 2: Design, Commissioning and Operation

    Get PDF
    A 107-m long superconducting magnet string representing a full-cell of the LHC machine was designed for assembly and commissioning at CERN in order to validate the final design choices. This new facility, thereafter called Test String 2, and its cryogenic infrastructure cons ist of feed and return boxes coupled via transfer lines to a 6 kW @ 4.5 K refrigerator and to a low pressure pumping group, a separate cryogenic distribution line, an electrical feed box with HTS current leads, 2 quadrupole and 6 dipole prototype and pre-series superconducting magnets

    Isotropic plasma-thermal atomic layer etching of superconducting TiN films using sequential exposures of molecular oxygen and SF6/_6/H2_2 plasma

    Full text link
    Microwave loss in superconducting titanium nitride (TiN) films is attributed to two-level systems in various interfaces arising in part from oxidation and microfabrication-induced damage. Atomic layer etching (ALE) is an emerging subtractive fabrication method which is capable of etching with Angstrom-scale etch depth control and potentially less damage. However, while ALE processes for TiN have been reported, they either employ HF vapor, incurring practical complications; or the etch rate lacks the desired control. Further, the superconducting characteristics of the etched films have not been characterized. Here, we report an isotropic plasma-thermal TiN ALE process consisting of sequential exposures to molecular oxygen and an SF6_6/H2_2 plasma. For certain ratios of SF6_6:H2_2 flow rates, we observe selective etching of TiO2_2 over TiN, enabling self-limiting etching within a cycle. Etch rates were measured to vary from 1.1 \r{A}/cycle at 150 ^\circC to 3.2 \r{A}/cycle at 350 ^\circC using ex-situ ellipsometry. We demonstrate that the superconducting critical temperature of the etched film does not decrease beyond that expected from the decrease in film thickness, highlighting the low-damage nature of the process. These findings have relevance for applications of TiN in microwave kinetic inductance detectors and superconducting qubits.Comment: 17 pages, 7 figure

    Local Soft Tissue and Bone Displacements Following Midfacial Bipartition Distraction in Apert Syndrome – Quantification Using a Semi-Automated Method

    Get PDF
    ABSTRACT: Patients with Apert syndrome experience midfacial hypoplasia, hypertelorism, and downslanting palpebral fissures which can be corrected by midfacial bipartition distraction with rigid external distraction device. Quantitative studies typically focus on quantifying rigid advancement and rotation postdistraction, but intrinsic shape changes of bone and soft tissue remain unknown. This study presents a method to quantify these changes. Pre- and post-operative computed tomography scans from patients with Apert syndrome undergoing midfacial bipartition distraction with rigid external distraction device were collected. Digital Imaging and Communications in Medicine files were converted to three-dimensional bone and soft tissue reconstructions. Postoperative reconstructions were aligned on the preoperative maxilla, followed by nonrigid iterative closest point transformation to determine local shape changes. Anatomical point-to-point displacements were calculated and visualized using a heatmap and arrow map. Nine patients were included.Zygomatic arches and frontal bone demonstrated the largest changes. Mid-lateral to supra-orbital rim showed an upward, inward motion. Mean bone displacements ranged from 3.3 to 12.8 mm. Soft tissue displacements were relatively smaller, with greatest changes at the lateral canthi. Midfacial bipartition distraction with rigid external distraction device results in upward, inward rotation of the orbits, upward rotation of the zygomatic arch, and relative posterior motion of the frontal bone. Local movements were successfully quantified using a novel method, which can be applied to other surgical techniques/syndromes

    Correlation between head shape and volumetric changes following spring-assisted posterior vault expansion

    Get PDF
    OBJECTIVE: To investigate whether different head shapes show different volumetric changes following spring-assisted posterior vault expansion (SA-PVE) and to investigate the influence of surgical and morphological parameters on SA-PVE. MATERIALS AND METHODS: Preoperative three-dimensional skull models from patients who underwent SA-PVE were extracted from computed tomography scans. Patient head shape was described using statistical shape modelling (SSM) and principal component analysis (PCA). Preoperative and postoperative intracranial volume (ICV) and cranial index (CI) were calculated. Surgical and morphological parameters included skull bone thickness, number of springs, duration of spring insertion and type of osteotomy. RESULTS: In the analysis, 31 patients were included. SA-PVE resulted in a significant ICV increase (284.1 ± 171.6 cm3, p<0.001) and a significant CI decrease (−2.9 ± 4.3%, p<0.001). The first principal component was significantly correlated with change in ICV (Spearman ρ = 0.68, p<0.001). Change in ICV was significantly correlated with skull bone thickness (ρ = −0.60, p<0.001) and age at time of surgery (ρ = −0.60, p<0.001). No correlations were found between the change in ICV and number of springs, duration of spring insertion and type of osteotomy. CONCLUSION: SA-PVE is effective for increasing the ICV and resolving raised intracranial pressure. Younger, brachycephalic patients benefit more from surgery in terms of ICV increase. Skull bone thickness seems to be a crucial factor and should be assessed to achieve optimal ICV increase. In contrast, insertion of more than two springs, duration of spring insertion or performing a fully cut through osteotomy do not seem to impact the ICV increase. When interpreting ICV increases, normal calvarial growth should be taken into account

    A Cryogenic High-Reynolds Turbulence Experiment at CERN

    Get PDF
    The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively equipped with "hot" wire micro-anemometers, acoustic scattering vorticity measurements and a large-bandwidth data acquisition system

    A novel soft tissue prediction methodology for orthognathic surgery based on probabilistic finite element modelling

    Get PDF
    Repositioning of the maxilla in orthognathic surgery is carried out for functional and aesthetic purposes. Pre-surgical planning tools can predict 3D facial appearance by computing the response of the soft tissue to the changes to the underlying skeleton. The clinical use of commercial prediction software remains controversial, likely due to the deterministic nature of these computational predictions. A novel probabilistic finite element model (FEM) for the prediction of postoperative facial soft tissues is proposed in this paper. A probabilistic FEM was developed and validated on a cohort of eight patients who underwent maxillary repositioning and had pre- and postoperative cone beam computed tomography (CBCT) scans taken. Firstly, a variables correlation assessed various modelling parameters. Secondly, a design of experiments (DOE) provided a range of potential outcomes based on uniformly distributed input parameters, followed by an optimisation. Lastly, the second DOE iteration provided optimised predictions with a probability range. A range of 3D predictions was obtained using the probabilistic FEM and validated using reconstructed soft tissue surfaces from the postoperative CBCT data. The predictions in the nose and upper lip areas accurately include the true postoperative position, whereas the prediction under-estimates the position of the cheeks and lower lip. A probabilistic FEM has been developed and validated for the prediction of the facial appearance following orthognathic surgery. This method shows how inaccuracies in the modelling and uncertainties in executing surgical planning influence the soft tissue prediction and it provides a range of predictions including a minimum and maximum, which may be helpful for patients in understanding the impact of surgery on the face

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore