660 research outputs found

    Spectroscopy of a fractional Josephson vortex molecule

    Full text link
    In long Josephson junctions with multiple discontinuities of the Josephson phase, fractional vortex molecules are spontaneously formed. At each discontinuity point a fractional Josephson vortex carrying a magnetic flux ∣Ί∣<Ί0|\Phi|<\Phi_0, Ί0≈2.07×10−15\Phi_0\approx 2.07\times 10^{-15} Wb being the magnetic flux quantum, is pinned. Each vortex has an oscillatory eigenmode with a frequency that depends on Ί/Ί0\Phi/\Phi_0 and lies inside the plasma gap. We experimentally investigate the dependence of the eigenfrequencies of a two-vortex molecule on the distance between the vortices, on their topological charge ℘=2πΊ/Ί0\wp=2\pi\Phi/\Phi_0 and on the bias current Îł\gamma applied to the Josephson junction. We find that with decreasing distance between vortices, a splitting of the eigenfrequencies occurs, that corresponds to the emergence of collective oscillatory modes of both vortices. We use a resonant microwave spectroscopy technique and find good agreement between experimental results and theoretical predictions.Comment: submitted to Phys. Rev.

    Hydrodynamical Survey of First Overtone Cepheids

    Get PDF
    A hydrodynamical survey of the pulsational properties of first overtone Galactic Cepheids is presented. The goal of this study is to reproduce their observed light- and radial velocity curves. The comparison between the models and the observations is made in a quantitative manner on the level of the Fourier coefficients. Purely radiative models fail to reproduce the observed features, but convective models give good agreement. It is found that the sharp features in the Fourier coefficients are indeed caused by the P1/P4 = 2 resonance, despite the very large damping of the 4th overtone. For the adopted mass-luminosity relation the resonance center lies near a period of 4.2d +/- 0.2 as indicated by the observed radial velocity data, rather than near 3.2d as the light-curves suggest.Comment: ApJ, 12 pages, (slightly) revise

    Thermal escape of fractional vortices in long Josephson junctions

    Full text link
    We consider a fractional Josephson vortex in a long 0-kappa Josephson junction. A uniformly applied bias current exerts a Lorentz force on the vortex. If the bias current exceeds the critical current, an integer fluxon is torn off the kappa-vortex and the junction switches to the voltage state. In the presence of thermal fluctuations the escape process takes place with finite probability already at subcritical values of the bias current. We experimentally investigate the thermally induced escape of a fractional vortex by high resolution measurements of the critical current as a function of the topological charge kappa of the vortex and compare the results to numerical simulations for finite junction lengths and to theoretical predictions for infinite junction lengths. To study the effect caused by the junction geometry we compare the vortex escape in annular and linear junctions.Comment: submitted to PR

    Search for Charginos with a Small Mass Difference with the Lightest Supersymmetric Particle at \sqrt{s} = 189 GeV

    Get PDF
    A search for charginos nearly mass-degenerate with the lightest supersymmetric particle is performed using the 176 pb^-1 of data collected at 189 GeV in 1998 with the L3 detector. Mass differences between the chargino and the lightest supersymmetric particle below 4 GeV are considered. The presence of a high transverse momentum photon is required to single out the signal from the photon-photon interaction background. No evidence for charginos is found and upper limits on the cross section for chargino pair production are set. For the first time, in the case of heavy scalar leptons, chargino mass limits are obtained for any \tilde{\chi}^{+-}_1 - \tilde{\chi}^0_1 mass difference

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Formation of the ηc\eta_c in Two-Photon Collisions at LEP

    Full text link
    The two-photon width Γγγ\Gamma_{\gamma\gamma} of the ηc\eta_c meson has been measured with the L3 detector at LEP. The ηc\eta_c is studied in the decay modes π+π−π+π−\pi^+\pi^-\pi^+\pi^-, π+π−\pi^+\pi^-K+^+K−^-, Ks0_s^0K±π∓^\pm\pi^\mp, K+^+K−π0^-\pi^{0}, π+π−η\pi^+\pi^-\eta, π+π−ηâ€Č\pi^+\pi^-\eta', and ρ+ρ−\rho^+\rho^- using an integrated luminosity of 140 pb−1^{-1} at s≃91\sqrt{s} \simeq 91 GeV and of 52 pb−1^{-1} at s≃183\sqrt{s} \simeq 183 GeV. The result is Γγγ(ηc)=6.9±1.7(stat.)±0.8(sys.)±2.0\Gamma_{\gamma\gamma}(\eta_c) = 6.9 \pm 1.7 (stat.) \pm 0.8 (sys.) \pm 2.0(BR) keV. The Q2Q^2 dependence of the ηc\eta_c cross section is studied for Q2<9Q^2 < 9 GeV2^{2}. It is found to be better described by a Vector Meson Dominance model form factor with a J-pole than with a ρ\rho-pole. In addition, a signal of 29±1129 \pm 11 events is observed at the χc0\chi_c0 mass. Upper limits for the two-photon widths of the χc0\chi_c0, χc2\chi_c2, and ηcâ€Č\eta_c' are also given

    Search for Anomalous Couplings in the Higgs Sector at LEP

    Get PDF
    Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H -> Z\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Neutral-Current Four-Fermion Production in e+e- Interactions at LEP

    Get PDF
    Neutral-current four-fermion production, e+e- -> ffff is studied in 0.7/fb of data collected with the L3 detector at LEP at centre-of-mass energies root(s)=183-209GeV. Four final states are considered: qqvv, qqll, llll and llvv, where l denotes either an electron or a muon. Their cross sections are measured and found to agree with the Standard Model predictions. In addition, the e+e- -> Zgamma* -> ffff process is studied and its total cross section at the average centre-of-mass energy 196.6GeV is found to be 0.29 +/- 0.05 +/- 0.03 pb, where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model prediction of 0.22 pb. Finally, the mass spectra of the qqll final states are analysed to search for the possible production of a new neutral heavy particle, for which no evidence is found

    Measurement of Exclusive rho+rho- Production in Mid-Virtuality Two-Photon Interactions and Study of the gamma gamma* -> rho rho Process at LEP

    Full text link
    Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2
    • 

    corecore