187 research outputs found

    On the generalization of quantum state comparison

    Full text link
    We investigate the unambiguous comparison of quantum states in a scenario that is more general than the one that was originally suggested by Barnett et al. First, we find the optimal solution for the comparison of two states taken from a set of two pure states with arbitrary a priori probabilities. We show that the optimal coherent measurement is always superior to the optimal incoherent measurement. Second, we develop a strategy for the comparison of two states from a set of N pure states, and find an optimal solution for some parameter range when N=3. In both cases we use the reduction method for the corresponding problem of mixed state discrimination, as introduced by Raynal et al., which reduces the problem to the discrimination of two pure states only for N=2. Finally, we provide a necessary and sufficient condition for unambiguous comparison of mixed states to be possible.Comment: 8 pages, 4 figures, Proposition 1 corrected, appendix adde

    Typical local measurements in generalised probabilistic theories: emergence of quantum bipartite correlations

    Get PDF
    What singles out quantum mechanics as the fundamental theory of Nature? Here we study local measurements in generalised probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalisation of Dvoretzky's theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.Comment: 5 pages, 1 figure v2: more details in the proof of the main resul

    Optimal inequalities for state-independent contextuality

    Full text link
    Contextuality is a natural generalization of nonlocality which does not need composite systems or spacelike separation and offers a wider spectrum of interesting phenomena. Most notably, in quantum mechanics there exist scenarios where the contextual behavior is independent of the quantum state. We show that the quest for an optimal inequality separating quantum from classical noncontextual correlations in an state-independent manner admits an exact solution, as it can be formulated as a linear program. We introduce the noncontextuality polytope as a generalization of the locality polytope, and apply our method to identify two different tight optimal inequalities for the most fundamental quantum scenario with state-independent contextuality.Comment: REVTeX4.1, 5 pages, 1 figure; v2: improved presentation and significantly extended result

    Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations

    Full text link
    We study the convergence and the stability of fictitious dynamical methods for electrons. First, we show that a particular damped second-order dynamics has a much faster rate of convergence to the ground-state than first-order steepest descent algorithms while retaining their numerical cost per time step. Our damped dynamics has efficiency comparable to that of conjugate gradient methods in typical electronic minimization problems. Then, we analyse the factors that limit the size of the integration time step in approaches based on plane-wave expansions. The maximum allowed time step is dictated by the highest frequency components of the fictitious electronic dynamics. These can result either from the large wavevector components of the kinetic energy or from the small wavevector components of the Coulomb potential giving rise to the so called {\it charge sloshing} problem. We show how to eliminate large wavevector instabilities by adopting a preconditioning scheme that is implemented here for the first-time in the context of Car-Parrinello ab-initio molecular dynamics simulations of the ionic motion. We also show how to solve the charge-sloshing problem when this is present. We substantiate our theoretical analysis with numerical tests on a number of different silicon and carbon systems having both insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.

    Relativistic analysis of the 208Pb(e,e'p)207Tl reaction at high momentum

    Get PDF
    The recent 208Pb(e,e'p)207Tl data from NIKHEF-K at high missing momentum (p_m>300 MeV/c) are compared to theoretical results obtained with a fully relativistic formalism previously applied to analyze data on the low missing momentum (p_m < 300 MeV/c) region. The same relativistic optical potential and mean field wave functions are used in the two p_m-regions. The spectroscopic factors of the various shells are extracted from the analysis of the low-p_m data and then used in the high-p_m region. In contrast to previous analyses using a nonrelativistic mean field formalism, we do not find a substantial deviation from the mean field predictions other than that of the spectroscopic factors, which appear to be consistent with both low- and high-p_m data. We find that the difference between results of relativistic and nonrelativistic formalisms is enhanced in the p_m<0 region that will be interesting to explore experimentally.Comment: 12 pages, LaTeX+Revtex, included 3 postscript figures. To appear in the Physical Review C (Rapid Communications

    Coexisting conical bipolar and equatorial outflows from a high-mass protostar

    Get PDF
    The BN/KL region in the Orion molecular cloud is an archetype in the study of the formation of stars much more massive than the Sun. This region contains luminous young stars and protostars, but it is difficult to study because of overlying dust and gas. Our basic expectations are shaped to some extent by the present theoretical picture of star formation, the cornerstone of which is that protostars acrete gas from rotating equatorial disks, and shed angular momentum by ejecting gas in bipolar outflows. The main source of the outflow in the BN/KL region may be an object known as radio source I, which is commonly believed to be surrounded by a rotating disk of molecular material. Here we report high-resolution observations of silicon monoxide (SiO) and water maser emission from the gas surrounding source I; we show that within 60 AU (about the size of the Solar System), the region is dominated by a conical bipolar outflow, rather than the expected disk. A slower outflow, close to the equatorial plane of the protostellar system, extends to radii of 1,000 AU.Comment: 10 pages, 2 figures. Accepted by Nature. To appear December 199

    Ten Million Degree Gas in M 17 and the Rosette Nebula: X-ray Flows in Galactic H II Regions

    Full text link
    We present the first high-spatial-resolution X-ray images of two high-mass star forming regions, the Omega Nebula (M 17) and the Rosette Nebula (NGC 2237--2246), obtained with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) instrument. The massive clusters powering these H II regions are resolved at the arcsecond level into >900 (M 17) and >300 (Rosette) stellar sources similar to those seen in closer young stellar clusters. However, we also detect soft diffuse X-ray emission on parsec scales that is spatially and spectrally distinct from the point source population. The diffuse emission has luminosity L_x ~ 3.4e33 ergs/s in M~17 with plasma energy components at kT ~0.13 and ~0.6 keV (1.5 and 7 MK), while in Rosette it has L_x \~6e32 ergs/s with plasma energy components at kT ~0.06 and ~0.8 keV (0.7 and 9 MK). This extended emission most likely arises from the fast O-star winds thermalized either by wind-wind collisions or by a termination shock against the surrounding media. We establish that only a small portion of the wind energy and mass appears in the observed diffuse X-ray plasma; in these blister H II regions, we suspect that most of it flows without cooling into the low-density interstellar medium. These data provide compelling observational evidence that strong wind shocks are present in H II regions.Comment: 35 pages, including 11 figures; to appear in ApJ, August 20, 2003. A version with high-resolution figures is available at ftp://ftp.astro.psu.edu/pub/townsley/diffuse.ps.g

    NGC6240: Merger-Induced Star Formation & Gas Dynamics

    Full text link
    We present spatially resolved integral field spectroscopic K-band data at a resolution of 0.13" (60pc) and interferometric CO(2-1) line observations of the prototypical merging system NGC6240. Despite the clear rotational signature, the stellar kinematics in the two nuclei are dominated by dispersion. We use Jeans modelling to derive the masses and the mass-to-light ratios of the nuclei. Combining the luminosities with the spatially resolved Br-gamma equivalent width shows that only 1/3 of the K-band continuum from the nuclei is associated with the most recent star forming episode; and that less than 30% of the system's bolometric luminosity and only 9% of its stellar mass is due to this starburst. The star formation properties, calculated from typical merger star formation histories, demonstrate the impact of different assumptions about the star formation history. The properties of the nuclei, and the existence of a prominent old stellar population, indicate that the nuclei are remnants of the progenitor galaxies' bulges.Comment: 18 pages, 14 figures. Accepted for publication in A&

    Why Do Situational Interviews Predict Performance? Is it Saying How You Would Behave or Knowing How You Should Behave?

    Get PDF
    Purpose: The present study examined two theoretical explanations for why situational interviews predict work-related performance, namely (a) that they are measures of interviewees’ behavioral intentions or (b) that they are measures of interviewees’ ability to correctly decipher situational demands. Design/Methodology/Approach: We tested these explanations with 101 students, who participated in a 2-day selection simulation. Findings: In line with the first explanation, there was considerable similarity between what participants said they would do and their actual behavior in corresponding work-related situations. However, the underlying postulated mechanism was not supported by the data. In line with the second explanation, participants’ ability to correctly decipher situational demands was related to performance in both the interview and work-related situations. Furthermore, the relationship between the interview and performance in the work-related situations was partially explained by this ability to decipher situational demands. Implications: Assessing interviewees’ ability to identify criteria might be of additional value for making selection decisions, particularly for jobs where it is essential to assess situational demands. Originality/Value: The present study made an effort to open the ‘black box’ of situational interview validity by examining two explanations for their validity. The results provided only moderate support for the first explanation. However, the second explanation was fully supported by these results

    First determination of the dynamical mass of a binary L dwarf

    Full text link
    We present here the results of astrometric, photometric and spectroscopic observations leading to the determination of the orbit and dynamical masses of the binary L dwarf 2MASSW J0746425+2000321. High angular resolution observations spread over almost 4 years and obtained with the Hubble Space Telescope (HST), the ESO Very Large Telescope (VLT), and a the W. M. Keck Observatory (Keck) allow us to cover 36% of the period, corresponding to 60% of the orbit, and, for the first time, to derive a precise estimate of the total and individual masses of such a late-type object. We find an orbital period of 3850.9−767+904^{+904}_{-767} days. The corresponding total mass is 0.146−0.006+0.016^{+0.016}_{-0.006} M_{\sun}, with uncertainties depending on the distance. Spatially resolved low resolution optical (550--1025 nm) spectra have been obtained with HST/STIS, allowing us to measure the spectral types of the two components (L0±\pm0.5 for the primary and L1.5±\pm0.5 for the secondary). We also present precise photometry of the individual components measured on the high angular resolution images obtained with HST/ACS and WFPC2 (visible), VLT/NACO (J, H and Ks bands) and Keck I (Ks) band). These spectral and photometric measurements enable us to estimate their effective temperatures and mass ratio, and to place the object accurately in a H--R diagram. The binary system is most likely formed by a primary with a mass of 0.085±\pm0.010 M_{\sun} and a secondary with a mass of 0.066±\pm0.006 M_{\sun}, thus clearly substellar, for an age of approximately 300±\pm150 Myr. Hα\alpha variability indicates chromospheric and/or magnetic activity.Comment: accepted for publication in A&A 16 pages, 7 figures, 6 table
    • 

    corecore