15 research outputs found

    Stellar Activity Cycles

    Full text link
    The magnetic field of the Sun is generated by internal dynamo process with a cyclic period of 11 years or a 22 year magnetic cycle. The signatures of the Sun's magnetic cycle are observed in the different layers of its atmosphere and in its internal layers. In this review, we use the same diagnostics to understand the magnetic cycles of other stars with the same internal structure as the Sun. We review what is currently known about mapping the surface magnetic fields, chromospheric and coronal indicators, cycles in photometry and asteroseismology. We conclude our review with an outlook for the future.Comment: accepted by Space Science Review

    International R&M/Safety Cooperation Lessons Learned Between NASA and JAXA

    Get PDF
    Presented are a number of important experiences gained and lessons learned from the collaboration of the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA) on the CoNNeCT (Communications, Navigation, and Networking re-Configurable Testbed) project. Both space agencies worked on the CoNNeCT Project to design, assemble, test, integrate, and launch a communications testbed facility mounted onto the International Space Station (ISS) truss. At the 2012 RAMS, two papers about CoNNeCT were presented: one on Ground Support Equipment Reliability & System Safety, and the other one on combined application of System Safety & Reliability for the flight system. In addition to the logistics challenges present when two organizations are on the opposite side of the world, there is also a language barrier. The language barrier encompasses not only the different alphabet, it encompasses the social interactions; these were addressed by techniques presented in the paper. The differences in interpretation and application of Spaceflight Requirements will be discussed in this paper. Although many, but definitely not all, of JAXA's Spaceflight Requirements were inspired by NASA, there were significant and critically important differences in how they were interpreted and applied. This paper intends to summarize which practices worked and which did not for an international collaborative effort so that future missions may benefit from our experiences. The CoNNeCT flight system has been successfully assembled, integrated, tested, shipped, launched and installed on the ISS without incident. This demonstrates that the steps taken to facilitate international understanding, communication, and coordination were successful and warrant discussion as lessons learned

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process

    The First Post-Kepler Brightness Dips of KIC 8462852

    Full text link

    An Electric Frequency-to-place Map for a Cochlear Implant Patient with Hearing in the Nonimplanted Ear

    Get PDF
    The aim of this study was to relate the pitch of high-rate electrical stimulation delivered to individual cochlear implant electrodes to electrode insertion depth and insertion angle. The patient (CH1) was able to provide pitch matches between electric and acoustic stimulation because he had auditory thresholds in his nonimplanted ear ranging between 30 and 60 dB HL over the range, 250 Hz to 8 kHz. Electrode depth and insertion angle were measured from high-resolution computed tomography (CT) scans of the patient’s temporal bones. The scans were used to create a 3D image volume reconstruction of the cochlea, which allowed visualization of electrode position within the scala. The method of limits was used to establish pitch matches between acoustic pure tones and electric stimulation (a 1,652-pps, unmodulated, pulse train). The pitch matching data demonstrated that, for insertion angles of greater than 450 degrees or greater than approximately 20 mm insertion depth, pitch saturated at approximately 420 Hz. From 20 to 15 mm insertion depth pitch estimates were about one-half octave lower than the Greenwood function. From 13 to 3 mm insertion depth the pitch estimates were approximately one octave lower than the Greenwood function. The pitch match for an electrode only 3.4 mm into the cochlea was 3,447 Hz. These data are consistent with other reports, e.g., Boëx et al. (2006), of a frequency-to-place map for the electrically stimulated cochlea in which perceived pitches for stimulation on individual electrodes are significantly lower than those predicted by the Greenwood function for stimulation at the level of the hair cell

    Global HCFC-22 measurements with MIPAS : retrieval, validation, climatologies and trends

    Get PDF
    We report on HCFC-22 data acquired by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) in reduced spectral resolution nominal mode in the period from January 2005 to April 2012 from version 5.02 level-1b spectral data and covering an altitude range from the upper troposphere (above cloud top altitude) to about 50 km. The profile retrieval was performed by constrained nonlinear least squares fitting of measured limb spectral radiances to modelled spectra. The spectral v4-band at 816.5 ± 13 cm-1 was used for the retrieval. A Tikhonov-type smoothing constraint was applied to stabilise the retrieval. In the lower stratosphere, we find a global volume mixing ratio of HCFC-22 of about 185 pptv in January 2005. The linear growth rate in the lower latitudes lower stratosphere was about 6 to 7 pptv yr-1 in the period 2005–2012. The obtained profiles were compared with ACE-FTS satellite data v3.5, as well as with MkIV balloon profiles and in situ cryosampler balloon measurements. Between 13 and 22 km, average agreement within -3 to +5 pptv (MIPAS–ACE) with ACE-FTS v3.5 pro files is demonstrated. Agreement with MkIV solar occultation balloon-borne measurements is within 10–20 pptv below 30 km and worse above, while in situ cryosampler balloon measurements are systematically lower over their full altitude range by 15– 50 pptv below 24 km and less than 10 pptv above 28 km. Obtained MIPAS HCFC-22 time series below 10 km altitude are shown to agree mostly well to corresponding time series of near-surface abundances from NOAA/ESRL and AGAGE networks, although a more pronounced seasonal cycle is obvious in the satellite data, probably due to tropopause altitude fluctuations and subsidence of polar winter stratospheric air into the troposphere. A parametric model consisting of constant, linear, quasi-biennial oscillation (QBO) and several sine and cosine terms with different periods has been fitted to the temporal variation of stratospheric HCFC-22 for all 10° latitude/1 to 2 km altitude bins. The relative linear variation was always positive, with relative increases of 40–70%decade-1 in the tropics and global lower stratosphere, and up to 120%decade-1 in the upper stratosphere of the northern polar region and the southern extratropical hemisphere. In the middle stratosphere between 20 and 30 km, the observed trend is not consistent with the age of stratospheric air-corrected trend at ground, but stronger positive at the Southern Hemisphere and less strong increasing in the Northern Hemisphere, hinting towards changes in the stratospheric circulation over the observation period

    The role of fatty acid beta-oxidation in lymphangiogenesis

    No full text
    Lymphatic vessels are lined by lymphatic endothelial cells (LECs), and are critical for health. However, the role of metabolism in lymphatic development has not yet been elucidated. Here we report that in transgenic mouse models, LEC-specific loss of CPT1A, a rate-controlling enzyme in fatty acid β-oxidation, impairs lymphatic development. LECs use fatty acid β-oxidation to proliferate and for epigenetic regulation of lymphatic marker expression during LEC differentiation. Mechanistically, the transcription factor PROX1 upregulates CPT1A expression, which increases acetyl coenzyme A production dependent on fatty acid β-oxidation. Acetyl coenzyme A is used by the histone acetyltransferase p300 to acetylate histones at lymphangiogenic genes. PROX1-p300 interaction facilitates preferential histone acetylation at PROX1-target genes. Through this metabolism-dependent mechanism, PROX1 mediates epigenetic changes that promote lymphangiogenesis. Notably, blockade of CPT1 enzymes inhibits injury-induced lymphangiogenesis, and replenishing acetyl coenzyme A by supplementing acetate rescues this process in vivo.status: publishe
    corecore