2,051 research outputs found

    Wildfire Smoke Particle Properties and Evolution, from Space-Based Multi-Angle Imaging

    Get PDF
    Emitted smoke composition is determined by properties of the biomass burning source and ambient ecosystem. However, conditions that mediate the partitioning of black carbon (BC) and brown carbon (BrC) formation, as well as the spatial and temporal factors that drive particle evolution, are not understood adequately for many climate and air-quality related modeling applications. In situ observations provide considerable detail about aerosol microphysical and chemical properties, although sampling is extremely limited. Satellites offer the frequent global coverage that would allow for statistical characterization of emitted and evolved smoke, but generally lack microphysical detail. However, once properly validated, data from the National Aeronautics and Space Administration (NASA) Earth Observing Systems Multi-Angle Imaging Spectroradiometer (MISR) instrument can create at least a partial picture of smoke particle properties and plume evolution. We use in situ data from the Department of Energys Biomass Burning Observation Project (BBOP) field campaign to assess the strengths and limitations of smoke particle retrieval results from the MISR Research Aerosol (RA) retrieval algorithm. We then use MISR to characterize wildfire smoke particle properties and to identify the relevant aging factors in several cases, to the extent possible. The RA successfully maps qualitative changes in effective particle size, light absorption, and its spectral dependence, when compared to in situ observations. By observing the entire plume uniformly, the satellite data can be interpreted in terms of smoke plume evolution, including size-selective deposition, new-particle formation, and locations within the plume where BC or BrC dominates

    A new extremely low-mass white dwarf in the NLTT catalogue

    Full text link
    We report on the discovery of the extremely low-mass, hydrogen-rich white dwarf, NLTT 11748. Based on measurements of the effective temperature (8540+/-50 K) and surface gravity (log g = 6.20+/-0.15) obtained by fitting the observed Balmer line profiles with synthetic spectra, we derive a mass of 0.167+/-0.005 M_solar. This object is one of only a handful of white dwarfs with masses below 0.2 M_solar that are believed to be the product of close binary evolution with an episode of Roche lobe overflow onto a degenerate companion (neutron star or white dwarf). Assuming membership in the halo population, as suggested by the kinematics and adopting a cooling age of 4.0 - 6.3 Gyrs for the white dwarf, we infer a progenitor mass of 0.87 - 0.93 M_solar. The likely companion has yet to be identified, but a search for radial velocity variations may help constrain its nature.Comment: Accepted for publication in A&A Letter

    Air-pollutant chemicals and oxidized lipids exhibit genome-wide synergistic effects on endothelial cells

    Get PDF
    Gene expression analysis of human microvascular endothelial cells exposed to diesel exhaust particles and oxidized phospholipids revealed several upregulated gene modules, including genes involved in vascular inflammatory processes such as atherosclerosis

    Centre-of-mass separation in quantum mechanics: Implications for the many-body treatment in quantum chemistry and solid state physics

    Full text link
    We address the question to what extent the centre-of-mass (COM) separation can change our view of the many-body problem in quantum chemistry and solid state physics. It was shown that the many-body treatment based on the electron-vibrational Hamiltonian is fundamentally inconsistent with the Born-Handy ansatz so that such a treatment can never respect the COM problem. Born-Oppenheimer (B-O) approximation reveals some secret: it is a limit case where the degrees of freedom can be treated in a classical way. Beyond the B-O approximation they are inseparable in principle. The unique covariant description of all equations with respect to individual degrees of freedom leads to new types of interaction: besides the known vibronic (electron-phonon) one the rotonic (electron-roton) and translonic (electron-translon) interactions arise. We have proved that due to the COM problem only the hypervibrations (hyperphonons, i.e. phonons + rotons + translons) have true physical meaning in molecules and crystals; nevertheless, the use of pure vibrations (phonons) is justified only in the adiabatic systems. This fact calls for the total revision of our contemporary knowledge of all non-adiabatic effects, especially the Jahn-Teller effect and superconductivity. The vibronic coupling is responsible only for removing of electron (quasi)degeneracies but for the explanation of symmetry breaking and forming of structure the rotonic and translonic coupling is necessary.Comment: 39 pages, 11 sections, 3 appendice

    New Low Accretion-Rate Magnetic Binary Systems and their Significance for the Evolution of Cataclysmic Variables

    Full text link
    Discoveries of two new white dwarf plus M star binaries with striking optical cyclotron emission features from the Sloan Digital Sky Survey (SDSS) brings to six the total number of X-ray faint, magnetic accretion binaries that accrete at rates < 10^{-13} Msun/yr, or <1% of the values normally encountered in cataclysmic variables. This fact, coupled with donor stars that underfill their Roche lobes and very cool white dwarfs, brand the binaries as post common-envelope systems whose orbits have not yet decayed to the point of Roche-lobe contact. They are pre-magnetic CVs, or pre-Polars. The systems exhibit spin/orbit synchronism and apparently accrete by efficient capture of the stellar wind from the secondary star, a process that has been dubbed a ``magnetic siphon''. Because of this, period evolution of the binaries will occur solely by gravitational radiation, which is very slow for periods >3 hr. Optical surveys for the cyclotron harmonics appear to be the only means of discovery, so the space density of pre-Polars could rival that of Polars, and the binaries provide an important channel of progenitors (in addition to the asynchronous Intermediate Polars). Both physical and SDSS observational selection effects are identified that may help to explain the clumping of all six systems in a narrow range of magnetic field strength around 60 MG.Comment: 25 pages, 13 figures, Accepted to Ap

    Ab Initio Molecular Dynamics Simulation of Liquid Ga_xAs_{1-x} Alloys

    Full text link
    We report the results of ab initio molecular dynamics simulations of liquid Ga_xAs_{1-x} alloys at five different concentrations, at a temperature of 1600 K, just above the melting point of GaAs. The liquid is predicted to be metallic at all concentrations between x = 0.2 and x = 0.8, with a weak resistivity maximum near x = 0.5, consistent with the Faber-Ziman expression. The electronic density of states is finite at the Fermi energy for all concentrations; there is, however, a significant pseudogap especially in the As-rich samples. The Ga-rich density of states more closely resembles that of a free-electron metal. The partial structure factors show only a weak indication of chemical short-range order. There is also some residue of the covalent bonding found in the solid, which shows up in the bond-angle distribution functions of the liquid state. Finally, the atomic diffusion coefficients at 1600K are calculated to be 2.1 \times 10^{-4} cm^2/sec for Ga ions in Ga_{0.8}As_{0.2} and 1.7 \times 10^{-4} cm^2/sec for As ions in Ga_{0.2}As_{0.8}.Comment: 29 pages, 10 eps figures, accepted for publication in Phys. Rev.

    Theory of inelastic lifetimes of low-energy electrons in metals

    Full text link
    Electron dynamics in the bulk and at the surface of solid materials are well known to play a key role in a variety of physical and chemical phenomena. In this article we describe the main aspects of the interaction of low-energy electrons with solids, and report extensive calculations of inelastic lifetimes of both low-energy electrons in bulk materials and image-potential states at metal surfaces. New calculations of inelastic lifetimes in a homogeneous electron gas are presented, by using various well-known representations of the electronic response of the medium. Band-structure calculations, which have been recently carried out by the authors and collaborators, are reviewed, and future work is addressed.Comment: 28 pages, 18 figures, to appear in Chem. Phy

    Two Cases of Transfusion-related Acute Lung Injury Triggered by HLA and Anti-HLA Antibody Reaction

    Get PDF
    Transfusion-related acute lung injury (TRALI) is a serious adverse transfusion reaction that is presented as acute hypoxemia and non-cardiogenic pulmonary edema, which develops during or within 6 hr of transfusion. Major pathogenesis of TRALI is known to be related with anti-HLA class I, anti-HLA class II, or anti-HNA in donor's plasma. However, anti-HLA or anti-HNA in recipient against transfused donor's leukocyte antigens also cause TRALI in minor pathogenesis and which comprises about 10% of TRALI. Published reports of TRALI are relatively rare in Korea. In our cases, both patients presented with dyspnea and hypoxemia during transfusion of packed red blood cells and showed findings of bilateral pulmonary infiltrations at chest radiography. Findings of patients' anti-HLA antibodies and recipients' HLA concordance indicate that minor pathogenesis may be not as infrequent as we'd expected before. In addition, second case showed that anti-HLA class II antibodies could be responsible for immunopathogenic mechanisms, alone

    Theoretical Study of One-dimensional Chains of Metal Atoms in Nanotubes

    Full text link
    Using first-principles total-energy pseudopotential calculations, we have studied the properties of chains of potassium and aluminum in nanotubes. For BN tubes, there is little interaction between the metal chains and the tubes, and the conductivity of these tubes is through carriers located at the inner part of the tube. In contrast, for small radius carbon nanotubes, there are two types of interactions: charge-transfer (dominant for alkali atoms) leading to strong ionic cohesion, and hybridization (for multivalent metal atoms) resulting in a smaller cohesion. For Al-atomic chains in carbon tubes, we show that both effects contribute. New electronic properties related to these confined atomic chains of metal are analyzed.Comment: 12 pages + 3 figure
    corecore