
c© 2014 Ashish Kumar Khetan

LARGE SCALE STRUCTURAL OPTIMIZATION USING GENETIC
AND GENERATIVE ALGORITHMS WITH SEQUENTIAL LINEAR

PROGRAMMING

BY

ASHISH KUMAR KHETAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Industrial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Assistant Professor James T. Allison

Abstract

This thesis explores novel parameterization concepts for large scale topology

optimization that enables the use of evolutionary algorithms in large-scale

structural design. Specifically, two novel parameterization concepts based on

generative algorithms and Boolean random networks are proposed that fa-

cilitate systematic exploration of the design space while limiting the number

of design variables. The presented methodology is demonstrated on classi-

cal planar and space truss optimization problems. A nested optimization

methodology using genetic algorithms and sequential linear programming is

also proposed to solve truss optimization problems. Further, a number of

heuristics are also presented to perform the parameterization efficiently. The

results obtained on solving the standard truss optimization problems are very

encouraging.

ii

To my parents and my sisters, for their love and support.

iii

Acknowledgments

I wish to express my sincere appreciation and gratitude toward Professor

James T. Allison for his invaluable guidance and motivation though-out this

thesis work. In addition, special thanks to my family and my friends who

have helped me through the sometimes trying process of earning my Master’s

Degree. I also wish to thank my friends Vamsi Talla and Gaurav Chadha

who encouraged me to pursue graduate studies.

I am also thankful to Anand, Jeff, and Dan for the wonderful discussions

at the Transportation Building.

Last but not the least, I am immensly grateful to the Department of Indus-

trial & Enterprise Systems Engineering and Professor Allison for the contin-

ued financial support through Teaching and Research Assistantships, without

which this work would not have come to fruition.

iv

Table of Contents

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction . 1

Chapter 2 Truss Optimization Problems 4
2.1 Map L-system Based Approach 5
2.2 Boolean Random Network Based Approach 7

Chapter 3 Map L-system Extension to Truss Design 9
3.1 Map L-systems . 9
3.2 Extension to Truss Design . 12
3.3 Genomic Encoding of Cellular Division Rules 17
3.4 Modification of Cellular Division for Truss Optimization . . . 19
3.5 Extension to 3D Truss Design 21
3.6 Truss Optimization Problem Formulation 22
3.7 Discussion . 26

Chapter 4 Boolean Random Networks Extension to Truss Design . . . 27
4.1 Cellular Automata . 27
4.2 Random Boolean Networks . 29
4.3 Extension to Truss Topology Design 30
4.4 Genomic Encoding of Boolean Random Networks Repre-

sentation . 37
4.5 Resolving Overlapping Members 37
4.6 Truss Optimization Problem Formulation 39

Chapter 5 Results and Discussion . 44
5.1 Ten-bar Truss . 44
5.2 Extended Ten-bar Truss . 51
5.3 Twenty-five-bar Space Truss 54

Chapter 6 Conclusion . 58

References . 62

v

List of Tables

3.1 Genomic encoding vector . 17
3.2 Production rule vector XPi

1 . 18

4.1 Ten-bar Truss- Optimal Connections 34

5.1 Input Data for Ten-bar Truss 45
5.2 Ten-bar Truss- Optimal Mass and No. of bars 48
5.3 Ten-bar Truss- Optimal Mass and No. of bars 50
5.4 Extended Ten-bar Truss- Optimal Mass and No. of bars . . . 52
5.5 Input Data for Twenty-five-bar Truss 55
5.6 Loading conditions, in kips, for Twenty-five-bar Truss 56
5.7 Twenty-five-bar Truss- Optimal Mass and No. of bars 57

vi

List of Figures

3.1 Examples of rewriting rules 10
3.2 Example of cellular division in map L-system 11
3.3 The proposed sequential GA methodology 16
3.4 Example of cellular division in modified map L-system 19
3.5 Randomly Generated Truss Topologies 20
3.6 Randomly Generated Stable Truss Topologies 21
3.7 Ten Bar Truss- Adjoining Cell Not Divided 21
3.8 Ten Bar Truss- Adjoining Cell Divided 21
3.9 Tetrahedron Sub-division . 22

4.1 A ground truss lattice . 28
4.2 The Moore neighborhood . 29
4.3 The Von Neumann neighborhood 29
4.4 A random Boolean network 30
4.5 Ten bar minimally connected truss 33
4.6 Ten bar truss- with two new connections 33
4.7 Ten bar truss- with three new connections 33
4.8 RBN Parametrization . 35
4.9 RBN Rule application . 35
4.10 Multistage GA/BRN truss design methodology 36
4.11 Rules to avoid overlapping members 38
4.12 Rules to avoid overlapping members 39
4.13 Geometry and Size Optimization 42
4.14 Localized Geometry Optimization Domain 42

5.1 Topology and Geometry of Ten-bar Truss 45
5.2 Ten-bar Truss Initial Design-0 46
5.3 Ten-bar Truss Development-1 46
5.4 Ten-bar Truss Development-2 47
5.5 Ten-bar Truss Development-3 47
5.6 Ten-bar Truss Development-4 47
5.7 Ten-bar Truss Development-5 47
5.8 Ten-bar Truss Development-6 48
5.9 Ten-bar Truss Initial Design-0 49
5.10 Ten-bar Truss Development-1 49

vii

5.11 Ten-bar Truss Development-2 49
5.12 Ten-bar Truss Development-3 50
5.13 Ten-bar Truss Development-4 50
5.14 Topology and Geometry of Extended Ten-bar Truss 52
5.15 Extended Ten-bar Truss Initial Design-0 52
5.16 Extended Ten-bar Truss Development-1 53
5.17 Extended Ten-bar Truss Development-2 53
5.18 Extended Ten-bar Truss Development-3 53
5.19 Extended Ten-bar Truss Development-4 54
5.20 Topology and Geometry of Twenty-five-bar Truss 55
5.21 Twenty-five-bar Truss Initial Design-0 56
5.22 Twenty-five-bar Truss Development-1 56
5.23 Twenty-five-bar Truss Development-2 57

viii

Chapter 1

Introduction

Design dimension can vary during the development of many engineering sys-

tems. For example, in truss design or automotive powertrain design, as sys-

tem elements are added or removed, the dimension of the set of continuous

design variables changes. This complicates design optimization. The number

of system elements in the optimal design is not known a priori, so a design

vector that permits description of the optimal system design cannot always be

defined before problem solution. One well-known solution is to use a ground-

structure approach, where a large number of available system elements and

their relationships are pre-defined, and the optimization vector specifies the

existence (and in some cases geometry and size) of these elements. This ap-

proach is fundamentally limited, as the number and relationship of elements

cannot deviate from what is allowed by the ground structure. Established ap-

proaches that discretize a given design domain, such as SIMP [1], are similar

in that the number of potential system elements and the available relation-

ships between them are predefined. This thesis presents two new approaches,

based on generative algorithms and Boolean random vectors, that overcome

these limitations by accommodating variable design dimension problems and

allowing the exploration of design alternatives not prescribed a priori. The

effectiveness of the proposed methodologies for solving truss design problems

with respect to size, geometry, and topology is demonstrated using several

archetypal truss design optimization problems.

The first approach provides a novel abstraction concept for truss topology

and geometry optimization by means of generative algorithms. Abstraction

of topology and geometry implies parameterizing them using an abstract rep-

resentation. Generative algorithms are a class of representation algorithms

that when decoded output a design. The idea is to represent truss topology

and geometry using rules of generative algorithms, and to operate on the

generative algorithm rules using a genetic algorithm instead of on the design

1

description directly. A new way of implementing the generative algorithm is

also presented that leverages principles of optimal truss development. Fur-

ther, truss size optimization is performed using a nested optimization routine

based on sequential linear programming. The generative algorithm abstrac-

tion and nested optimization strategy support concurrent optimization of

truss topology, geometry, and size. In addition, this new design strategy

is completely independent from any kind of ground structure; this avoids

the limitations inherent to ground structure approaches that define a priori

what topologies may be considered (potentially hindering innovative design

solutions). The generative algorithm abstraction layer also supports struc-

tural designs of variable dimension as variable-dimension structures can be

generated from the same fixed-dimension rule set. Finally, the effectiveness

of the new methodology is demonstrated by examining archetypal two- and

three-dimensional truss design optimization problems.

The second approach provides a novel parameterization concept for struc-

tural truss topology optimization that enables the use of evolutionary al-

gorithms in design of large-scale structures. The representational power of

Boolean networks is used here to parameterize truss topology. A genetic

algorithm then operates on parameters that govern the generation of truss

topologies using this random network instead of operating directly on de-

sign variables. A genetic algorithm implementation is also presented that is

congruent with the local rule application of the random network. The pri-

mary advantage of using a Boolean random network representation is that

a relatively large number of ground structure nodes can be used, enabling

successful exploration of a large-scale design space. In the classical binary

representation of ground structures, the number of optimization variables

increases quadratically with the number of nodes, restricting the maximum

number of nodes that can be considered using a ground structure approach.

The Boolean random network representation proposed here allows for the ex-

ploration of the entire topology space in a systematic way using only a linear

number of variables. The number of nodes in the design domain, therefore,

can be increased significantly. Truss member geometry and size optimization

is performed here in a nested manner where an inner-loop size optimization

problem is solved for every candidate topology using sequential linear pro-

gramming with move-limits. Further, geometry and size optimization are

performed sequentially in an iterative manner. Geometry optimization is

2

performed in a localized region which allows efficient optimization of geom-

etry and size together. The Boolean random network and nested inner-loop

optimization allows for the concurrent optimization of truss topology, geome-

try and size. The effectiveness of this method is demonstrated using a planar

truss design optimization benchmark problem.

3

Chapter 2

Truss Optimization Problems

Truss design optimization is a classical subject in structural design opti-

mization, and can be classified into three main categories: (i) sizing, (ii)

geometry, and (iii) topology. In size optimization of trusses, cross sectional

areas of members are considered as design variables and the coordinates of

the nodes and connectivity among various members are kept fixed. In geo-

metric optimization of truss structures, nodal coordinate location are treated

as design variables. In truss topology optimization, parameters that govern

truss member connectivity are design variables while nodal coordinates are

held fixed. All three categories of truss design optimization have been stud-

ied extensively. Early efforts in truss size optimization were carried out by

Venkayya [2], Schmit and Farshi [3], and Dobbs and Nelson [4]. In addition,

Goldberg and Samtani [5] and Rajeev and Krishnamoorthy [6] used evolu-

tionary algorithms to solve the sizing optimization problem in truss design.

One of the most used methods for topology optimization is the Ground

Structure approach. This method consists of generating a fixed grid of joints

and adding members in some or all of the possible connections between the

joints as potential structural or vanishing members. The optimum structure

for the imposed boundary conditions and applied loads is found using the

cross-sectional areas as design variables, including the possibility of zero-area

members. The number of joints is not a design variable. In the classical for-

mulation of the problem, the positions of the joints are fixed, so a high number

of joints are used to increase the variety of possible designs. The classical

formulation of size and topology optimization has been solved by Deb and

Gulati [7] as well as and Hagishita and Ohsaki [8] using genetic algorithms

(GAs). Hajela, Lee, and Lin [9] used a two-level optimization scheme of first

finding multiple optimal topologies and then finding the optimal member

areas for each of the truss topologies.

As topology optimization using ground structures does not incorporate ge-

4

ometry optimization, an important next step was to extend this approach to

include joint position optimization. This integrated geometry and topology

design approach has been studied extensively, primarily using a hierarchi-

cal solution approach. Further, many GA-based approaches have also been

explored to achieve integrated size, geometry and topology optimization.

Rahami, Kevah, and Gholipour [10], Giger and Ermanni [11], Rajan [12],

Balling, Briggs and Gillman [13], and Kaveh and Laknejadi [14] all used

evolutionary algorithms1 to find the optimal size, geometry and topology of

trusses.

2.1 Map L-system Based Approach

In Chapter 3, a new methodology is presented to solve the combined size,

geometry, and topology truss design problem using generative algorithms as

an abstraction layer between an outer-loop GA that solves the topology and

geometry design problem, and an inner-loop sequential linear programming

(SLP) implementation that solves the size optimization problem (referred to

as Algorithm 1 in later sections). The combined problem of topology, geome-

try and size optimization is decoupled in two parts. The first part, referred to

here as the outer-loop, searches for an optimal topology and geometry using

a GA. The second part, referred to here as the inner-loop, solves for optimal

truss member sizes using gradient-based optimization algorithm. The outer

loop GA uses the optimal value of the inner loop problem as its fitness func-

tion for each design candidate as it searches for the optimal topology and

geometry. A new way of implementing the GA with the design abstraction

is also presented that exploits the underlying methodology of the generative

algorithm and properties of the truss optimization problem (referred to as

Algorithm 2).

Generative algorithms produce output based on a set of rules that is ap-

plied iteratively. This class of algorithms has been used widely in the fields

of generative art and architecture [15]. Recently, one type of generative al-

gorithm, cellular division, has been applied to structural topology optimiza-

tion, but these early implementations have been limited to predefined design

domains, and have not been applied to truss design. Here a generative algo-

1GAs belong to the larger class of evolutionary algorithms.

5

rithm that outputs truss topology and geometry based on a set of rules. For

each candidate topology, an inner loop algorithm solves the size optimiza-

tion problem using sequential linear programming. Solving the inner-loop

problem permits a fair comparison between candidate topologies because it

determines the ultimate utility of each given topology. Adjusting the gener-

ative algorithms rules results in the generation of different topologies (often

with different numbers of system elements). The generative algorithm is

used as an abstracted representation of truss topology. Instead of optimizing

in the topology design space directly, optimization is performed in the rule

space. Design space dimension varies, whereas the rule space dimension is

constant. The generative algorithm maps a design in the rule space to the

design space. Since the rule space dimension does not grow with system di-

mension, this approach provides the potential for scaling up to much larger

system design problems than can be solved using existing methods.

The generative algorithm used here is a modified version of cellular divi-

sion using map L-systems. These algorithms will be explained in more detail

in Chapter 3. After a discussion of the basics of these algorithms, a new

type of truss design methodology using a modified cellular division method

in combination with a genetic algorithm to solve for optimal truss topology,

geometry and size will be presented in Chapter 3. This methodology can be

used to design a truss for a given arbitrary design boundary. The method-

ology leverages a basic concept of optimal truss development, namely, truss

members are added strategically to redistribute load such that the overall

structural mass required to support a given load is reduced. Truss design

is developed starting with an initial sparse (but stable) design, and at each

stage of development the design domain interior is explored by adding new

truss bar members in a way that reduces structural mass, while satisfying

stress and displacement constraints. The results of the proposed methodology

are demonstrated in Chapter 5, using a pair of two-dimensional benchmark

truss design optimization problems, and the extension of this methodology

to three-dimensions is demonstrated using a well-known space truss design

problem.

6

2.2 Boolean Random Network Based Approach

In Chapter 4, a new methodology using Boolean random networks (BRN)

is presented to solve the combined topology, geometry and size design prob-

lem for trusses. Boolean networks, along with their local rules, provide an

abstract representation of candidate truss topologies. A nested approach is

used here where truss topology is optimized in an outer loop with respect

to Boolean network parameters using a genetic algorithm. An inner-loop

sequential linear programming (SLP) method solves the geometry and size

optimization problem for every candidate topology. In the map L-systems

based methodology, the inner-loop solves only the size optimization problem.

However, in the new BRN methodology presented in Chapter 4, geometry

and size both are solved in the inner-loop using a gradient-based optimiza-

tion algorithm. A localized geometry optimization method is proposed to

solve the inner loop problem efficiently. Further, a new GA implementation

for solving the topology design problem by exploiting the underlying local

rule application of the Boolean networks and the characteristics of the truss

optimization problem is presented. Use of Boolean random networks allows

consideration of relatively large numbers of points in the ground structure.

This supports the extension to large-scale truss design problems beyond the

capabilities of direct design representations.

Boolean random networks are an extension of cellular automata wherein

each cell becomes a node that is connected to arbitrary nodes, not neces-

sarily geometrically close neighboring nodes. Cellular automata algorithms

have been used in structural layout optimization to achieve global system

equilibrium by iteratively updating node states based on a defined nodal

neighborhood and a set of local rules. Here Boolean networks are used in a

completely different way; the representational power of Boolean networks are

used to reduce optimization problem dimension (i.e., number of optimization

variables) for a given truss design problem. The Boolean network represen-

tation based on a defined neighborhood and a set of fixed local rules outputs

truss topology, and an inner loop solves the geometry and size optimization

problem for each candidate topology using a sequential linear programming

approach. Adjusting the Boolean network neighborhood results in differ-

ent topologies on a given number of an initial set of nodes. The Boolean

network is used as an abstract representation of truss topology. Instead of

7

optimizing with respect to binary variables as in classical truss topology op-

timization, optimization is performed with respect to the Boolean network

parameters, reducing optimization problem dimension significantly. The bi-

nary representation results in an optimization problem dimension that in-

creases quadratically with the number of ground structure nodes, whereas

the proposed Boolean representation results in a linear increase. This repre-

sentation approach supports scaling up to much larger topology optimization

problems than what can be solved using the existing direct ground structure

representations.

The Chapter 4 is organized as follows. First, a review of how cellular

automata has been used thus far in engineering system optimization is pro-

vided. Then, the basics of cellular automata and Boolean random networks

has been discussed. Following that, a novel methodology using a modified

representation of Boolean networks in combination with a genetic algorithm

for truss topology, geometry and size optimization is presented. The pro-

posed methodology aims to reduce significantly the number of design vari-

ables needed in ground structure methods and supports the use of a large

number of initial ground structure nodes. The methodology exploits a basic

concept of optimal truss development; each truss member is added to redis-

tribute load such that it reduces the overall mass required to support a given

load. Truss topology is developed starting with an initial minimum number

of bar members. At each stage of development all nodes are explored in a sys-

tematic way to add new bar members to reduce mass while satisfying stress

and displacement constraints. The initial set of bar members is selected in a

way that connects loads to fixed nodes though a stable truss structure. The

results of the proposed methodology are demonstrated in Chapter 4, using

one benchmark truss design problem.

8

Chapter 3

Map L-system Extension to Truss Design

3.1 Map L-systems

Lindenmayer systems, or L-systems, represent a novel type of string rewriting

where the rewriting is carried out in parallel. The L-systems were developed

by the eminent biologist Aristid Lindenmayer [16]. Map L-systems extend

the parallel rewriting in L-systems to planar graphs with cycles called maps.

The maps are evolved according to cellular division rules. Formally, a map

is defined as a finite set of regions. Each region is bounded by a sequence of

edges and the edges intersect at vertices. Every edge is part of the boundary

of a region and the regions are simply connected. These maps are analogous

to cellular layers, where the regions represent the cells and the edges their

walls.

There are numerous variants of map L-systems. This work uses one of

the most powerful L-systems, the Binary Propagating Map OL-systems with

markers, or mBPMOL-systems, proposed by Nakamura [17]. The method

is binary because cells divide into two during the cell division process. It is

propagating since cells cannot fuse or vanish. The designation OL system

refers to context-free parallel rewriting systems that do not allow for region

interactions. Finally, markers specify juncture points at the edges where

the cell can divide. Hereafter, mBPMOL-systems are referred to as map

L-systems.

Mathematically, a map L-system consists of an alphabet Σ, an axiom ω

(the initial string), a finite set of rewriting rules P , and any additional special

symbols or constants (they are called constants because they are not affected

by the rewriting). The alphabet is a finite, non-empty set Σ, whose elements

are called letters. Each rule is of the form A → α, where the edge A ∈ Σ

is called the predecessor, whereas the string α, composed of symbols from

9

Σ and special symbols, [,], + and −, is called the successor. Symbols that

have pairs of matching brackets around them—i.e., [and]—specify locations

for possible cell-dividing walls. These symbols are called markers. Symbols

outside of the square brackets specify the edge subdivisions; each subdivision

has the same length. Inside the brackets the first symbol is either + or −, and

this symbol defines whether the marker is placed to the left or to the right

of the predecessor edge, respectively. The second symbol within brackets

is always a letter. Letters can carry an arrow over them to represent the

local edge orientation of the successor edges relative to the predecessor edge.

A rule is assigned to all letters in Σ. The letters A,B, . . . are called non-

terminal symbols, whereas X is called a terminal symbol. The rule for X is

omitted since it is always the identity rule: X → X. Examples of rules and

their effects on edges are illustrated in Fig. 3.1.

 

 


 


 

 


 


Left:
←−
A →

−→
BX
−→
C [+
←−
D]
←−
E

Right:
−→
A →

−→
D
←−
BX[+

−→
D]
←−
F

Figure 3.1: Examples of rewriting rules

3.1.1 Cellular Division Algorithm

The cellular division process is preceded by the derivation phase where, at

first, the production rules are applied to all edges in the map, and second,

all the cell edges are scanned for matching markers. If in a cell there exist

two markers that carry the same letter and are directed to each other, then

they are matching markers. Depending upon the division criteria explained

later, a cell division can be formed by connecting these two markers. It

is possible for more than one pair of matching markers to be found in a

cell. In this case, owing to the binary character of the method, only the

first pair of markers that satisfy the division criteria is selected and the

remaining markers are discarded. Once this set of operations is complete

10

a new map has been generated. The derivation and cell division processes

are then repeated as many times as required, or until all edges are labeled

with the terminal symbol X. The number of times this process is repeated is

specified beforehand and is called the number of development stages. Figure

3.2 shows the first two development stages of the cellular division process for

a non-oriented ‘Cartesian’ map L-systems defined by:

Σ = {A,B}
ω = ABAB

P = {A→ B[−A][+A]B,B → A}

A

A

BB

B B

BB

B B

BB

A A

AA

AA AA
BB

BB

A

A

A

A

A
B

B

A A

Figure 3.2: Example of cellular division in map L-system

The initial map has the edge labels defined by the axiom ω = ABAB:

starting with the label A at bottom and proceeding counterclockwise. The

cellular division proceeds by simultaneously rewriting all its edges: both hori-

zontal edges A are transformed according to the rule, p1: A→ B[−A][+A]B;

and the vertical edges B are rewritten to edges A according to the rule, p2:

B → A. We use a global counterclockwise orientation to decide right and

left for this representation. Thus the lower edge A is first subdivided into

two equal segments corresponding to the number of non-bracketed letter in

the rule. The first segment is labeled B. This is followed by two markers:

a marker of type A is placed to the right of the initial edge according to

the [−A] command, and a marker of type A placed to the left according to

the next command [+A]. The last letter in the rule label as segment B.

A similar procedure is applied to the top edge resulting in the intermediate

stage depicted in the second schematic from left in Fig. 3.2. At this stage,

all edges have been rewritten and then matching markers are searched in the

cell. The two matching markers of type A are connected and the resulting

edge is labeled as A, the third schematic in Fig. 3.2. This completes the

first development stage and the same process is repeated on all the edges

and matching markers are connected of the two cells which results the fourth

schematic of Fig. 3.2. This completes the second development stage.

11

3.2 Extension to Truss Design

In the proposed methodology a GA operates on cellular division algorithm

rules to improve truss topology and geometry. For each individual candidate

topology and geometry, an inner loop optimization problem solves for optimal

member sizes using sequential linear programming (SLP). Solving the inner-

loop problem helps to determine how good each candidate truss topology

is, allowing for a fair comparison between design alternatives [18]. In this

section two new algorithms are presented for truss design optimization. In

the first algorithm, several design issues that are unique to structural trusses

are addressed, and the generative algorithm is executed completely for each

individual in a GA population. In the second algorithm, a sequence of GA

problems are solved where each problem involves the addition of just one set

of bar members to the truss using a single generative algorithm development

stage.

3.2.1 Algorithm 1: One-Step Generative Algorithm

The cellular division algorithm outputs a developed map given an initial map,

a set of rules, and a specified number of development stages. However, the

map generated by the cellular division in map L-systems holds no canonical

physical meaning; therefore, for each optimization problem a link must be

established between elements of the generated map (cells, edges and vertices)

and the physical system topology. For truss design optimization, cellular

division provides an intuitive link where the edges of the topology represent

truss bars, and edge intersections represent pin joints. This provides an

abstraction for topology and geometry of truss design via cellular division

algorithm rules.

While a clear connection exists between maps generated using cellular divi-

sion and truss design, a randomly selected cellular division rule-set, however,

may not represent a valid truss topology. The map developed by cellular di-

vision, when identified with edges as truss bars and edge intersections as pin

joints, may correspond to a mechanism instead of a stable truss structure.

One standard remedy would be to evaluate stability of each generated design

(e.g., checking for singular stiffness matrices), and then penalizing unstable

designs in the genetic algorithm implementation. Initial studies performed

12

by the authors revealed that a large portion of designs generated using a stan-

dard cellular division algorithm resulted in mostly unstable designs. This was

not an issue in previous studies that addressed frame design since joints could

resist moments [19], but attempting to explore truss designs using standard

cellular division algorithms that produce unstable structures is very ineffi-

cient. The new methodology presented here takes an alternative approach

where a modified cellular division method based on map L-systems ensures

that generated maps automatically satisfy truss stability requirements (i.e.,

no mechanical degrees of freedom). In other words, any arbitrary rule-set

will output a stable truss topology. This implicit stability requirement sat-

isfaction supports efficient truss design space exploration, whereas standard

cellular division is impractical for use in truss design as it concentrates ex-

ploration efforts on infeasible designs. The details of the implicit stability

requirement satisfaction strategy are discussed later in this section.

In the new methodology, the GA genotype is the rule-set, and the pheno-

type is the truss topology and geometry. The GA operates on the genotype,

and the generative algorithm maps the genotype to phenotype. Design fit-

ness (objective) and constraints are evaluated based on the phenotype. This

approach for using a GA where the design is indirectly encoded more closely

mimics evolution of real biological systems than conventional GA implemen-

tations with directly encoded designs. More specifically, an organism’s DNA

is not the organism; rather, it contains compactly encoded instructions for

the growth of an organism. A variety of biological mechanisms produce fan-

tastic complexity based on the information encoded in an organism’s DNA.

To illustrate this concept, consider the human genome. It has approximately

30,000 genes, but these genes produce more than one million human gene

products (such as proteins). The biological mechanisms of transcription and

translation increase the complexity of gene products beyond the level of com-

plexity found in the human genome. If organism genes were direct encodings

of the corresponding phenotype, the genotype would need to be magnitudes

larger. In essence, every detail of an organism would need to be microman-

aged through its genomic encoding, and the resulting genomic complexity

would limit organism sophistication and the power of design exploration via

evolution.

The mechanisms that map biological genotype to phenotype are pivotal to

the success of biological evolution; without them, the richness and diversity

13

of life on Earth would not be possible [20]. Similarly, without a sophisticated

mapping from genotype to phenotype for engineering designs, artificial evo-

lution would be limited in the complexity of designs that could be explored.

Put another way, using direct encoding fundamentally limits the complexity

of designs that can be explored an optimized using GAs. Most GA imple-

mentations to date have used direct encodings. As a result, engineers have

largely been unable to realize the full power of GAs. When attempting to ap-

ply directly-encoded GAs to problems of significant complexity, the process

often breaks down, and these algorithms are unable to converge to meaningful

results [21]. Utilizing a mapping between genotype and phenotype, however,

results in an evolutionary process that is closer to what is found in biological

systems, and is more successful when attempting to solve large-scale design

problems.

The objective in the design problem here is to minimize system mass,

subject to stress and displacement constraints. For every candidate topology

considered by the GA, the inner-loop optimization problem solves for truss

member cross section areas that minimize structural mass, while satisfying

stress and displacement constraints. The optimal mass as computed by the

inner-loop is used in calculating the fitness for the GA. In the inner loop,

each individual is solved for a fixed number of SLP iterations. Each linear

programming problem resulting from SLP formulation is solved using the

MATLAB R© interior point method, which ensures that each GA individual

and its associated fitness value represents a truss design that satisfies all

design constraints. At termination, the genetic algorithm produces the truss

topology and geometry that has the (approximately) minimal mass when the

inner-loop is applied to identify optimal truss member cross section areas.

This procedure is summarized in the form of pseudocode in Algorithm 1.

An initial truss topology and geometry description, which is denoted by the

variable TS0, is the algorithm input. The algorithm output is the optimal

topology and geometry (TS∗), and the optimal member cross section ar-

eas (A∗). The objective function f(·) calculates truss mass given topology,

geometry, and size specifications. Given TS0, the algorithm produces TS∗

after k developments (including observance of stress and displacement con-

straints). In other words, the genetic algorithm outputs the optimal rule set

which when applied for k developments on the initial topology and geometry

will produce truss topology and shape that yields the minimal mass design.

14

As explained above, the size optimization is performed in a nested approach

using an SLP strategy. This inner-loop (SLP) provides the GA fitness value

for each truss topology and geometry in a GA population, as represented by

a candidate rule set.

Algorithm 1: Truss design using One-step Generative Algorithm

Input: Initial topology and geometry TS0

Output: Optimal topology and geometry, TS∗; and size, A∗

1: [TS∗,A∗] = arg min{(TS,k−developments|TS0),A} f(TS,A), Subject to
stress and displacement constraints

Initial studies utilizing Algorithm 1 revealed that completing all develop-

ment stages for each individual in a GA population lead to many designs that

were self-similar. This limited how effectively the design space could be ex-

plored. A variant on this design methodology was developed to address these

limitations, where only one development stage was utilized at a time, but a

sequence of GA problems was solved. This second methodology, referred to

here as Algorithm 2, performed much better in practice and resulted in more

systematic design space exploration where each truss development stage led

to mass reduction. Algorithm 2 is described in detail in the next subsection.

3.2.2 Algorithm 2: Multi-Step Generative Algorithm

An alternative strategy was created and investigated where the generative

algorithm is used for only one development stage within the GA, but multiple

GA problems are solved in sequence. Each new GA problem in the sequence

uses the solution of the last GA problem as its starting map. This strategy

harnesses a basic principle of optimal truss development—each truss member

is added to redistribute load such that it reduces the overall structural mass

required to support a given load—to frame an entirely novel methodology

of truss development. In addition, this is a completely new way of utilizing

generative algorithms for engineering design. Because the number of cellular

division development stages is restricted to one, each GA solution adds at

most one bar member to each cell of the map with the objective of reducing

the mass of the overall structure. The next truss development stage is carried

out by solving the next GA problem, which takes the optimal topology and

geometry obtained in the previous stage as the initial map, and repeats the

15

process to further reduce mass. In this manner this methodology explores

the design space systematically to reduce mass by adding bars in optimal

locations. The truss design is developed with each subsequent development

stage (GA solution) until mass cannot be reduced further by adding new bar

members. Figure 4.10 illustrates this methodology graphically.

Given&Design&Boundary

Cellular&Division&Initial&Map

Genetic&Algorithm

Genotype Phenotype Fitness

Cellular&
Division&

Rule&
Set

Topology
)

Geometry

Truss&Mass
For&Optimized

Size
(Using&SLP)

Optimal&Topology&)&Geometry

Figure 3.3: The proposed sequential GA methodology

This procedure is summarized in the form of pseudocode in Algorithm

2. As with Algorithm 1, the input is also initial topology and geometry

(TS0), and the output is the optimal topology and geometry (TS∗) and

optimal size values (A∗). In Algorithm 1, a single GA was solved. This

algorithm, however, develops topology and geometry in successive GA so-

lutions that each develop the truss design only partially (i.e., the genera-

tive algorithm is executed for just one development stage when solving the

GA). The stepwise addition of new bar members is performed until the

minimum mass design from successive GA solutions stops decreasing (i.e.,

(f(TSk+1,Ak+1) ≥ f(TSk,Ak))). Adding members at strategic locations

at each step reduces mass initially due to load redistribution, but due to

lower size limits on members the mass will at some point begin to increase.

Algorithm 2: Truss design using Multi-step Generative Algorithm

Input: Initial topology and geometry TS0

Output: Optimal topology and geometry, TS∗; and size, A∗

1: Set k = 0
repeat

1.1: k ← k + 1
1.2: [TSk+1,Ak+1] = arg min{(TS,1−development|TSk),A} f(TS,A),
Subject to stress, displacement constraints

until (f(TSk+1,Ak+1) ≥ f(TSk,Ak))

16

Table 3.1: Genomic encoding vector

Xω
1 Xω

2 ... Xω
n XP1

1 XP1
2 ... XP1

m XP2
1 XP2

2 ... XP2
t ...

The following subsection explains mathematical genotype representation of

the rule set and modifications to Map-L systems for truss design. In addition

to ensuring stability, these modifications facilitate load redistribution that

leads to optimal mass reduction.

3.3 Genomic Encoding of Cellular Division Rules

The GA used here acts upon the individual genes that encode all the infor-

mation required for generating the topology and geometry represented by a

cellular division process, namely the map L-system axiom ω and the produc-

tion rules P . For the purposes of the GA used here, the genome is encoded

as a mixed vector of reals and integers, X, whose real elements are in the

interval [0, 1], whose integer elements are in the set {1, 2..., z}, where z is

the number of letters in the alphabet. Table 3.1 exemplifies the structure of

X, where superscripts indicate what axiom or production rule element the

genome component corresponds to.

The first n elements of X encode the axiom word. The length of the axiom

(n) is equal to the number of edges in the initial map. As explained above,

letters of the alphabets are encoded as integers {1, 2.., z}, where z is the

cardinality of the alphabet Σ. A similar approach is followed for production

rule encoding, where each rule is encoded according to a master rule of the

form:

σi → XPi
1 X

Pi
2 ...X

Pi
m−1X

Pi
m , (3.1)

where σi is the ith letter in Σ, and XPi
1 is a token that encodes an independent

entity of the production rule of an alphabet.

This work uses non-oriented map L-systems, and a modified production

rule wherein each token represents only an alphabet or an alphabet and a

marker. To incorporate all possibilities in a token, all tokens are encoded as a

vector of two real and two integer values that are capable of representing any

possible token. A token may also represent a blank space. With the inclusion

of the blank space, the size of the production rules can vary; however, the

17

Table 3.2: Production rule vector XPi
1

Blank Token Edge-Letter Read-Marker Marker-Letter

maximum length is dictated by the number of slots in the rules, m, which is

decided by the user and is the same for all rules. Table 3.2 shows structure

of the vector XPi
1 .

The first element encodes whether or not the token is a blank space. The

remaining three codes are ignored if this element encodes a blank space. The

second element encodes the edge alphabet {A,B,C, ...}. The third element

encodes whether or not the edge division is followed by a marker. The fourth

element encodes the marker alphabet. If there is a marker, it is considered

to be on both the sides of the edge, i.e., it can be used for division of cells

on either side of the edge. The first and third elements—blank token and

read-marker—are encoded on an interval of [0, 1]. If the value of the first

element is less than or equal to 0.2, the token is blank (otherwise it is non-

blank). Thus, blank tokens are less likely than non-blank. A marker follows

an edge alphabet if the third element of this vector is less than or equal

to 0.8. The second and fourth elements—edge-letter and marker-letter—are

encoded as integers from the set {1, 2..., z}, where z is the number of letters

in the alphabet. Integer coding of edge and marker letters greatly improves

GA exploration effectiveness.

After decoding, the genome can be seen as a partitioned array of symbols

whose first part is occupied by n letters that compose the axiom, and the

second part by the production rules for each alphabet. The number of tokens

for each production rule may vary as there is some possibility of a token being

blank.

The method presented here uses non-oriented map L-systems, whereas

standard map L-systems are oriented (see the arrows in Fig. 3.1). An-

other significant modification used here relates to how markers are read. In

standard L-systems, markers are labeled with + or − symbols to indicated

whether marker is placed to the right or to the left of the predecessor edge.

This restricts how cellular divisions may be made. Here a marker on an edge

may be used for cell division on either side of the edge. This modification

increases the overall number of cell divisions. Figure 3.4 shows the first de-

velopment stage of the cellular division process in modified map L-systems

18

defined by:

Σ = {A,B,C,D}
ω = BCBDA

P =

A→ B[D]C[B]D,B → B

C → C[B]D,D → A[D]C

B

D C

B

C

A

D

C

B

B

A
D D

D
D

B
B B B

D

C

B

D
B

B

C

A

B

D
CD

B C

Figure 3.4: Example of cellular division in modified map L-system

3.4 Modification of Cellular Division for Truss

Optimization

The map developed by cellular division in map L-systems—where edges cor-

respond to truss bars and edge intersections correspond to pin joints—may

not result in a stable truss design for an arbitrary axiom and set of production

rules. To illustrate this concept, consider the ten randomly generated truss

topologies shown in Fig. 3.5. Most of them do not represent a stable truss

design, i.e., they are mechanisms. These topologies were generated using four

development stages on a set of four alphabets with six tokens and an axiom

of four edges. The intervals used for blank space and markers are the same

as mentioned above. Generation of a stable truss is in fact rare when using

the standard map L-system algorithm. Previous work in structural topology

optimization generated truss-like systems, but these were in fact frames that

were always stable regardless of topology as long as load and support nodes

were connected [19]. The assurance of stability greatly simplified the design

problem. This motivates a modification to the cellular division algorithm

to permit application to truss design by ensuring the generation of stable

trusses.

Stability of an arbitrary truss topology and geometry can be fully ascer-

tained by checking the singularity of the corresponding stiffness matrix. This

metric, however, cannot be incorporated into a generative algorithm. One

19

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

Figure 3.5: Randomly Generated Truss Topologies

could check trusses after generation using their stiffness matrices, and either

‘repair’ unstable trusses, or penalize the fitness of unstable truss topologies

to guide the design exploration away from them. Using a repair mechanism

would result in sub-optimal designs, and both approaches would be ineffi-

cient since a large number of unstable structures would be generated during

the solution process. A more efficient strategy is used here where only sta-

ble designs are explored. To ensure that the output of the cellular division

process for any set of randomly generated rules is a stable truss design, a set

of modifications in cell division process has been developed.

Here a set of constraints is introduced that, when enforced upon the cellu-

lar division process, ensures stability of resulting truss topologies after each

stage of map development. The axiom map is interpreted as a tessellation of

triangles, and the cellular division process is restricted such that a division

takes place only if it divides the cell into two triangles. The stability of such

trusses is guaranteed and need not be checked using the stiffness matrix. For

this purpose, two matching markers are connected only if one of them is at a

vertex. Figure 3.6 depicts a set of randomly generated truss topologies using

the modified cell division process, all of which are stable. These topologies

were generated using the same algorithm parameters used for the (unstable)

topologies illustrated in Fig. 3.5.

After exploring stable truss designs generated using this modified algo-

rithm, an additional observation was made that led to another useful algo-

rithm modification. Often a cell was divided such that it created a bar that

it connected to the middle of another bar (see the downward-sloping bar just

below the top bar in Fig. 3.7). If a pin joint is created at this connection, the

newly added bar cannot exert much force at the joint because the other two

bars are 180◦ apart. This limits overall load redistribution, and limits the

20

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

Figure 3.6: Randomly Generated Stable Truss Topologies

benefit of adding this new bar. However, if the adjoining cell is also divided

at the same marker location by connecting with its opposite vertex (as in

Fig. 3.8), it leads to substantial load redistribution and mass reduction after

inner-loop optimization. The optimal mass for the design in Fig. 3.7 is 7099

lbm. (after applying the SLP size optimization strategy), whereas the opti-

mal mass for the design in Fig. 3.8 it is 5476 lbm. The solid lines represent

bars under tension, and the dotted lines represent bars under compression.

Line thickness is a linear function of the cross-section area.

Figure 3.7: Ten Bar Truss- Adjoining Cell Not Divided

Figure 3.8: Ten Bar Truss- Adjoining Cell Divided

3.5 Extension to 3D Truss Design

A core advantage of generative design strategies is the ability to scale-up to

the design of highly complex systems. This is primarily due to generative

algorithm abstractions that support exploration of complex designs using

only a small set of rules as design variables. This section details how the

21

methodology introduced in this article can be extended to the design of

three-dimensional trusses, which involve additional complexities not present

in two-dimensional trusses.

The starting point is an initial design with labeled edges (i.e., the axiom).

The production rules are then applied to divide edges and add markers, and

then matching edges are joined to produce cell divisions. However, to en-

sure truss stability upon cell division, only divisions that produce tetrahedral

structures are permitted. A truss that is composed of tetrahedra is guaran-

teed to be stable. The initial map is a composition of tetrahedra, and new

tetrahedra are formed by taking an existing tetrahedron, and connecting an

interior point of one of its edges with its two opposite vertices. This type of

division occurs if a marker at one of its edges matches markers on opposite

vertices. In addition, design exploration is guided toward trusses with better

load distribution by mirroring divisions in the adjoining tetrahedra (similar

to what is done in the 2D case). More precisely, if the edge being divided

is not on the external boundary of the truss, the adjoining tetrahedra are

also divided at the same marker location with their opposite vertices being

connected to that marker location. Figure 3.9 illustrates the division of a

tetrahedron by joining an internal point of one of its edges with the opposite

vertices (the mirroring operation is not illustrated).

Initial Tetrahedron Divided Tetrahedron

Figure 3.9: Tetrahedron Sub-division

3.6 Truss Optimization Problem Formulation

The new methodology is formulated mathematically to solve truss design

problems. The problems involve finding the optimal topology, geometry and

size of the circular cross-section bars in a given design space boundary. Each

truss member size (cross-sectional area) is a continuous variable with lower

and upper bounds. A general problem formulation for the concurrent opti-

mization of size, geometry, and topology can be represented mathematically

22

as:

min
n,C,A,P

f =
∑

0≤i≤n
0≤j≤n

ρCi,jAi,jli,j

Subject to: σmin ≤ σi,j ≤ σmax (3.2)

dmin ≤ dk ≤ dmax

where n is the number of nodes (joints), Ci,j ∈ {0, 1} indicates whether

nodes i and j are connected, Pk = [xk, yk, zk]T is the position vector for

each node k = 1, 2, . . . , n, and Ai,j is the cross-sectional area of the bar that

connects nodes i and j. The material density is ρ, and several quantities are

functions of design variables, including the length of the bar that connects

nodes i and j (li,j = ‖Pi −Pj‖2), the axial stress of the member connecting

nodes i and j (σi,j), and the displacement of each node (dk, k ∈ {1, 2, . . . , n})
(computed here using the force method). The minimum allowable stress is

σmin (σmin < 0, indicating compression), and the maximum allowable stress is

σmax (σmax > 0, indicating tension). Similarly, the minimum and maximum

allowable node displacements are dmin and dmax, respectively. The objective

of the design problem is to minimize overall structural mass.

The above optimization problem is equivalent to finding the optimal topol-

ogy, geometry, and size of a truss given the load, design space boundary,

stress, and displacement constraints. Please note that while this formulation

implies simultaneous solution of topology, geometry, and size, the problem

was solved here using the nested generative algorithm approach introduced

in the previous sections. The outer loop searches for the best topology and

geometry, while the inner loop solves the size optimization problem in a way

that satisfies stress and displacement constraints. The generative algorithm

rule set is optimized using the MATLAB R© genetic algorithm (ga) function.

The inner-loop is solved using a custom SLP implementation based on the

the MATLAB R© function linprog, described in more detail below.

The initial truss (map) for each design problem is created by assuming

a truss bar member exists for each edge of the boundary, and then adding

new members inside the design boundary such that it forms a summation

of triangles (two-dimensional truss) or a summation of tetrahedra (three-

23

dimensional truss). At each development stage, all the edges of the initial

map are labeled according to the axiom letters. Production rules are applied

on each edge. Then, in the case of the two-dimensional truss problem, the

vertices of each triangular cell is scanned for a matching markers on opposite

edges for a possible division. To avoid skew angles between truss members,

a division is considered to be feasible only if the none of the resulting cells

has area that is less than one-fifth of the original cell.

For the division of a non-internal edge, no further conditions are checked

and the cell is divided in two. However, if the edge to be divided is an

internal edge, the adjacent cell is also divided at the same marker location

with its opposite vertex (this is the mirroring operation described above).

For this to happen, the adjacent cell must not have been divided already in

that stage of development since a basic rule of cellular division is that a cell

can only be divided once in a development step. If more than one division

is possible, ties are broken arbitrarily. Specifically, the algorithm searches

for matching markers that satisfy the above conditions to identify edges that

can be divided. If more than one edge exists, the first one found is chosen.

A different tie-breaking strategy could be used if desired.

Similarly, in the case of three-dimensional truss design, each pair of vertices

in each tetrahedron is checked for a matching marker on opposite edges, and

a division is considered to be possible only if none of the resulting tetrahedra

has volume less than one fifth of that of the original tetrahedron. In three

dimensions more than one tetrahedron can be adjacent to an edge. If this

is the case, all adjacent tetrahedra are divided in the mirroring operation

(for divisions involving non-internal edges). If any adjacent tetrahedra have

already been divided, the division is considered to be infeasible. Finally,

the following map L-system parameters were used in the generation of truss

topology and geometry:

• The number of development stages n = 1.

• The alphabet Σ contains 6 letters.

• The production rules have 12 tokens.

• The blank token threshold is 0.2.

• The marker after a division-edge threshold is 0.8.

24

The inner-loop problem is solved using sequential linear programming

(SLP), which is a recursive procedure that involves the formulation and so-

lution of a series of linearly approximated sub-problems, where each inter-

mediate solution is the starting point for the subsequent sub-problem. The

inverse of cross-sectional areas is used as the size optimization variable; this

introduces a nonlinearity into the objective function, but reduces the non-

linearity of the constraint equations. Cross-sectional area values are bounded

above and below.

When a basic SLP strategy is used, and when both stress and displacement

constraints are included, SLP often did not coverage during initial tests. This

was remedied by using move limits. In SLP, the linear approximation of the

nonlinear size optimization problem is only accurate close to the linearization

point. Move limits reduce potential error, improving convergence properties.

A simple move limit strategy was used where at each SLP iteration, the

search domain is limited to the intersection between the linearized constraint

domain and a parallelepiped around the linearization point.

Large move limits may result in oscillations during numerical problem so-

lution, and move limits that are too small will yield a slow convergence rate,

and may cause the algorithm to accumulate to a local optimum. Wujek [22]

argued that a proper move limit choice should ensure that the objective func-

tion is always decreasing, that the intermediate solutions are always feasible,

and that the optimization variable movement is controlled to maintain ap-

proximation error at a reasonable level. Lamberti and Pappalettere’s [23]

partial modification of Chen’s [24] Constraint Gradient-Based Move Limit

(CGML) algorithm is used in the case studies presented here. In particular,

scaled move limits that are equal for all optimization variables are used. Lam-

berti recalculated the move limits until the intermediate solution improved

meaningfully, and then they reduced using a user-supplied factor. The max-

imum number of SLP iterations used here is 50. Each linear sub-problem is

solved using MATLAB R© linprog function using the interior point method

(ensuring each sub-problem the solution is feasible). It should be noted that

all the results reported in the sections below are generated using Algorithm

2. In Chapter 5, results of three archetypal truss design example problems

solved using the above formulation is presented.

25

3.7 Discussion

In summary, this abstraction concept using map L-system gives a set of pa-

rameters that, when decoded using a cellular division algorithm, outputs both

truss topology and geometry. The coupling of topology and geometry where

both are represented together by a set of parameters restricts design space

exploration. To overcome this limitation of the above map L-system ap-

proach, the next chapter introduces an alternative abstraction concept using

Boolean random networks that represents topology alone. In this alternative

formulation, geometry is optimized along with size in the inner loop, while

the outer loop optimizes only topology. It is expected that the alternative

formulation will cover a larger design space and give better results in terms

of optimal truss design.

26

Chapter 4

Boolean Random Networks Extension to Truss
Design

This chapter presents an alternative truss topology abstraction using random

Boolean networks. Random Boolean networks are an extension of cellular au-

tomata. The section below explains the basics of cellular automata, followed

by an introduction to random Boolean networks. The next section intro-

duces a methodology for truss topology abstraction using random Boolean

networks. Finally, a parameterization of random Boolean networks is pre-

sented that supports truss topology optimization by adjusting the parameters

that govern network generation using random Boolean networks.

4.1 Cellular Automata

The behavior of cellular automata (CA) is governed by a set of local rules

that when applied iteratively produce complex global phenomena. Typical

engineering implementations of CA are based on the decomposition of a do-

main governed by physical laws into a set of regular cells that form a uniform

lattice. Decision-making is implemented by rules at the cell level. Rules are

functions of the neighboring cells, and the cell itself. The information used

to update each cell is local by nature and is taken from its neighborhood

only. By repetitively and simultaneously applying the local rules to each cell

to update the associated physical quantity, the CA process converges to a

global description of the system. Since CA relies only on local information

for updating system state, system-level governing equations are not required.

CA, therefore, is considered to be very effective for simulating physical phe-

nomena whose governing equations are unknown.

The introduction of the CA is generally attributed to the works of Von

Neumann in the early 1950s. More recently, cellular automata was revisited

in 1994 by Wolfram [25]. It has been used frequently by physicists to describe

27

Figure 4.1: A ground truss lattice

systems of particles. There have been many studies of its application to

engineering systems and structural mechanics as well. The application of the

cellular automaton to geometry optimization has been presented by Inou et

al. [26,27], Kundu et al. [28,29], Xie et al. [30–33], Zhao et al. [34,35], Yang

et al. [36], Young et al. [37] and Kim et al. [38]. In these studies, the design

domain is divided into many small cells and the von Mises equivalent stress

distribution on the whole domain is estimated using a finite element method

(FEM) approximation. Then, the reference stress at each cell is updated by

applying a local rule to the stress distribution. The Young’s modulus for

each cell is treated as a design variable. It is modified so that the equivalent

stress at the updated cell is to be equal to the reference stress. The cells with

relatively small Young’s modulus are removed which leads to the modification

of the geometry and topology of the structures. Other studies involving the

use of CA for structural design optimization include Kita et al. [39], Gürdal

et al. [40], Tatting et al. [41], and Abdalla et al. [42].

Cellular automata is based on the decomposition of a physical domain

into regular cells forming a lattice. This domain can be a ground truss or a

continuum domain in structural mechanics. As mentioned above, the cells

in cellular automata receive information from their neighboring cells only.

This leads to the definition of several possible neighborhoods characterized

by the number and the location of the surrounding cells. The neighboring

cells are typically located along the eight cardinal coordinates (N, S, E, W,

NE, NW, SE, and SW). Moore and Von Neumann neighborhoods are the two

most commonly used neighborhoods. For example, for a ground truss lattice

description of a single cell, the Moore and the Von Neumann neighborhoods

are illustrated in Figs. 4.1–4.3.

The state of a cell represents values of the response quantities of the phys-

ical domain associated with that cell (e.g., stress, displacement). Cell state

28

N

SSW SE

W E

NENW N

S

W E

Figure 4.2: The Moore neighborhood
N

SSW SE

W E

NENW N

S

W E

Figure 4.3: The Von Neumann neighborhood

may also involve domain properties, such as thickness and cross-sectional

area in the case of trusses. The state of a particular cell at the center of

a neighborhood is therefore represented by a set of quantities, which is a

function of the neighboring cells states and the external forces applied to

that cell. The state of all the cells is updated simultaneously by local rules

which are derived based on the physical laws that govern the system or are

heuristic in nature.

4.2 Random Boolean Networks

Rather than implement cellular automata in the usual one dimensional or

two dimensional array format, it is possible to consider a network where

each cell is a node that is connected to arbitrary other nodes, not geometri-

cally close neighboring nodes. Similar to the cells in automata, where each

cell is associated to a set of quantities which represent its state, the nodes

here can be considered in various states. The state of the nodes is updated

synchronously at each time step by a local rule in accordance with the other

nodes to which an individual node is connected. If each node is allowed to

be in only two possible states, 0 and 1 (off and on - Boolean), such a network

is known as a Boolean network. To enhance the dynamics of the network,

if each node is allowed to operate under its own rule picked at random, the

generalization of cellular automaton is known as random Boolean network.

Figure 4.4 depicts a random Boolean network that has 6 nodes, where each

node is connected to 3 other nodes. The state of each node is updated based

29

Figure 4.4: A random Boolean network

on the states of the other nodes from which it has incoming arrows. In cellu-

lar automata the state of a cell depends upon the states of the cells which are

in its physical neighborhood, whereas in random Boolean networks the con-

cept of physical neighborhood is not used. Node states instead can depend

on any other node in the network as long as a correctly-oriented connection

exists. In other words, neighborhood is not based on the geometric closeness

of the nodes, but can be assigned in an arbitrary manner.

If each node has K neighbors, then there exist 2K possible neighbor state

combinations, and hence 2KK
possible Boolean rules can be formed. For

example, if each node receives inputs from K = 2 other nodes, there are

222 = 16 possible functions to choose from for each node. Further, with two

possible states of 0 and 1 for each node, and if there are N nodes, then the

number of possible unique network states is 2N ; this is the size of the state

space. These models are also known as NK (or Kaufmann) networks. It has

been demonstrated that if K ≥ 3, networks exhibit chaotic behavior.

4.3 Extension to Truss Topology Design

In standard implementations of random Boolean networks, node states are

updated simultaneously at each time step by applying local rules that depend

on the state of connected nodes. This iterative node update strategy supports

the efficient exploration of an otherwise exponentially large state space.

30

Some existing strategies for generating a variety of different network states

(topologies) is to vary either the number of local rule iterations, or to adjust

the local rules. Here an alternative method for network topology exploration

is proposed where neighborhood definitions are changed instead of adjust-

ing the set of local rules or number of iterations. We hypothesize that the

exponentially large network state space can be explored by varying the neigh-

borhood of each node while keeping the set of local rules fixed. Further, we

seek to optimize the selection of the neighborhood for each node using a ge-

netic algorithm to obtain the optimal truss topology. We propose a set of

local rules and a parametrization of the Boolean random network that can

be efficiently optimized using the genetic algorithm. In standard random

Boolean networks, the rule set is selected randomly for each node in the net-

work. Here the neighborhood of each node is varied instead, and thus use the

term Boolean random network (BRN) instead of random Boolean network

(RBN).

The standard ground structure method for truss topology optimization

begins with the definition of a densely-connected ground structure topology.

A discrete optimization algorithm, such as a genetic algorithm (GA), is then

used to determine which of the available truss elements defined in the ground

structure are used in the final optimal design. In most GA implementations

a direct binary encoding is used where xi = 1 indicates that the ith element

exists, and xi = 0 indicates that it does not. This direct encoding results in

a quadratic increase in optimization problem size with the number of nodes,

making design of large-scale structures impractical. In addition, this direct

encoding does not prevent the GA from exploring truss designs that are

topologically infeasible (e.g., disconnected or structurally unstable).

The approach proposed here addresses the shortcomings of direct GA en-

codings operating on ground structures, more specifically, 1) the inability

to scale up to large-dimension problems, and 2) the inefficiency of exploring

infeasible design topologies. This is accomplished using a generative growth

strategy, and by embedding design requirements within the generative algo-

rithm. Instead of starting with a densely-connected ground structure, the

method begins with the definition of a minimally connected stable structure.

A BRN algorithm is then used to add new members in a way that guarantees

stability. Instead of operating directly on design variables that describe the

existence of truss members, the GA operates on BRN neighborhood defini-

31

tions. This abstraction supports scaling up to larger-dimension problems,

and is an indirect GA encoding where the genotype (the BRN neighbor-

hoods) is mapped to the phenotype (truss topology definition) through the

application of the BRN algorithm. When using direct GA encodings, the

genotype equals the phenotype.

This approach is similar to the map L-systems based methodology ex-

plained in the previous chapter as it also provides an abstraction of truss

design variables. However, this approach decouples the abstraction of topol-

ogy and geometry. This coupling was a limitation of the map L-system based

abstraction. Decoupling of geometry and topology allows for improved cover-

age of the design space, and hence gives better results in terms of truss design

performance. In this approach, truss geometry is optimized along with size

in the inner loop.

Any node in a truss design is stable (or fixed) if it is connected to two or

more fixed nodes. A node is fixed if its motion is fully constrained by direct

or indirect connections to stable nodes. If all the nodes in a truss design are

stable than the truss is stable. Using these concepts, a minimally connected

truss is framed by connecting all the loading nodes to at least two support

nodes. An example of such a truss is illustrated in Fig. 4.5, where the two

nodes on the left are support (anchor) nodes, and the bottom center and

right nodes are loaded with downward forces. This truss is a starting point

for a design problem modeled after a canonical 10-bar truss design problem.

Please note that this problem will be referred to as the ‘10-bar’ problem due

to the problem it is based on, but design solutions may not necessarily have

10 bars since topology optimization is being performed.

New truss designs are generated by adding new members to the initial

minimally connected stable truss. New members can be connected between

nodes that are either already part of the existing truss, or are nodes defined

on a grid not already connected to the truss. If a non-connected node is con-

nected to at least two stable nodes, a stable truss results. While connecting

a non-connected node to exactly two stable nodes will produce a stable truss,

it does not enhance truss design as it does not redistribute load (which is

required to reduce truss mass). The solution used here is to always connect

a new node to three stable nodes. This is illustrated in Figs. 4.6 and 4.7. In

Fig. 4.6 a new node was connected to the starting truss from Fig. 4.5 through

only two nodes. In Fig. 4.7 three connections to stable nodes are made. It

32

Figure 4.5: Ten bar minimally connected truss

Figure 4.6: Ten bar truss- with two new connections

is clear that the doubly-connected new node will not help transfer any force

from the loaded nodes to the support loads, whereas the new node with a

triple connection will. The importance of load redistribution in mass reduc-

tion can be verified by solving the inner-loop problem (mass minimization

with respect to bar sizes using SLP) for each of these three topologies. The

results are summarized in Table 4.1. Adding a node with a triple connection

leads to significantly lower mass after re-optimizing truss member sizes. In

the above example the overlapping members of the truss are removed in a

systematic way that will be explained in a later section.

Figure 4.7: Ten bar truss- with three new connections

33

Table 4.1: Ten-bar Truss- Optimal Connections

Configuration Optimal Mass (lbm.)
Minimally connected design 5689
Additional node- 2 Connections 5689
Additional node- 3 Connections 4841

4.3.1 Parametrization of Boolean Random Networks

The method described conceptually above can be formulated systematically

using Boolean random networks. BRN as explained above has a set of nodes,

where each node has its own neighborhood, a set of nodes to which it is

connected, and a set of local rules. Local rules are applied simultaneously to

all nodes to update network state. For the purpose of topology optimization

here, the neighborhood of each node needs to be encoded in a way such

that it can be varied efficiently. If nodes are numbered from 1 to N and

K neighbors are defined for each node, then a total of NK variables are

required. An alternative strategy is to partition the N nodes into K groups,

where nodes with a group are considered to be neighbors. All the nodes in

the network, including connected and non-connected, are assigned to one of

the K groups. This encoding strategy requires only N variables, and is the

approach used here due to its representational efficiency.

The local rule is defined here such that if a node has more than three stable

nodes in its neighborhood, then the node is connected to those stable nodes.

If the node is not connected to the network prior to applying the rules, the

node becomes connected and hence stable. If the node is already connected,

it makes new connections and remains stable. In other words, if a group has

a minimum of three stable nodes, then all the non-connected nodes of the

group would be connected to the three stable nodes and made stable. If a

group has more than three stable nodes in it then all the nodes, including

the earlier stable nodes, of the group would be connected to any of the three

stable nodes and made stable. The first three stable nodes (according to

node numbering sequence) are selected to make new member-connections.

The maximum number of nodes that can be made stable from one group are

restricted to a fixed number based on the configuration of the network. To

enhance exploration further, all nodes are defined as alive or dead. While

applying the local rules, only the alive nodes are considered for making new

34

Figure 4.8: RBN Parametrization

Figure 4.9: RBN Rule application

connections to the other nodes and are made stable. However, for the purpose

of identifying the already stable nodes, to which a node is connected to, all

the stable nodes are considered alive.

This BRN parameterization is illustrated in Fig. 4.8; it shows one par-

ticular network configuration for a minimally-connected initial truss design

based on the classical 10-bar truss example. All the nodes are partitioned in

two groups. The two groups are denoted by + and ×. A single ring around

a symbol indicates that a node is alive, and a double ring indicates that the

node is stable. Stability can also be observed from nodal connections. A

symbol without a ring means that the node is dead. There are a total of 4

stable nodes in Fig. 4.8, out of which 3 are in one group. Therefore, while

applying the local rules, all the alive nodes of that group are connected to

the three stable nodes and made stable. For the purpose of illustration only

one node is kept alive from that group. Figure 4.9 shows state of the nodes

after applying the local rules.

The proposed methodology uses a GA to operate on BRN neighborhood

assignments to optimize truss topology generated by BRNs. The genotype

for the genetic algorithm is the neighborhood assignment of the BRN, and

the phenotype is the truss topology. Given an initial network topology, in

35

GivenOGroundOStructure

InitialOBRNOTopology

GeneticOAlgorithm

Genotype Phenotype Fitness

BRN
Neighborhood
Assignment

Topology

TrussOWeight
ForOOptimized

Size
(UsingOSLP)

OptimalOTopologyO

Figure 4.10: Multistage GA/BRN truss design methodology

accordance with the neighborhood assignment represented by the genotype,

the local rules are applied on each node to obtain the corresponding phe-

notype. Fitness for each individual in the population is the minimal weight

obtained by solving the inner loop geometry and size optimization problem.

In the inner loop, each individual is solved for a fixed number of iterations

using SLP with respect to stress and displacement constraints. The sequence

of linear programming (LP) problems is solved using the Matlab R© interior

point method. This ensures that each individual design in the GA popula-

tion and its associated fitness value represents a truss design with minimal

weight for the given topology, and satisfies all design constraints.

The approach of adding members to redistribute load and reduce mass is

extended to an iterative multi-stage methodology. More specifically, starting

with a minimally connected truss topology, the above methodology is ap-

plied in stages. At each stage of topology development a limited number of

new members are added in an optimal way using the GA. In the next stage

of development the optimal topology from the previous stage is used as the

initial topology configuration. The GA/BRN strategy is then applied again

to add members and further reduce mass. This methodology allows for a

systematic exploration of topological designs. Truss topology is developed

with each subsequent development stage until adding new members does not

reduce truss mass further. Figure 4.10 illustrates this multi-stage method-

ology. Additional details follow, including definition of the genotype (BRN

neighborhood assignment), and a strategy for avoiding overlapping members

in generated truss topologies.

36

4.4 Genomic Encoding of Boolean Random Networks

Representation

The GA used here acts upon the individual genes that encode the neigh-

borhood assignments of a Boolean random network given a fixed number of

nodes in the design space. As explained above, the genotype needs to en-

code the group identifier for each node, as well as an identifier that indicates

whether the node is alive or dead. The genotype is a mixed vector of reals

and integers: x, whose elements are either in the interval [0, 1], or are in the

set {1, 2..., K}, where K is the number of groups. Equation (4.1) illustrates

the structure of x.

x = [xg1, x
p
1, x

g
2, x

p
2, . . . , x

g
N , x

p
N]T (4.1)

The genotype has 2N elements, two for each node in the ground structure.

The first element for each node (xgi ∈ {1, 2..., K}) encodes its group number.

The second element for each node (xpi) is a real number between [0, 1] that is

used to determine whether the node is alive or dead. A fixed parameter p is

chosen before problem solution that, along with the value of xpi , determines

whether a node is alive or dead; if xpi < p, the node is alive, and if xpi ≥ p it is

dead. After decoding the genome x, new members can be deterministically

added to the existing structure based on the methodology described above.

4.5 Resolving Overlapping Members

When the local rules are applied on a BRN to generate a truss topology,

members may fully or partially overlap. Overlapping members and other

undesirable connections should be avoided. Figure 4.11 illustrates a catego-

rization of all six undesirable truss connection types that may occur based

on the BRN rules defined here. The solid line with circular nodes at the

each end represents an existing member between the two stable nodes. The

two × symbols represent the nodes that are to be connected as a result of

application of local rules. Below is the list describing the 6 types of erroneous

connections.

1. The new member passes over an existing stable node without the two

37

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Figure 4.11: Rules to avoid overlapping members

members connecting.

2. One of the new nodes has an existing member passing over it without

the two members connecting.

3. The new member exactly overlaps an existing member with both the

nodes coinciding.

4. The new member partially overlaps an existing member with one new

node falling over the existing member.

5. The new member fully overlaps an existing member with both the new

nodes falling over the existing member.

6. The new member partially overlaps an existing member with none of

the new nodes falling over the existing member.

It is clear that these connection errors need to be rectified. Below, two

rules are proposed that rectify all six of these erroneous connections.

1. If a new member passes through a stable node then the new member

should be replaced by two smaller members connecting the end nodes

of the new member with the existing stable node.

2. If a new node being made stable falls on an existing member then the

existing member should be replaced by two smaller members connecting

the end nodes of the existing member with the new node.

38

(i)

(ii)

Figure 4.12: Rules to avoid overlapping members

Figure 4.12 graphically shows application of the above defined two rules.

Application of rules 1 and 2 rectifies error types 1 and 2, respectively. Ap-

plication of the rules 1 and 2 converts the error type 4 into error type 3.

Similarly, two applications of rule 1 on error type 5, and two applications of

rule 2 on error type 6 converts both into error type 3. Finally overlapping

members of error type 3 are removed easily (they are redundant). Also, if

all the three connections made to an earlier non-connected nodes are parallel

the new connections are not allowed.

4.6 Truss Optimization Problem Formulation

The new methodology is formulated mathematically to solve truss design

problems. The problem is formulated such that it finds the optimal topology

geometry and size of the circular cross-sectional bars for a given design space.

Truss geometry refers to the position of the nodes, specifically their x and y

coordinates in the Cartesian coordinate system. Truss member size (cross-

sectional area) is a continuous variable with lower and upper bounds. The

concurrent topology, geometry and size optimization problem is represented

mathematically using the equations below.

39

min
n,C,A,P

f =
∑

0≤i≤n
0≤j≤n

ρCi,jAi,jli,j

Subject to: σmin ≤ σi,j ≤ σmax (4.2)

dmin ≤ dk ≤ dmax

where i, j, k ∈ {1, 2, . . . , n}, i 6= j

where n is the number of nodes (joints) in the truss, Ci,j ∈ {0, 1} indicates

whether nodes i and j are connected, Pk = [xk, yk]T is the position vector for

each node k = 1, 2, . . . , n, and Ai,j is the cross-sectional area of the bar that

connects nodes i and j. The material density is ρ, and several quantities are

functions of design variables, including the length of the bar that connects

nodes i and j (li,j = ‖Pi −Pj‖2), the axial stress of the member connecting

nodes i and j (σi,j), and the displacement of each node (dk, k ∈ {1, 2, . . . , n})
(computed here using the force method). The minimum allowable stress is

σmin (σmin < 0, indicating compression), and the maximum allowable stress is

σmax (σmax > 0, indicating tension). Similarly, the minimum and maximum

allowable node displacements are dmin and dmax, respectively. The objective

of the design problem is to minimize overall structural mass.

The above stated mathematical problem is equivalent to finding the opti-

mal topology, geometry and member sizes given a ground set of nodes and the

stress and the displacement constraints. This problem is solved here using

the proposed nested methodology where a BRN genotype representation is

used with a GA to optimize truss topology, and an inner-loop geometry and

size optimization problem is solved using SLP for every topology considered

by the GA. The outer loop was solved using the Matlab R© ga function. The

following BRN parameters were used:

• The mesh of ground set nodes is 21× 11.

• The number of partition groups, K, for first development stage is 2.

• The number of partition groups is increased by 1 in each subsequent

development stage.

• The maximum number of nodes that can be made stable in a group is

2.

40

• The probability of a node being alive is 0.2.

In the inner-loop problem, mass is minimized with respect to node position

vectors and cross-sectional areas, while satisfying maximum tensile and com-

pressive stress limits for each bar member, and satisfying maximum nodal

displacement of each node. Stress and displacement values are computed us-

ing finite element analysis based on the force method. It can be noted that in

the map L-systems based methodology, geometry is optimized in the outer

loop as the L-system abstraction represents both geometry and topology.

Boolean random networks, in contrast, represent only topology. Geometric

design is instead managed along with size optimization by the inner loop.

In general, solving a simultaneous geometry and size optimization problem

is not easy. There are many studies where genetic algorithms have been used

in an attempt to solve this combined size and geometry design problem.

Rahami, Kevah, and Gholipour [10], Giger and Ermanni [11], Rajan [12],

Balling, Briggs and Gillman [13] studied methods to solve the combined

optimization problem using various evolutionary algorithms. Allison and

Papalambros [43] used decomposition-based design optimization methods to

solve the same problem. Solving this combined problem using gradient based

algorithms is very difficult because of the different nature of size and geometry

design variables. It is desirable to solve the problem using gradient-based

algorithms instead of using evolutionary algorithms to reduce computational

expense. This is especially important since the combined size and geometry

design problem must be solved in the inner loop for every candidate topology

considered by the outer-loop GA. A new methodology is used here where

geometry and size problems are decoupled and solved using SLP for the same

set of stress and displacement constraints. Further, geometry optimization is

solved in a novel way in a localized domain, making the problem much easier

to solve.

The geometry and size problems are decoupled and solved in a iterative

approach sequentially one after the other until the solution converges. How-

ever, it is observed that localized geometry optimization problem is required

to be solved only once, i.e., the iteration converges in one step. First, the size

optimization problem is solved keeping the initial geometry constant. After

that the geometry optimization problem is solved, and then again the size

optimization problem is solved. The iteration converges in one step as the

41

Size Optimization

Shape Optimization

Size Optimization

Figure 4.13: Geometry and Size Optimization

Figure 4.14: Localized Geometry Optimization Domain

nodes are allowed to move only in their vicinity. Figure 4.13 illustrates the

iterative approach explained above.

For geometry optimization, the nodes are allowed to move only in a small

domain near the original node location. The entire design domain is divided

into rectangles where the space between two internal nodes is equally divided,

forming a rectangle around each node. A node is allowed to move only inside

the rectangle around it. The nodes on the boundary of the design domain

have half the space of the internal nodes to move. Figure 4.14 illustrates

the geometry optimization domain of the points within a rectangular design

domain that has a total of 25 points equally spaced horizontally and verti-

cally. The concept of allowing a node to move only in a local vicinity is an

appropriate strategy because in the topology optimization a node is selected

over the other nodes that are outside its geometry optimization domain. In

other words, if moving a node outside its local domain is desirable, the outer

loop algorithm can instead connect to the appropriate node that is adjacent

to the current node. Topology, geometry, and size optimization allows for

the search of the entire design domain. For size optimization problem, the

inverse of cross sectional areas are used as optimization variables instead of

the areas; this results in a non-linear objective function, but the non-linearity

of the constraint equations is reduced significantly. A lower and upper bound

is imposed on cross sectional area values.

42

As explained in Chapter 3, when both the stress and the displacement

constraints are included in the formulation, basic SLP does not converge

unless move limits are used that limit the error resulting from the linear

approximation. The move limit formulation of Lamberti and Pappalettere’s

[23] described in Chapter 3 is used here. Further, in the same manner, each

linear subproblem is solved using the Matlab R© linprog function using the

interior point method. This ensures that subproblem solutions are always

feasible. In Chapter 5, the results of one archetypal truss design example

problem is solved using the above formulation, and the results are presented

and discussed.

In summary, truss topology is represented using a parameterized neighbor-

hood assignment of Boolean random networks. The BRN parameters form

the genotype of the genetic algorithm. The GA phenotype is generated by

applying local rules to the Boolean random networks in accordance with the

structural stability of the truss topology design. The fitness of each candidate

GA is calculated by the inner-loop solver that optimizes both truss geome-

try and size. A new strategy for combined geometry and size optimization,

based on SLP, is presented that optimizes the position vector for each node

within a local domain. The localized geometry optimization leads to fast

convergence of the inner-loop problem. The Boolean random network is dif-

ferent from map L-systems methodology in fundamental ways as it optimizes

only topology in the outer loop (the map L-systems methodology optimizes

topology and geometry simultaneously in the outer loop). This strategy of

decoupling the topology and geometry optimization allows for improved de-

sign space coverage, and is expected to give better result in terms of optimal

truss design. The next chapter presents the results from solving three stan-

dard truss design problems using the two methodologies presented in this

work. In particular, a ‘ten-bar’ truss design problem is solved using both the

map L-system based methodology and Boolean random networks. The op-

timization results are compared. Next, an extended ‘ten-bar’ truss problem

and a ‘twenty-five’ bar space truss problem are both solved using the map

L-systems methodology. Finally, a conclusion of the work presented in this

thesis is given.

43

Chapter 5

Results and Discussion

This section presents results of solving three classical truss design optimiza-

tion problems using the two methodologies proposed in Chapters 3 and 4.

The first example used is a ten-bar truss problem that is solved using both

the methodologies: 1) the method based on a map L-systems design rep-

resentation, and 2) a method based on a Boolean random network design

representation. The second example used is an extended ten bar truss that

is solved using only the map L-systems approach. The third example is of

twenty-five bar space truss that is also solved using only map L-systems.

5.1 Ten-bar Truss

The first example used here is based on a ten-bar truss design problem from

the structural optimization literature, illustrated in Fig. 5.1. Previous treat-

ments of this problem dealt primarily with the size optimization problem,

and assumed that the truss topology was fixed [2–4, 23, 44–53]. While the

term ‘ten-bar’ is used here to refer to this example problem, this is primarily

a historical reference, and is not meant to imply that solutions will composed

of exactly ten bars. The problem used here involves combined size, geome-

try and topology optimization, but the design parameters (design boundary,

load, material, etc) is based on the classical ten-bar truss design problem.

Table 5.1 summarizes problem data.

5.1.1 Ten-bar Truss Optimization Using Map L-systems

To solve the problem using the proposed methodology explained in Chapter

3 an initial design domain is created. The initial truss design (map) is shown

in Fig. 5.2; this includes bars on the edge of the design domain, as well as a

44

L L

L

PP

Figure 5.1: Topology and Geometry of Ten-bar Truss

Table 5.1: Input Data for Ten-bar Truss

Parameter Value
L (design domain height) 360 in
P (load magnitude) 100 kips
Stress limits ±25 ksi
Maximum displacement ±2.0 in
Modulus of Elasticity 104 ksi
Material density 0.1 lbm/in3

Section areas lower limit 0.1 in2

Section areas upper limit 35 in2

Number of loading conditions Single loading

45

Figure 5.2: Ten-bar Truss Initial Design-0

Figure 5.3: Ten-bar Truss Development-1

minimum number of additional bars required to provide structural stability

using a composition of triangular cells. Figures 5.3–5.8 show the truss designs

after each stage of development using Algorithm 2 where the GA is solved

completely using one development stage at a time. The solid lines represent

bars under tension, and the dotted lines represent bars under compression.

Line thickness is proportional to cross-sectional area.

Going beyond six development stages does not reduce system mass, in-

dicating that adding more truss members does not help re-distribute load

in a way that permits mass reduction. The optimal mass and number of

bar members for each truss development stage is shown in Table 5.2. Please

observe that as new truss members are added in a strategic manner using

Algorithm 2, substantial load redistribution and mass reduction occurs. The

minimal mass obtained at stage six is significantly lower than the the results

reported in the literature cited above (the minimum mass reported in previ-

ous articles is more than 5000 lbm.). It should be noted, however, that these

past studies used a fixed topology, and the result here includes many more

than ten bars, so a direct comparison cannot be made. These results, how-

ever, do indicate the effectiveness of this new combined topology, geometry,

and size optimization methodology.

46

Figure 5.4: Ten-bar Truss Development-2

Figure 5.5: Ten-bar Truss Development-3

Figure 5.6: Ten-bar Truss Development-4

Figure 5.7: Ten-bar Truss Development-5

47

Figure 5.8: Ten-bar Truss Development-6

Table 5.2: Ten-bar Truss- Optimal Mass and No. of bars

Development Number of Optimal Mass
Stage Bars (lbm.)
0 7 7097
1 12 5484
2 20 5147
3 29 5134
4 47 4913
5 77 4642
6 119 4241

5.1.2 Ten-bar Truss Optimization Using Boolean Random
Networks

The same ten bar truss problem is further solved using the Boolean random

networks methodology explained in Chapter 4. A ground set of 21 × 11

nodes is defined here based on the design domain of the earlier studies. The

nodes are evenly distributed in a grid. The initial minimally connected truss

topology is shown in Fig. 5.9. Note that the initial minimally connected

truss design cannot satisfy displacement constraints at all the nodes due to

bounds on cross-sectional areas. Additional members are required to satisfy

displacement constraints completely. This initial topology is used to start the

multi-stage optimization process illustrated in Chapter 4. Figures 5.10–5.13

show the truss designs after each stage of development. The circles represent

nodes. The solid lines represent bars under tensile stress, and the dotted

lines represent bars under compressive stress. Line thickness is proportional

to cross-sectional area. No further mass reduction can be achieved beyond

development stage 4 (i.e., the method has converged after five development

stages). Adding more bar members does not help re-distribute load, and

hence does not reduce truss mass. The optimal mass and number of bar

48

Figure 5.9: Ten-bar Truss Initial Design-0

Figure 5.10: Ten-bar Truss Development-1

members for each truss development stage is shown in Table 5.3. The results

obtained show that as new bar members are added there is substantial load

re-distribution, and a corresponding reduction in truss mass. The minimal

mass obtained at the end of the last development stage is significantly lower

than the the results reported in the literature cited above, although this

design has far more truss members. The minimum mass reported in the

above cited literature is above 5000 lbm.

It can be seen that the methodology based on Boolean random networks

gives significantly better results in comparison to the map L-systems based

methodology. This methodology gives the optimal truss design of mass 4040

lbm with just 29 bars. However the map L-systems methodology gives the

Figure 5.11: Ten-bar Truss Development-2

49

Figure 5.12: Ten-bar Truss Development-3

Figure 5.13: Ten-bar Truss Development-4

Table 5.3: Ten-bar Truss- Optimal Mass and No. of bars

Development Number of Optimal Mass
Stage Bars (lbm.)
0 5 5689
1 11 4918
2 16 4710
3 22 4238
4 29 4040

50

optimal truss design of mass 4241 lbm with 119 bars which is far more than

29 bars used in the Boolean random networks. The map L-systems method-

ology uses abstraction concept for both truss topology and geometry while

the Boolean random networks methodology uses abstraction concept only for

topology and optimizes geometry in the inner loop. This difference in the

two methodologies gives the latter one higher degree of freedom to search the

design space for the optimal design. Further, the Boolean random networks

methodology uses a relatively direct abstraction approach to search the op-

timal topology which also gives it a higher degree of freedom and hence the

ability to identify a lower-mass design.

5.2 Extended Ten-bar Truss

This problem is solved using only map L-systems methodology explained in

Chapter 3. An extended design boundary for the standard ten-bar truss

problem is considered as shown in Fig. 5.14. The motivation for considering

this problem is to compare the results with the literature where topology and

geometry optimization is also performed along with size. The ten-bar truss

design problem with topology, geometry, and size optimization was previ-

ously studied by Rahami, Kevah, and Gholipour [10], Rajan [12], and Tang,

Tong and Gu [54]. In these previous studies, truss topology was managed

using a ground structure approach. The strategy introduced here, however,

does not require a ground structure (just a design boundary). To provide a

fair comparison, the design boundary is expanded such that it encompasses

the optimized topology and geometry reported in the previous studies cited

above. The design domain here is a square with sides equal to the width of

the standard ten-bar design domain used above (width = 2L = 720 in.), and

the same problem data is used (see Table 5.1).

Figure 5.15 shows the initial stable truss design (map). Optimization is

performed starting with this design and proceeding using Algorithm 2. Fig-

ures 5.16–5.19 show the truss designs after each stage of development. Addi-

tional development stages do not result in further mass reduction. Table 5.4

presents the optimal mass and number of truss members for each develop-

ment stage. As with the previous example, this design methodology reduces

mass at each stage by adding members strategically to redistribute load.

51

360 360

720

PP

Figure 5.14: Topology and Geometry of Extended Ten-bar Truss

Figure 5.15: Extended Ten-bar Truss Initial Design-0

The minimal mass obtained at the end of the last development stage is sig-

nificantly lower than the the results reported in the literature cited above,

although it has many more truss members. The minimum mass reported

in the above cited literature is above 2700 lbm. for a design domain with

approximately the same size.

Table 5.4: Extended Ten-bar Truss- Optimal Mass and No. of bars

Development Number of Optimal Mass
Stage Bars (lbm.)
0 7 6832
1 10 3039
2 18 2786
3 30 2645
4 41 2588

52

Figure 5.16: Extended Ten-bar Truss Development-1

Figure 5.17: Extended Ten-bar Truss Development-2

Figure 5.18: Extended Ten-bar Truss Development-3

53

Figure 5.19: Extended Ten-bar Truss Development-4

5.3 Twenty-five-bar Space Truss

This problem is solved using only map L-systems methodology explained

in Chapter 3. A space truss design problem is presented here to demon-

strate the extension of the generative algorithm truss design methodology to

three-dimensional problems. The twenty-five bar transmission tower space

truss design problem, illustrated in Fig. 5.14, has been studied extensively

[2, 3, 23, 44–48, 50–53], but has been limited to size optimization for a fixed

twenty-five bar topology. The problem studied here includes also topology

and geometry optimization, based on the same design domain boundary and

problem data (see Table 5.5). This problem involves two loading conditions

that are specified in Table 5.6. These loading cases are identical to the ones

used in the references cited above.

Figure 5.21 illustrates the initial truss design (map); this initial design in-

cludes the minimum number of bars required to produce a stable truss using a

composition of tetrahedra. The space between the nodes 3–10 (node number-

ing based on Fig. 5.20) has been divided into five non-intersecting tetrahedra.

Nodes 1 and 2 has been joined with nodes 3–6 (equivalent to creating to four

tetrahedra). These four tetrahedra are created to maintain symmetry of the

structure and to cover the same space as covered by the standard design. In

total, the initial design has 26 bars that form 9 tetrahedra.

Figures 5.22 and 5.23 show the truss designs after each stage of develop-

ment using Algorithm 2. Going beyond two development stages does not

reduce truss mass further. The optimal mass and number of bar members

for each truss development stage is listed in Table 5.7. The minimal mass ob-

tained at the end of the last development stage is marginally lower than the

54

1

2

3
6

45

8

9

10

7

200 in

200 in

100 in

100 in
75 in

75 in

75 in

X

Y

Z

Figure 5.20: Topology and Geometry of Twenty-five-bar Truss

Table 5.5: Input Data for Twenty-five-bar Truss

Parameter Value
Stress limits ±40 ksi
Maximum displacement ±0.35 in
Modulus of Elasticity 104 ksi
Material density 0.1 lbm/in3

Section areas lower limit 0.1 in2

Section areas upper limit 10 in2

Number of loading conditions Two Cases

the results reported in the literature cited above, although it has many more

bar members. The minimum mass reported in the above cited literature is

above 540 lbm.

As explained in the previous sections, Algorithm 2 exploits the ability to

add new bars at each stage in a way that produces substantial load redis-

tribution. Continuing with a new stage of the algorithm is beneficial only if

the load redistribution from adding bars enables enough mass reduction to

offset the addition of new bars (new bars have a lower bound on cross sec-

tion areas, so adding new bars does have a mass penalty). This is unlikely to

occur with the initial map unless the number of members in the initial truss

design is relatively high. It was discovered that increasing load in the space

truss design problem resulted in a larger number of development stages and

more noticeable mass reductions as the algorithm proceeded. The generative

algorithm approach to truss design appears to be particularly beneficial in

cases where loading conditions demand more complex topologies.

55

Table 5.6: Loading conditions, in kips, for Twenty-five-bar Truss

Node Condition 1 Condition 2
PX PY PZ PX PY PZ

1 0.0 20.0 -5.0 1.0 10.0 -5.0
2 0.0 -20.0 -5.0 0.0 10.0 -5.0
3 0.0 0.0 0.0 0.5 0.0 0.0
6 0.0 0.0 0.0 0.5 0.0 0.0

Figure 5.21: Twenty-five-bar Truss Initial Design-0

Figure 5.22: Twenty-five-bar Truss Development-1

56

Figure 5.23: Twenty-five-bar Truss Development-2

Table 5.7: Twenty-five-bar Truss- Optimal Mass and No. of bars

Development Number of Optimal Mass
Stage Bars (lbm.)
0 26 631
1 41 573
2 63 524

57

Chapter 6

Conclusion

Two new approaches, based on generative algorithms and Boolean random

vectors, were presented that accommodate variable dimension design prob-

lems and allow the exploration of topological design alternatives that are

not from a set that is defined a priori (as in the case with ground structure

methods). The effectiveness of the proposed methodologies for solving truss

design problems with respect to size, geometry, and topology was demon-

strated using several archetypal truss design optimization problems.

A new generative algorithm strategy based on map L-systems was pre-

sented that accounts for several unique design requirements that are specific

to structural truss design, namely stability and load redistribution. The gen-

erative algorithm serves as a design abstraction that supports the efficient

topological design of complicated structures. Instead of operating on physical

design variables directly, designers can adjust generative algorithm rules that

govern design generation. A small set of parameters with fixed dimension

can therefore control the design of complex structures with variable dimen-

sion. The new generative algorithm automatically produces stable trusses,

contributing to efficient design space exploration. An inner loop is used to

solve the size optimization problem so that a fair comparison can be made

between candidate topologies. The generative algorithm is used as a sophis-

ticated mapping between genetic algorithm (GA) genotype and phenotype,

which results in a process that more closely mimics the morphogenetic pro-

cess present in the evolution of real biological systems when compared to

directly-encoded GAs. Two new algorithms were introduced. Algorithm 1

involves a single GA solution, and a generative algorithm that is executed for

multiple development stages to produce a topology and geometry for each

individual in a GA population. Algorithm 2 involves a series of GA solutions

where only one development stage is used for each individual in the popula-

tion, and the best design from the previous stage is used as the initial map

58

for the next stage. This methodology was introduced first for planar trusses,

and then an extension to space trusses was presented. Algorithm 2 was

demonstrated using three case studies, and the resulting designs exhibited

significant mass reduction.

In the map L-system formulation, topology and geometry of the truss de-

sign are represented together by a cellular division algorithm abstraction

layer. In other words, the same parameters control topology and geometry,

and hence the design degrees of freedom in selecting topology and geome-

try are limited. If any parameter is changed in the map L-system, then it

changes both resulting topology and geometry. The coupling of topology and

geometry restricts exploration of design space. To overcome this limitation of

the map L-system based abstraction, another novel representation algorithm

using Boolean random networks was created. The Boolean random network

based parameterization represents topology alone, and leaves geometry to be

optimized in the inner-loop together with size optimization. To optimize size

and geometry design together, a localized geometry optimization methodol-

ogy was presented that, together with the outer-loop topology optimization,

allows for an efficient search of the complete design domain.

The Boolean random network based methodology is similar to the ground

structure methodology as it requires the definition of an initial set of a fixed

number of nodes (and their locations) that serve as the basis for topology gen-

eration using a set of iterative rules. This approach using the Boolean random

network addresses two shortcomings of ground structure methods that uti-

lize direct GA encodings, namely, the inability to scale up to large-dimension

problems, and the inefficiency of exploring infeasible design topologies. The

Boolean random network approach utilize vector parameterizations where the

representation dimension (and optimization problem size) increases linearly

with the number of nodes in the design domain. Ground structure methods

with direct GA encoding, however, have optimization problem sizes that in-

crease quadratically with the number of nodes. The phenotype to genotype

conversion effected by the Boolean random network algorithm (and also the

map L-systems algorithm) can include design requirements embedded within

this algorithm. In other words, these generative algorithms produce designs

that automatically satisfy design requirements, such as structural stability

for truss design. This property supports significantly more efficient topolog-

ical design space exploration compared to ground structure methods. With

59

conventional ground structure methods there is no guarantee that a given

design will be structurally stable. A large portion of designs are in fact

unstable, resulting in very inefficient truss design space exploration. The

BRN and map L-systems methods avoid this inefficiency by evaluating only

structurally stable designs due to the design requirements that are embedded

within the generative algorithms.

Further, both the proposed methodologies exploits a fundamental principle

of truss development, namely, that new bar members are added incrementally

to the existing truss design to redistribute load, and hence to reduce optimal

truss mass. In accordance with this concept, both the methodologies de-

velop trusses starting with an initial design that has a minimal number of bar

members that provide a stable design for a given set of loading and boundary

conditions. At each development stage these methodologies optimally add a

set of bar members to redistribute load and enable mass reduction through

reduced bar member areas. Subsequent stages develop upon the optimal de-

sign obtained from previous stages. Truss design is developed in stages until

the addition of new bar members cannot reduce mass any further through

load redistribution an size re-optimization.

Finally, in Chapter 5, both methodologies were demonstrated through the

solution of three standard truss design problems. The ten-bar truss design

problem was solved using both the methodologies, and the results demon-

strated that the BRN methodology produces design with significantly lower

mass and fewer bar members. This result was expected due to the decoupling

of topology and geometry. The BRN methodology can explore the design

space more effectively, and hence produces better result in terms of the op-

timal truss design. An extension of the ten-bar truss problem and a twenty-

five bar space truss problem were also solved using map L-system based

methodology. All the example problems show that the proposed methodolo-

gies explores design space efficiently, and produce better results than previ-

ous methods (with the acknowledgement that the trusses produces here have

many more bars than the trusses used as comparison problems). In sum-

mary, utilizing generative algorithms and Boolean random networks as a de-

sign abstraction is a promising strategy for optimizing increasingly complex

engineering systems, particularly when unique design considerations (such

as structural stability) can be embedded into the generative algorithm, and

when a range of problem dimensions and complexities must be explored.

60

Opportunities for future work include studies of GA convergence with re-

spect to the two methodologies, as well as an analytical investigation of how

well the proposed algorithms cover (or access) different portions of the truss

topology and geometry design spaces. Also, the proposed methodologies

should be applied to more complex problems to assess their performance.

An immediate next step would be to extend the Boolean random network

based methodology to three-dimensional space truss problems.

61

References

[1] Bendsoe, M. P., and Sigmund, O., 2003. Topology optimization: theory,
methods and applications. Springer.

[2] Venkayya, V., 1971. “Design of optimum structures”. Computers &
Structures, 1(1), pp. 265–309.

[3] Schmit, L. A., and Farshi, B., 1974. “Some approximation concepts for
structural synthesis”. AIAA journal, 12(5), pp. 692–699.

[4] Dobbs, M., and Nelson, R., 1976. “Application of optimality criteria to
automated structural design”. AIAA Journal, 14(10), pp. 1436–1443.

[5] Goldberg, D., and Samtni, M., 1991. “Engineering optimization via the
genetic algorithms”. Computers and Structures, 40, pp. 1321–1327.

[6] Rajeev, S., and Krishnamoorthy, C., 1992. “Discrete optimization of
structures using genetic algorithms”. Journal of Structural Engineering,
118(5), pp. 1233–1250.

[7] Deb, K., and Gulati, S., 2001. “Design of truss-structures for minimum
weight using genetic algorithms”. Finite elements in analysis and design,
37(5), pp. 447–465.

[8] Hagishita, T., and Ohsaki, M., 2009. “Topology optimization of trusses
by growing ground structure method”. Structural and Multidisciplinary
Optimization, 37(4), pp. 377–393.

[9] Hajela, P., Lee, E., and Lin, C.-Y., 1993. “Genetic algorithms in struc-
tural topology optimization”. In Topology design of structures. Springer,
pp. 117–133.

[10] Rahami, H., Kaveh, A., and Gholipour, Y., 2008. “Sizing, geometry
and topology optimization of trusses via force method and genetic algo-
rithm”. Engineering Structures, 30(9), pp. 2360–2369.

[11] Giger, M., and Ermanni, P., 2006. “Evolutionary truss topology opti-
mization using a graph-based parameterization concept”. Structural and
Multidisciplinary Optimization, 32(4), pp. 313–326.

62

[12] Rajan, S., 1995. “Sizing, shape, and topology design optimization of
trusses using genetic algorithm”. Journal of Structural Engineering,
121(10), pp. 1480–1487.

[13] Balling, R. J., Briggs, R. R., and Gillman, K., 2006. “Multiple opti-
mum size/shape/topology designs for skeletal structures using a genetic
algorithm”. Journal of Structural Engineering, 132(7), pp. 1158–1165.

[14] Kaveh, A., and Laknejadi, K., 2013. “A hybrid evolutionary graph-based
multi-objective algorithm for layout optimization of truss structures”.
Acta Mechanica, 224(2), pp. 343–364.

[15] Reas, C., and Fry, B., 2006. “Processing: Programming for the Media
Arts”. AI & Society, 20, pp. 526–538.

[16] Prusinkiewicz, P., Lindenmayer, A., Hanan, J. S., Fracchia, F. D.,
Fowler, D. R., de Boer, M. J., and Mercer, L., 1990. The algorithmic
beauty of plants, Vol. 2. Springer-Verlag New York.

[17] Nakamura, A., Lindenmayer, A., and Aizawa, K., 1986. “Some systems
for map generation”. In The Book of L. Springer, pp. 323–332.

[18] Karbowski, D., Pagerit, S., Kwon, J., Rousseau, A., and Freiherr von
Pechmann, K., 2009. “Fair Comparison of Powertrain Configurations for
Plug-In Hybrid Operation Using Global Optimization”. SAE Technical
Paper Number 2009-01-1334.

[19] Pedro, H., and Kobayashi, M., 2011. “On a Cellular Division Method for
Topology Optimization”. International Journal for Numerical Methods
in Engineering, 88(11), pp. 1175–1197.

[20] Futuyma, D., 1997. Evolutionary Biology, third ed. Sinauer Associates.

[21] Cheney, N., MacCurdy, R., Clune, J., and Lipson, H., 2013. “Un-
shackling evolution: evolving soft robots with multiple materials and
a powerful generative encoding”. In Proceeding of the fifteenth annual
conference on Genetic and evolutionary computation conference, ACM,
pp. 167–174.

[22] Wujek, B., and Renaud, J., 1998. “New adaptive move-limit manage-
ment strategy for approximate optimization, part 1”. AIAA journal,
36(10), pp. 1911–1921.

[23] Lamberti, L., and Pappalettere, C., 2000. “Comparison of the numerical
efficiency of different sequential linear programming based algorithms
for structural optimisation problems”. Computers & Structures, 76(6),
pp. 713–728.

63

[24] Chen, T.-Y., 1993. “Calculation of the move limits for the sequen-
tial linear programming method”. International Journal for Numerical
Methods in Engineering, 36(15), pp. 2661–2679.

[25] Wolfram, S., 1994. Cellular automata and complexity: collected papers,
Vol. 1. Addison-Wesley Reading.

[26] Inoue, N., Shimotai, N., and Uesugi, T., 1994. “Cellular automaton
generating topological structures”. In Smart Structures and Materials:
Second European Conference, International Society for Optics and Pho-
tonics, pp. 47–50.

[27] Inou, N., Uesugi, T., Iwasaki, A., and Ujihashi, S., 1997. “Self-
organization of mechanical structure by cellular automata”. Key En-
gineering Materials, 145, pp. 1115–1120.

[28] Kundu, S., Oda, J., and Koishi, T., 1997. “Design computation of dis-
crete systems using evolutionary learning”. In Proc. WCSMO-2, Second
World Congress on Structural and Multidisciplinary Optimization (held
in Zakopane, Poland), pp. 173–180.

[29] Kundu, S., Oda, J., and Koishi, T., 1997. “A self-organizing approach
to optimization of structural plates using cellular automata”. In Sec-
ond World Congress on Structural and Multidisciplinary Optimization
(WCSMO-2)(Gutkowski W. and Mroz Z., eds.), Polish Academy of Sci-
ence, Zakopane, Poland, pp. 173–180.

[30] Xie, Y., and Steven, G. P., 1993. “A simple evolutionary procedure for
structural optimization”. Computers & structures, 49(5), pp. 885–896.

[31] Xie, Y., and Steven, G. P., 1994. “Optimal design of multiple load case
structures using an evolutionary procedure”. Engineering computations,
11(4), pp. 295–302.

[32] Xie, Y., and Steven, G., 1994. “A simple approach to structural fre-
quency optimization”. Computers & structures, 53(6), pp. 1487–1491.

[33] Xie, Y., and Steven, G., 1996. “Evolutionary structural optimization for
dynamic problems”. Computers & Structures, 58(6), pp. 1067–1073.

[34] Zhao, C., Steven, G., and Xie, Y., 1997. “Effect of initial nondesign
domain on optimal topologies of structures during natural frequency
optimization”. Computers & structures, 62(1), pp. 119–131.

[35] Zhao, C., Steven, G., and Xie, Y., 1998. “A generalized evolution-
ary method for natural frequency optimization of membrane vibration
problems in finite element analysis”. Computers & Structures, 66(2),
pp. 353–364.

64

[36] Yang, X., Xie, Y., Steven, G., and Querin, O., 1998. “Bi-directional
evolutionary method for frequency optimisation”. In Australasian Con-
ference on Structural Optimisation, pp. 231–237.

[37] Young, V., Querin, O., Steven, G., and Xie, Y., 1999. “3d and multi-
ple load case bi-directional evolutionary structural optimization (beso)”.
Structural optimization, 18(2-3), pp. 183–192.

[38] Kim, H. A., Querin, O., Steven, G., and Xie, Y., 1998. “Development of
an intelligent cavity creation (icc) algorithm for evolutionary structural
optimisation”. In The Australasian Conference on Structural Optimisa-
tion, University of Bath, pp. 241–250.

[39] Kita, E., and Toyoda, T., 2000. “Structural design using cellular au-
tomata”. Structural and Multidisciplinary Optimization, 19(1), pp. 64–
73.

[40] Gürdal, Z., and Tatting, B., 2000. “Cellular automata for design of
truss structures with linear and nonlinear response”. In Proc. 41st
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Ma-
terials Conf., AIAA Paper, Vol. 1580.

[41] Tatting, B., and Gürdal, Z., 2000. “Cellular automata for design
of two-dimensional continuum structures”. In Proceedings of 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analy-
sis and Optimization.

[42] Abdalla, M. M., and Gürdal, Z., 2002. “Structural design us-
ing optimality based cellular automata”. In Proceedings of 43rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference.

[43] Allison, J. T., and Papalambros, P. Y., 2007. “Optimal partitioning
and coordination decisions in system design using an evolutionary algo-
rithm”. In Proceedings of the Seventh World Conference on Structural
and Multidisciplinary Optimization, Seoul, South Korea, May, pp. 21–
25.

[44] Gellatly, R. A., and Berke, L., 1971. Optimal Structural Design. Tech.
rep., DTIC Document.

[45] Schmit, L. A., 1976. “Approximation concepts for efficient structural
synthesis”.

[46] Rizzi, P., 1976. “Optimization of multiconstrained structures based on
optimality criteria”. In Proc. AIAA/ASME/SAE 17th Structures, Struc-
tural Dynamics and Materials Conference, pp. 448–462.

65

[47] Khan, M., Willmert, K., and Thornton, W., 1979. “An optimality crite-
rion method for large-scale structures”. AIAA Journal, 17(7), pp. 753–
761.

[48] John, K., Ramakrishnan, C., and Sharma, K., 1987. “Minimum weight
design of trusses using improved move limit method of sequential linear
programming”. Computers & structures, 27(5), pp. 583–591.

[49] Sunar, M., and Belegundu, A., 1991. “Trust region methods for struc-
tural optimization using exact second order sensitivity”. International
journal for numerical methods in engineering, 32(2), pp. 275–293.

[50] Stander, N., Snyman, J., and Coster, J., 1995. “On the robustness and
efficiency of the sam algorithm for structural optimization”. Interna-
tional Journal for Numerical Methods in Engineering, 38(1), pp. 119–
135.

[51] Xu, S., and Grandhi, R. V., 1998. “Effective two-point function approxi-
mation for design optimization”. AIAA journal, 36(12), pp. 2269–2275.

[52] Lamberti, L., and Pappalettere, C., 2003. “Move limits definition in
structural optimization with sequential linear programming. part ii: Nu-
merical examples”. Computers & structures, 81(4), pp. 215–238.

[53] Lee, K. S., and Geem, Z. W., 2004. “A new structural optimization
method based on the harmony search algorithm”. Computers & Struc-
tures, 82(9), pp. 781–798.

[54] Tang, W., Tong, L., and Gu, Y., 2005. “Improved genetic algorithm for
design optimization of truss structures with sizing, shape and topology
variables”. International Journal for Numerical Methods in Engineering,
62(13), pp. 1737–1762.

66

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Chapter 2 Truss Optimization Problems
	Map L-system Based Approach
	Boolean Random Network Based Approach

	Chapter 3 Map L-system Extension to Truss Design
	Map L-systems
	Cellular Division Algorithm

	Extension to Truss Design
	Algorithm 1: One-Step Generative Algorithm
	Algorithm 2: Multi-Step Generative Algorithm

	Genomic Encoding of Cellular Division Rules
	Modification of Cellular Division for Truss Optimization
	Extension to 3D Truss Design
	Truss Optimization Problem Formulation
	Discussion

	Chapter 4 Boolean Random Networks Extension to Truss Design
	Cellular Automata
	Random Boolean Networks
	Extension to Truss Topology Design
	Parametrization of Boolean Random Networks

	Genomic Encoding of Boolean Random Networks Representation
	Resolving Overlapping Members
	Truss Optimization Problem Formulation

	Chapter 5 Results and Discussion
	Ten-bar Truss
	Ten-bar Truss Optimization Using Map L-systems
	Ten-bar Truss Optimization Using Boolean Random Networks

	Extended Ten-bar Truss
	Twenty-five-bar Space Truss

	Chapter 6 Conclusion
	References

