
Typical Local Measurements in Generalized Probabilistic Theories: Emergence
of Quantum Bipartite Correlations

Matthias Kleinmann,1,* Tobias J. Osborne,2,† Volkher B. Scholz,3,2,‡ and Albert H. Werner2,§

1Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany
2Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany

3Institut für Theoretische Physik, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
(Received 22 May 2012; published 23 January 2013)

What singles out quantum mechanics as the fundamental theory of nature? Here we study local

measurements in generalized probabilistic theories (GPTs) and investigate how observational limitations

affect the production of correlations. We find that if only a subset of typical local measurements can be

made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy

by quantum mechanics. Our result makes use of a generalization of Dvoretzky’s theorem for GPTs. The

tripartite correlations can go beyond those exhibited by quantum mechanics, however.
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Introduction.—The continued success of quantum me-
chanics (QM) strongly implies that it is the fundamental
description of nature. However, it could still be that QM is
simply a very good effective theory which breaks down if
we are able to perform experiments with sufficiently high
energy and precision. In this case QM would need to be
replaced by a more general ‘‘postquantum’’ theory. In
particular generalized probabilistic theories (GPTs) [1–5]
have received considerable attention recently, both as a foil
to better understand the features of QM, and as a powerful
abstract way to reason about correlations and locality.
These investigations have lead to many interesting results,
including simplified and improved cryptographic schemes
and primitives [6,7].

If nature is actually described by a theory other than QM
then the natural question arises: Why is QM such a good
effective theory? A natural answer, which we investigate
here, is that experimental imperfections prevent us from
observing any postquantum phenomena.

Suppose that nature is described by a GPT with a high-
dimensional state space and corresponding high-dimensional
set of all possible measurements. Observational limitations,
such as detector resolution, mean that it is impossible to
access most of these theoretically possible measurements.
If physically implementable measurements are those chosen
from some typical subset (a precise definition is given in the
sequel) then we show that the bipartite correlations arising in
any experiment can be modeled, to a high degree of preci-
sion, by those of QM.Note that the tripartite andmultipartite
correlations could go beyond those exhibited by QM: a
sufficiently refined experiment involving three or more par-
ticles could exhibit behavior going beyond that possible
within QM.

It is interesting to contrast our setting with that of
decoherence, which models the passage from the micro-
scopic to the macroscopic classical world [8,9]. The crucial
difference here is that decoherence arises from the

correlations developed between a given particle and
many other inaccessible particles (in the GPT framework
it is rather likely that decoherence will always lead to an
effective classical theory). By way of contrast, we consider
only a few particles in isolation: roughly speaking, we
study the case where only the ‘‘local dimensions’’ are
effectively truncated.
Our argument builds on several important prior ideas.

The first arises from the search [10–13] for an axiomatic
derivation of QM: it was realized that a reasonable physical
theory should allow for the convex combination of differ-
ent possible measurements, and hence the underlying sets
of both states and measurements should be dual convex
bodies. These developments have lead to the identification
of generalized probabilistic theories as a general frame-
work to study theories of physics going beyond QM.
The second cornerstone of our argument is the

concentration-of-measure phenomenon [14,15] epito-
mized by Dvoretzky’s theorem which states, roughly, that
a random low-dimensional section of a high-dimensional
convex body looks approximately spherical. This powerful
result has already found myriad applications in quantum
information theory, e.g., in quantum Shannon theory
[16,17], and quantum computational complexity theory
[18,19]. Here we adapt the ‘‘tangible’’ version of
Dvoretzky’s theorem for our purposes.
The final idea we exploit is the observation that spherical

state spaces can be simulated by sections of quantum
mechanical state spaces [20]. As will become evident,
our approach owes much to the recent work [21,22] show-
ing that bipartite correlations may be modeled by QM
when the constituents locally obey QM.
Main result.—If the local measurements in a GPT are

chosen from a typical section of the convex body of all
possible measurements then, with a high degree of accu-
racy, they do not yield any postquantum prediction for the
bipartite scenario.
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More specifically, we require that the physically imple-
mentable measurements are in essence given by the section
of the convex body of all measurements with a low-
dimensional OðnÞ-typical subspace. This means that the
accessible measurements span a subspace and the choice
of this subspace is not particular among all other subspaces
of the same dimension. This is a core assumption in our
argument. Although we restrict our attention here to the
case of OðnÞ-typical subspaces, it is likely that our result
extends to a much wider variety of typicality notions.

Our argument then implies that for most measure-
ments given by low-dimensional subspaces the outcomes
can be explained using quantum mechanics. Hence we
argue that those measurement devices revealing any
postquantum behavior are extremely difficult to build—
since the choice of the right subspace requires extreme
fine tuning.

Probabilistic physical theories, ordered vector spaces.—
It is useful to formulate GPTs in the mathematical lan-
guage of ordered vector spaces [2,23,24]: we begin with
the description of the single-party state space and local
measurements. The system is always assumed to be in a
state !, which encodes the probabilities of each outcome
of all the possible measurements that may be performed.
The set of all possible states, state space, is denoted �.
Since any probabilistic combination of states is, in princi-
ple, preparable, � is a convex set. We always assume that
� is represented as a subset of Rn.

A state ! 2 � assigns a probability to each outcome of
any possible measurement; a measurement outcome is
represented by a map f: � ! ½0; 1�. This map respects
probabilistic mixtures of states, meaning that fðp!1 þ
ð1� pÞ!2Þ ¼ pfð!1Þ þ ð1� pÞfð!2Þ. Extending each
map linearly allows us to conclude that measurement out-
comes are elements of the dual space V to Rn. Any such f
is called an effect. A special effect is the unit effect e
defined by eð!Þ ¼ 1 for all ! 2 �. The unit effect repre-
sents a measurement with a single outcome: this is certain
to occur regardless of what the state is. Convex combina-
tions of effects are themselves assumed to be legal effects,
so the set of effects is a convex subset of the dual vector
space V. A measurement with M outcomes is then a set of
effects ffjgMj¼1 summing to the unit effect e ¼ P

M
j¼1 fj.

This ensures that outcome probabilities of measurements
sum to one. It is convenient to introduce the cone generated
by the zero effect, the unit effect, and all other effects, i.e.,
the set Vþ � ftfjt � 0; f is an effectg.

The triple (V, Vþ, e) is known as an ordered unit vector
space and encodes all of the theoretically possible local
effects of a GPT. Throughout the following we regard (V,
Vþ, e) as the fundamental defining representation of a GPT
with state space as a derived concept (i.e., � is henceforth
defined as the set of all positive linear functionals ! on V
such that eð!Þ ¼ 1). It is convenient to assume a further
property, namely, that the triple (V, Vþ, e) is Archimedean.

This means that if teþ f 2 Vþ for all t > 0, then f 2 Vþ.
Such Archimedean ordered unit vector spaces are referred
to as AOU spaces in the sequel. The Archimedean axiom
is a kind of closure assumption which allows us, for
example, to construct the order norm kfkþ � infftjte�
f 2 Vþ; t � 0g. All ordered vector spaces can be
Archimedeanized [25], and from now on we assume
that the effects of a GPT are suitably represented by an
AOU space.
An important example of a GPT is that of quantum

mechanics itself: an n-level quantum system is described
by an AOU space where V � MnðCÞ is the set of n� n
Hermitian matrices. The effects are then the matrices F 2
V with 0 � F � 1 and the unit is e � 1. The cone Vþ
generated by these effects is hence given by the positive
semidefinite matrices. One can verify that the triple
(V, Vþ, e) is Archimedean. State space � is given by
fF � trð�FÞj� 2 Vþ; trð�Þ ¼ 1g and the order norm
kAkþ is given by the largest singular value of A.
Sections of GPTs.—Here we study the effective theories

arising from GPTs when only a subset of the possible
effects may be implemented. For this purpose it is useful
to introduce the notion of a linear map between AOU
spaces: we say that a linear map ’: V ! W between two
AOU spaces (V, Vþ, eV) and (W, Wþ, eW) is positive if
’ðVþÞ � Wþ and ’ is unital when ’ðeVÞ ¼ eW .
Our definition of a section of a GPT/AOU space W is

then motivated by the observation that if we can only
implement some subset of the effects in Wþ then we can
implement any convex combination of them. A particular
example of such a restriction is the intersection of Wþ
with some subspace V � W. Since we can always apply
the ‘‘do nothing’’ measurement, we require the subspace
V to contain eW . Abstractly, a section of (W, Wþ, eW) is
defined to be a positive unital injection �: V ,! W such
that �ðVþÞ ¼ Wþ \ im�. This condition has the conse-
quence that the left inverse ��1 is also a positive unital
linear map.
When restricted to a section of a GPT (W, Wþ, eW) the

state space of the section (V, Vþ, eV) is given by a quotient
of the state space of W, i.e., �V ¼ �W=	 , where the
equivalence relation is determined by !	 � if fð!Þ ¼
fð�Þ for all f 2 V. This quotient is the shadow of the
convex body �W on the subspace V.
We now describe the AOU space playing the central role

in our argument. This space is given by triple (Rnþ1,

Cþ
nþ1ðcÞ, ð1; ~0Þ) where Cþ

nþ1ðcÞ denotes the (nþ 1)-
dimensional Euclidean cone with length-diameter ratio
c:2, i.e.,

Cþ
nþ1ðcÞ ¼ fðt; ~xÞ 2 Rþ � Rn j t � ck ~xk2g; (1)

of which e ¼ ð1; ~0Þ is the order unit.
It is a nontrivial fact that this space can be embedded

into a quantum system; i.e., it is a section of QM. The
argument is due to Tsirelson [20] and proceeds as follows.
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Let m ¼ n=2 if n is even and m ¼ ðnþ 1Þ=2 for odd

n and define �1; . . . ; �2m 2 M2mðCÞ via �2j�1 ¼
�ð1Þ

z 
 
 
�ðj�1Þ
z �ðjÞ

x and �2j ¼ �ð1Þ
z 
 
 
�ðj�1Þ

z �ðjÞ
y , where

we’ve employed the standard Pauli matrix notation and
juxtaposition indicates an implicit tensor product. Consider
the positive unital injection

’: ðt; ~xÞ � t1þ c
X
j

xj�j: (2)

[The positivity follows from 2t’ðt; ~xÞ ¼ ’ðt; ~xÞ2 þ ðt2 �
c2kxk22Þ1 � 0, arising from �j�k þ �k�j ¼ 2�jk1.] Since
’ is an injection, it has a left-inverse

’0: A � ½trA; trðA�iÞ=c�=2m; (3)

which is again positive. (Let xi � trðA�iÞ, so that trðAÞ �
ck ~x=ck2 ¼ tr½A’ð1;�ð ~x=k ~xk2Þ=cÞ� � 0, since both matri-
ces in the trace are already positive.)

Multipartite systems.—Wenow discuss how to form joint
systems in the GPT framework. Suppose Alice and Bob are
each in possession of a GPT (VA, V

þ
A , eA) and (VB, V

þ
B , eB),

respectively, which describes the purely local measure-
ments for each party. The joint GPT is then defined to be
the AOU space (VA � VB, V

þ
AB, eA � eB) where, in order to

proceed, we must specify how to construct the cone Vþ
AB �

“ðVA � VBÞþ”. There is an infinite variety of possibilities;
however, we may restrict our attention to the following two
extremal definitions [26]. The first corresponds to the maxi-
mal tensor product ðVA �max VBÞþwhich is defined to be the
Archimedeanization of the cone fPk

j¼1 fj � gjjfj 2
Vþ
A ; gj 2 Vþ

B ; k 2 Ng and the second to the minimal

tensor product ðVA �min VBÞþ � fu 2 VA � VBjð!A �!BÞ
ðuÞ � 0; for all !A 2 �A and !B 2 �Bg.

By way of contrast, the tensor product used in the for-
mation of joint systems in quantummechanics is neither the
minimal nor maximal one, but is rather strictly in between:
ðVA �max VBÞþ � ðVA �QM VBÞþ � ðVA �min VBÞþ. The

quantum mechanical tensor cone Vþ
AB is given by the set

of positive semidefinite operators inMnAðCÞ �MnBðCÞ. The
state space �min

AB corresponding to ðVA �min VBÞþ is pre-
cisely the set of separable states and the state space �max

AB

corresponding to ðVA �max VBÞþ is given by the set of all
positive semidefinite operators W with trðWÞ ¼ 1 which
satisfy trðWA � BÞ � 0, 8 A, B � 0. This set is dual to
the set of entanglement witnesses [27] and includes all legal
density operators as well as some operators with negative
eigenvalues. Even though the state space �max

AB in the case
where our localGPTs areQM is strictly larger than quantum
mechanical state space, results of Refs. [21,22] show that it
does not give rise to any bipartite correlations going beyond
QM. The following proposition is a slight generalization of
this statement, dealing with (local) sections of quantum
systems.

Proposition 1.—Consider two AOU spaces (VA, V
þ
A , eA)

and (VB, V
þ
B , eB) which are sections of quantum systems

with according positive unital injections ’A and ’B into an

nA-level (respectively, nB-level) quantum system. Assume,
without loss of generality, that nA � nB. Then for any
positive unital bilinear map !AB: VA � VB ! R there
exists a state �AB of the composite quantum system AB
and a positive unital automorphism c on B such that
!ABðf; gÞ ¼ tr½�AB’AðfÞ � ðc � ’BÞðgÞ�.
Proof.—By assumption the map !0

ABðMA;MBÞ �
!AB½’�1

A ðMAÞ; ’�1
B ðMBÞ� is positive and unital on the

quantum systems A, B. Hence the statement reduces to
the case where ’A and ’B are both the identity mapping.
A proof for this case was given by Barnum et al. [21].
We stress that the existence of positive unital left inverse

maps ’�1
A and ’�1

B is essential for this result to hold.
Indeed, in the case of a hypothetical nonlocal box [28], it
is impossible to find positive unital maps into QM so that
their left inverse is also positive. Hence nonlocal boxes
allow postquantum behavior. It is also important to note
that Proposition 1 does not generalize to more than two
parties [22].
Typical sections, main result.—Consider an arbitrary

pair of n-dimensional GPTs A and B and suppose that we
are only able to access a typical section of the set of local
effects for A (respectively, B). This is modeled by the
intersection of Vþ

A (respectively, Vþ
B ) with a typical

k-dimensional subspace, k  n. To do this abstractly we
choose a bijection T between V and Rn and consider a
random linear injection X: Rk ,! Rn such that the random
variable Xð ~xÞ is distributed according to the uniform mea-
sure on the Euclidean (n� 1)-sphere of radius k ~xk2. (That
is, X is an OðnÞ-random rotation of an embedded fiducial
k-dimensional subspace.) We call

Qðt; ~xÞ ¼ teþ TXð ~xÞ (4)

a centered random section of Rkþ1 into V and it ensures
that every subspace corresponding to a typical choice of
measurement settings contains the neutral effect e. Since
only convex combinations of e with TXðRkÞ are feasible,
we now study the cone Vþ \QðRþ;RkÞ.
The following result captures the concentration-of-

measure phenomenon for our setting.
Proposition 2.—Let (V, Vþ, e) be an n-dimensional

AOU space and 0< "< 1. Then for k � Oð"2 lognÞ there
exists a kþ 1 dimensional centered random section Q of
V, such that, with high probability,

Q½Cþ
kþ1ð1þ "Þ� � Vþ \QðRþ;RkÞ � Q½Cþ

kþ1ð1� "Þ�:
(5)

Proof.—At the heart of the proof is the following
‘‘tangible’’ version of Dvoretzky’s theorem [14,17,29]: If
�: Sn�1 ! R is a Lipschitz function with constant L and
central value 1 (with respect to the uniform spherical
measure on Sn�1), then for every " > 0, if E � Rn is a
random subspace of dimension k � k0 ¼ c0"

2n=L2, we
have, that
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Prob

"
sup

Sn�1\E
j�ð ~xÞ � 1j> "

#
� c1e

�c2k0 ; (6)

where c0, c1, and c2 are absolute constants.
For our scenario, we use �ð~zÞ ¼ infft > 0 j teþ T ~z 2

Vþg with T chosen such that � has a mean (which is a
particular central value) of 1 on the (n� 1)-dimensional
Euclidean sphere and that the Lipschitz constant L of � is

bounded viaL � c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
for some absolute constant c0.

This is always possible, as can be seen following the proof
of Theorem 4.3 in Ref. [29]: First, by a lemma of Dvoretzky
and Rogers, cf. Theorem 3.4 in Ref. [14], the bijectionT can
be chosen such that for all canonical vectors ~ek with k �
n=2 it holds that kT ~ekkþ � kTk=4.Without loss of general-
itywemay assume in addition that� hasmean 1. Then, for a
vector of normal distributed variables ~g and due to
kT ~zkþ ¼ maxf�ð~zÞ; �ð�~zÞg and due to Eqs. (4.14) and
(4.18) in Ref. [29] we find,

2
ffiffiffi
n

p � 2E�ð ~gÞ � EkT ~gkþ � EmaxkjgkjkT ~ekkþ
� Emaxk�n=2jgkjkT ~ekkþ � c00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðn=2Þ

q
kTk=4: (7)

On the other hand, � is a sublinear function and thus

j�ð~z1Þ � �ð~z2Þj � maxf�ð~z1 � ~z2Þ; �ð~z2 � ~z1Þg
¼ kTð~z1 � ~z2Þkþ � kTkk~z1 � ~z2k2; (8)

which eventually shows L � c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= logn

p
.

Now, by virtue of Dvoretzky’s theorem, the following
holds with high probability. For all ~x � 0with � � k ~xk2 �
1=ð1þ "Þ, we have �½Xð ~x=�Þ� � 1þ " � 1=�, and hence
Qð1; ~xÞ ¼ ½e=�þ TXð ~x=�Þ�� 2 Vþ. Conversely, for all ~x
with � � k ~xk2 > 1=ð1� "Þ, we have �½Xð ~x=�Þ� �
1� " > 1=�, i.e., Qð1; ~xÞ =2 Vþ. The converse statement
completes the proof.

Thus, with high accuracy, the effective theory corre-
sponding to a low-dimensional OðnÞ-typical section of a
local GPT looks like a Euclidean AOU space, cf. Fig. 1 for
an illustration. The cones QðCþ

kþ1ð1� "ÞÞ give a very

accurate description of the typical section, since by linear-
ity all observable probabilities may at most deviate by
Oð"Þ. Combining this with our previous finding, namely
that Euclidean cones are sections of QM, and hence, in
view of Proposition 1, all bipartite correlations of their
maximal tensor product may be simulated within QM,
we arrive at our anticipated main result. Conversely, due
to an argument by Tsirelson [20], all bipartite dichotomic
correlations can be explained within a Euclidean cone
of appropriate dimension. Our result reduces to this
dichotomic case, since already our description of a GPT
by an AOU space is essentially limited to the dichotomic
case.

Finally we briefly discuss the situation of a generalized
Popescu-Rohrlich (PR) box, which exhibits (in some

sense) the ‘‘maximal’’ possible postquantum correlations
[28]. Such boxes are locally described by an AOU vector
space over Rn with cone PRþ ¼ fðt; ~xÞ j t � P

ijxijg and
neutral element (1, ~0). By virtue of Proposition 2, the
fraction of three-dimensional sections from a 55�
106-dimensional box with a postquantum behavior of
more than �3% is as low as 10�6 [30].
Conclusions.—We have presented a mechanism

whereby observable bipartite correlations of an arbitrary
postquantum theory could be, with high accuracy, compat-
ible with those exhibited by quantum mechanics. Our
argument exploited the concentration-of-measure phe-
nomenon and hence works for any typical low-dimensional
section of a generalized probabilistic theory. We argued
that such typical sections arise due to a lack of ultraprecise
experimental control, in which case it would be virtually
impossible to observe any postquantum behavior, even if
the fundamental theory of nature wasn’t quantum mechan-
ics. This is complementary to the emergence of classicality
from quantum mechanics via decoherence [8,9], since we
consider only a pair of (microscopic) objects, rather than
an ensemble of objects. Our argument indicates that there
is another option for refinement of today’s physics: we
might be missing hidden postquantum structures due to
ignorance of the correct measurement directions.
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FIG. 1 (color online). Typical two-dimensional sections of a
hypercube and of the effect space of a PR box in various
dimensions. In both cases an increasing rounding of the corners
of the sections can be observed. However in the case of a
hypercube, which is the extremal situation for Dvoretzky’s
theorem, there is still an appreciable probability for nonrounded
sections, due to low dimensionality.
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