5 research outputs found

    Social computation: Fundamental limits and efficient algorithms

    Get PDF
    Social computing systems bring enormous value to society by harnessing the data generated by the members of a community. Though each individual reveals a little information through his online traces, collectively this information gives significant insights on the societal preferences that can be used in designing better systems for the society. Challenging societal problems can be solved using the collective power of a crowd wherein each individual offers only a limited knowledge on a specifically designed online platform. There exists general approaches to design such online platforms, to aggregate the collected data, and to use them for the downstream tasks, but are typically sub-optimal and inefficient. In this work, we investigate several social computing problems and provide efficient algorithms for solving them. This work studies several topics: (a) designing efficient algorithms for aggregating preferences from partially observed traces of online activities, and characterizing the fundamental trade-off between the computational complexity and statistical efficiency; (b) characterizing the fundamental trade-off between the budget and accuracy in aggregated answers in crowdsourcing systems, and designing efficient algorithms for training supervised learning models using the crowdsourced answers; (c) designing efficient algorithms for estimating fundamental spectral properties of a partially observed data such as a movie rating data matrix in recommendation systems, and connections in a large network

    PacGAN: The power of two samples in generative adversarial networks

    Get PDF
    Generative adversarial networks (GANs) are innovative techniques for learning generative models of complex data distributions from samples. Despite remarkable recent improvements in generating realistic images, one of their major shortcomings is the fact that in practice, they tend to produce samples with little diversity, even when trained on diverse datasets. This phenomenon, known as mode collapse, has been the main focus of several recent advances in GANs. Yet there is little understanding of why mode collapse happens and why existing approaches are able to mitigate mode collapse. We propose a principled approach to handling mode collapse, which we call {\em packing}. The main idea is to modify the discriminator to make decisions based on multiple samples from the same class, either real or artificially generated. We borrow analysis tools from binary hypothesis testing---in particular the seminal result of Blackwell \cite{Bla53}---to prove a fundamental connection between packing and mode collapse. We show that packing naturally penalizes generators with mode collapse, thereby favoring generator distributions with less mode collapse during the training process. Numerical experiments on benchmark datasets suggests that packing provides significant improvements in practice as well

    Large scale structural optimization using genetic and generative algorithms with sequential linear programming

    Get PDF
    This thesis explores novel parameterization concepts for large scale topology optimization that enables the use of evolutionary algorithms in large-scale structural design. Specifically, two novel parameterization concepts based on generative algorithms and Boolean random networks are proposed that facilitate systematic exploration of the design space while limiting the number of design variables. The presented methodology is demonstrated on classical planar and space truss optimization problems. A nested optimization methodology using genetic algorithms and sequential linear programming is also proposed to solve truss optimization problems. Further, a number of heuristics are also presented to perform the parameterization efficiently. The results obtained on solving the standard truss optimization problems are very encouraging

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore