247 research outputs found

    The dynamical state of dark matter haloes in cosmological simulations - I. Correlations with mass assembly history

    Full text link
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©2011 RAS © 2011 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Using a statistical sample of dark matter haloes drawn from a suite of cosmological N-body simulations of the cold dark matter (CDM) model, we quantify the impact of a simulated halo's mass accretion and merging history on two commonly used measures of its dynamical state, the virial ratio η and the centre of mass offset Δr. Quantifying this relationship is important because the degree to which a halo is dynamically equilibrated will influence the reliability with which we can measure characteristic equilibrium properties of the structure and kinematics of a population of haloes. We begin by verifying that a halo's formation redshift zform correlates with its virial mass Mvir and we show that the fraction of its recently accreted mass and the likelihood of it having experienced a recent major merger increase with increasing Mvir and decreasing Zform. We then show that both η and Δr increase with increasing Mvir and decreasing zform, which implies that massive recently formed haloes are more likely to be dynamically unrelaxed than their less massive and older counterparts. Our analysis shows that both η and Δr are good indicators of a halo's dynamical state, showing strong positive correlations with recent mass accretion and merging activity, but we argue that Δr provides a more robust and better defined measure of dynamical state for use in cosmological N-body simulations at z≃ 0. We find that Δrâ‰Č 0.04 is sufficient to pick out dynamically relaxed haloes at z= 0. Finally, we assess our results in the context of previous studies, and consider their observational implicationsAK is supported by the Spanish Ministerio de Ciencia e InnovaciĂłn (MICINN) in Spain through the Ramon y Cajal programme as well as the grants AYA 2009-13875-C03-02, AYA2009-12792-C03-03, CSD2009- 00064 and CAMS2009/ESP-1496. He acknowledges support by the MICINN under the Consolider-Ingenio, SyeC project CSD- 2007-0005

    Dark Matter Halo Profiles in Scale-Free Cosmologies

    Full text link
    We explore the dependence of the central logarithmic slope of dark matter halo density profiles α\alpha on the spectral index nn of the linear matter power spectrum P(k)P(k) using cosmological NN-body simulations of scale-free models (i.e. P(k)∝knP(k) \propto k^n). For each of our simulations we identify samples of well resolved haloes in dynamical equilibrium and we analyse their mass profiles. By parameterising the mass profile using a ``generalised'' Navarro, Frenk & White profile in which the central logarithmic slope α\alpha is allowed to vary while preserving the r−3r^{-3} asymptotic form at large radii, we obtain preferred central slopes for haloes in each of our models. There is a strong correlation between α\alpha and nn, such that α\alpha becomes shallower as nn becomes steeper. However, if we normalise our mass profiles by r−2r_{-2}, the radius at which the logarithmic slope of the density profile is -2, we find that these differences are no longer present. We conclude that there is no evidence for convergence to a unique central asymptotic slope, at least on the scales that we can resolve.Comment: 9 pages, 4 figures. Accepted for publication in MNRA

    The luminosities of backsplash galaxies in constrained simulations of the Local Group

    Full text link
    We study the differences and similarities in the luminosities of bound, infalling and the so-called backsplash (Gill et al. 2005) galaxies of the Milky Way and M31 using a hydrodynamical simulation performed within the Constrained Local UniversE Simulation (CLUES) project. The simulation models the formation of the Local Group within a self-consistent cosmological framework. We find that even though backsplash galaxies passed through the virial radius of their host halo and hence may have lost a (significant) fraction of their mass, their stellar populations are hardly affected. This leaves us with comparable luminosity functions for infalling and backsplash galaxies and hence little hope to decipher their past (and different) formation and evolutionary histories by luminosity measurements alone. Nevertheless, due to the tidal stripping of dark matter we find that the mass-to-light ratios have changed when comparing the various populations against each other: they are highest for the infalling galaxies and lowest for the bound satellites with the backsplash galaxies in-between.Comment: 9 pages, 10 figures, 1 table, accepted for publication in MNRA

    The cosmological free-free signal from galaxy groups and clusters

    Get PDF
    Using analytical models and cosmological N-body simulations, we study the free-free radio emission from ionized gas in clusters and groups of galaxies. The results obtained with the simulations are compared with analytical predictions based on the mass function and scaling relations. Earlier works based on analytical models have shown that the average free-free signal from small haloes (galaxies) during and after the reionization time could be detected with future experiments as a distortion of the CMB spectrum at low frequencies (Îœ<\nu < 5 GHz). We focus on the period after the reionization time (from redshift z=0z=0 up to z=7z=7) and on haloes that are more massive than in previous works (groups and clusters). We show how the average signal from haloes with M>1013h−1M⊙M > 10^{13} h^{-1} M_{\odot} is less than 10% the signal from the more abundant and colder smaller mass haloes. However, the individual signal from the massive haloes could be detected with future experiments opening the door for a new window to study the intracluster medium.Comment: 11 pages, 7 figure

    The impact of baryonic physics on the shape and radial alignment of substructures in cosmological dark matter haloes

    Full text link
    We use two simulations performed within the Constrained Local UniversE Simulation (CLUES) project to study both the shape and radial alignment of (the dark matter component of) subhaloes; one of the simulations is a dark matter only model while the other run includes all the relevant gas physics and star formation recipes. We find that the involvement of gas physics does not have a statistically significant effect on either property -- at least not for the most massive subhaloes considered in this study. However, we observe in both simulations including and excluding gasdynamics a (pronounced) evolution of the dark matter shapes of subhaloes as well as of the radial alignment signal since infall time. Further, this evolution is different when positioned in the central and outer regions of the host halo today; while subhaloes tend to become more aspherical in the central 50% of their host's virial radius, the radial alignment weakens in the central regime while strengthening in the outer parts. We confirm that this is due to tidal torquing and the fact that subhaloes at pericentre move too fast for the alignment signal to respond.Comment: 10 pages, 8 figures, 2 tables, accepted for publication in MNRAS, replaced with proof-corrected version (minor typos

    Constrained simulations of the Local Group: on the radial distribution of substructures

    Full text link
    We examine the properties of satellites found in high resolution simulations of the local group. We use constrained simulations designed to reproduce the main dynamical features that characterize the local neighborhood, i.e. within tens of Mpc around the Local Group (LG). Specifically, a LG-like object is found located within the 'correct' dynamical environment and consisting of three main objects which are associated with the Milky Way, M31 and M33. By running two simulations of this LG from identical initial conditions - one with and one without baryons modeled hydrodynamically - we can quantify the effect of gas physics on the z=0z=0 population of subhaloes in an environment similar to our own. We find that above a certain mass cut, Msub>2×108h−1M⊙M_{\rm sub} > 2\times10^{8}h^{-1} M_{\odot} subhaloes in hydrodynamic simulations are more radially concentrated than those in simulations with out gas. This is caused by the collapse of baryons into stars that typically sit in the central regions of subhaloes, making them denser. The increased central density of such a subhalo, results in less mass loss due to tidal stripping than the same subhalo simulated with only dark matter. The increased mass in hydrodynamic subhaloes with respect to dark matter ones, causes dynamical friction to be more effective, dragging the subhalo towards the centre of the host. This results in these subhaloes being effectively more radially concentrated then their dark matter counterparts.Comment: 12 pages, 9 figure

    Genetic ablation of ryanodine receptor 2 phosphorylation at Ser‐2808 aggravates Ca 2+ ‐dependent cardiomyopathy by exacerbating diastolic Ca 2+ release

    Full text link
    Phosphorylation of the cardiac ryanodine receptor (RyR2) by protein kinase A (PKA) at Ser‐2808 is suggested to mediate the physiological ‘fight or flight’ response and contribute to heart failure by rendering the sarcoplasmic reticulum (SR) leaky for Ca 2+ . In the present study, we examined the potential role of RyR2 phosphorylation at Ser‐2808 in the progression of Ca 2+ ‐dependent cardiomyopathy (CCM) by using mice genetically modified to feature elevated SR Ca 2+ leak while expressing RyR2s that cannot be phosphorylated at this site (S2808A). Surprisingly, rather than alleviating the disease phenotype, constitutive dephosphorylation of Ser‐2808 aggravated CCM as manifested by shortened survival, deteriorated in vivo cardiac function, exacerbated SR Ca 2+ leak and mitochondrial injury. Notably, the deteriorations of cardiac function, myocyte Ca 2+ handling, and mitochondria integrity were consistently worse in mice with heterozygous ablation of Ser‐2808 than in mice with complete ablation. Wild‐type (WT) and CCM myocytes expressing unmutated RyR2s exhibited a high level of baseline phosphorylation at Ser‐2808. Exposure of these CCM cells to protein phosphatase 1 caused a transitory increase in Ca 2+ leak attributable to partial dephosphorylation of RyR2 tetramers at Ser‐2808 from more fully phosphorylated state. Thus, exacerbated Ca 2+ leak through partially dephosphorylated RyR2s accounts for the prevalence of the disease phenotype in the heterozygous S2808A CCM mice. These results do not support the importance of RyR2 hyperphosphorylation in Ca 2+ ‐dependent heart disease, and rather suggest roles for the opposite process, the RyR2 dephosphorylation at this residue in physiological and pathophysiological Ca 2+ signalling.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106986/1/tjp6067.pd

    SubHaloes going Notts: The SubHalo-Finder Comparison Project

    Full text link
    We present a detailed comparison of the substructure properties of a single Milky Way sized dark matter halo from the Aquarius suite at five different resolutions, as identified by a variety of different (sub-)halo finders for simulations of cosmic structure formation. These finders span a wide range of techniques and methodologies to extract and quantify substructures within a larger non-homogeneous background density (e.g. a host halo). This includes real-space, phase-space, velocity-space and time- space based finders, as well as finders employing a Voronoi tessellation, friends-of-friends techniques, or refined meshes as the starting point for locating substructure.A common post-processing pipeline was used to uniformly analyse the particle lists provided by each finder. We extract quantitative and comparable measures for the subhaloes, primarily focusing on mass and the peak of the rotation curve for this particular study. We find that all of the finders agree extremely well on the presence and location of substructure and even for properties relating to the inner part part of the subhalo (e.g. the maximum value of the rotation curve). For properties that rely on particles near the outer edge of the subhalo the agreement is at around the 20 per cent level. We find that basic properties (mass, maximum circular velocity) of a subhalo can be reliably recovered if the subhalo contains more than 100 particles although its presence can be reliably inferred for a lower particle number limit of 20. We finally note that the logarithmic slope of the subhalo cumulative number count is remarkably consistent and <1 for all the finders that reached high resolution. If correct, this would indicate that the larger and more massive, respectively, substructures are the most dynamically interesting and that higher levels of the (sub-)subhalo hierarchy become progressively less important.Comment: 16 pages, 7 figures, 2 tables, Accepted for MNRA
    • 

    corecore