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ABSTRACT

Social computing systems bring enormous value to society by harnessing the

data generated by the members of a community. Though each individual

reveals a little information through his online traces, collectively this infor-

mation gives significant insights on the societal preferences that can be used

in designing better systems for the society. Challenging societal problems

can be solved using the collective power of a crowd wherein each individual

offers only a limited knowledge on a specifically designed online platform.

There exists general approaches to design such online platforms, to aggre-

gate the collected data, and to use them for the downstream tasks, but are

typically sub-optimal and inefficient. In this work, we investigate several

social computing problems and provide efficient algorithms for solving them.

This work studies several topics: (a) designing efficient algorithms for ag-

gregating preferences from partially observed traces of online activities, and

characterizing the fundamental trade-off between the computational com-

plexity and statistical efficiency; (b) characterizing the fundamental trade-

off between the budget and accuracy in aggregated answers in crowdsourcing

systems, and designing efficient algorithms for training supervised learning

models using the crowdsourced answers; (c) designing efficient algorithms for

estimating fundamental spectral properties of a partially observed data such

as a movie rating data matrix in recommendation systems, and connections

in a large network.
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CHAPTER 1

INTRODUCTION

This work considers three related problems in social computing. First, we

study the problem of rank aggregation from the partially observed prefer-

ences. If the collected partial preferences are heterogenous, the existing

approaches are either computationally intractable or are statistically ineffi-

cient. We characterize the fundamental trade-off between the computational

complexity and statistical efficiency, and provide efficient rank-breaking algo-

rithms. Second, we consider a canonical crowdsourcing model and compare

the fundamental trade-off between adaptive and non-adaptive task assign-

ment schemes. Further, we also study efficient algorithms for learning su-

pervised models when the annotations are collected through crowdsourcing

platforms. Third, we study the problem of estimating spectrum of a partially

observed data matrix, below the threshold of its completion.

1.1 Rank Aggregation

In several applications such as electing officials, choosing policies, or making

recommendations, we are given partial preferences from individuals over a

set of alternatives, with the goal of producing a global ranking that repre-

sents the collective preference of the population or the society. This process

is referred to as rank aggregation. One popular approach is learning to rank.

Economists have modeled each individual as a rational being maximizing

his/her perceived utility. Parametric probabilistic models, known collectively

as Random Utility Models (RUMs), have been proposed to model such in-

dividual choices and preferences [149]. This allows one to infer the global

ranking by learning the inherent utility from individuals’ revealed prefer-

ences, which are noisy manifestations of the underlying true utility of the

alternatives.
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Traditionally, learning to rank has been studied under the following data

collection scenarios: pairwise comparisons, best-out-of-k comparisons, and

k-way comparisons. Pairwise comparisons are commonly studied in the clas-

sical context of sports matches as well as more recent applications in crowd-

sourcing, where each worker is presented with a pair of choices and asked

to choose the more favorable one. Best-out-of-k comparisons data sets are

commonly available from purchase history of customers. Typically, a set of

k alternatives are offered among which one is chosen or purchased by each

customer. This has been widely studied in operations research in the con-

text of modeling customer choices for revenue management and assortment

optimization. The k-way comparisons are assumed in traditional rank aggre-

gation scenarios, where each person reveals his/her preference as a ranked list

over a set of k items. In some real-world elections, voters provide ranked pref-

erences over the whole set of candidates [140]. We refer to these three types

of ordinal data collection scenarios as ‘traditional’ throughout this work.

For such traditional data sets, there are several computationally efficient

inference algorithms for finding the Maximum Likelihood (ML) estimates

that provably achieve the minimax optimal performance [156, 182, 84]. How-

ever, modern data sets can be unstructured. Individual’s revealed ordinal

preferences can be implicit, such as movie ratings, time spent on the news

articles, and whether the user finished watching the movie or not. In crowd-

sourcing, it has also been observed that humans are more efficient at per-

forming batch comparisons [79], as opposed to providing the full ranking or

choosing the top item. This calls for more flexible approaches for rank aggre-

gation that can take such diverse forms of ordinal data into account. For such

non-traditional data sets, finding the ML estimate can become significantly

more challenging, requiring run-time exponential in the problem parameters.

To avoid such a computational bottleneck, a common heuristic is to resort

to rank-breaking. The collected ordinal data is first transformed into a bag

of pairwise comparisons, ignoring the dependencies that were present in the

original data. This is then processed via existing inference algorithms tailored

for independent pairwise comparisons, hoping that the dependency present in

the input data does not lead to inconsistency in estimation. This idea is one

of the main motivations for numerous approaches specializing in learning

to rank from pairwise comparisons, e.g., [72, 157, 12]. However, such a

heuristic of full rank-breaking, where all pairwise comparisons are weighted
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and treated equally ignoring their dependencies, has been recently shown to

introduce inconsistency [13].

The key idea to produce accurate and consistent estimates is to treat the

pairwise comparisons unequally, depending on the topology of the collected

data. A fundamental question of interest to practitioners is how to choose

the weight of each pairwise comparison in order to achieve not only consis-

tency but also the best accuracy, among those consistent estimators using

rank-breaking. In Chapter 2, we study how the accuracy of resulting esti-

mate depends on the topology of the data and the weights on the pairwise

comparisons. This provides a guideline for the optimal choice of the weights,

driven by the topology of the data, that leads to accurate estimates.

However, this computational gain of pairwise rank-breaking comes at the

cost of statistical efficiency. [13] showed that if we include all paired compar-

isons, then the resulting estimate can be statistically inconsistent due to the

ignored correlations among the paired orderings, even with infinite samples.

In order to get a consistent estimate, [13] provides a rule for choosing which

pairs to include, and we provided an estimator that optimizes how to weigh

each of those chosen pairs to get the best finite sample complexity bound.

However, such a consistent pairwise rank-breaking results in throwing away

many of the ordered relations, resulting in significant loss in accuracy. For

example, there exist partial rankings such that including any paired relations

from them results in a biased estimator. None of the pairwise orderings can

be used from such a partial ranking, without making the estimator incon-

sistent as shown in [12]. Whether we include all paired comparisons or only

a subset of consistent ones, there is a significant loss in accuracy. For the

precise condition for consistent rank-breaking one can refer to [12, 13, 114].

For general partial orderings, the state-of-the-art approaches operate on

either one of the two extreme points on the computational and statistical

trade-off. The MLE requires exponential summations to just evaluate the

objective function, in the worst case. On the other hand, the pairwise rank-

breaking requires only quadratic number of summations, but suffers from

significant loss in the sample complexity. Ideally, we would like to give the

analyst the flexibility to choose a target computational complexity she is

willing to tolerate, and provide an algorithm that achieves the optimal trade-

off at the chosen operating point.

In Chapter 3, we introduce a novel generalized rank-breaking that bridges
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the gap between MLE and pairwise rank-breaking. Our approach allows the

user the freedom to choose the level of computational resources to be used,

and provides an estimator tailored for the desired complexity. We prove that

the proposed estimator is tractable and consistent, and provide an upper

bound and a lower bound on the error rate in the finite sample regime. The

analysis explicitly characterizes the dependence on the topology of the data.

This in turn provides a guideline for designing surveys and experiments in

practice, in order to maximize the sample efficiency. The proposed gener-

alized rank-breaking mechanism involves set-wise comparisons as opposed

to traditional pairwise comparisons. In order to compute the rank-breaking

estimate, we generalize the celebrated minorization maximization algorithm

for computing maximum likelihood estimate of pairwise comparisons [92] to

more general set-wise comparisons and give guarantees on its convergence.

1.2 Crowdsourcing

Crowdsourcing platforms provide labor markets in which pieces of micro-

tasks are electronically distributed to any workers who are willing to complete

them for a small fee. In typical crowdsourcing scenarios, such as those on

Amazon’s Mechanical Turk, a requester first posts a collection of tasks, for

example a set of images to be labelled. Then, from a pool of workers, whoever

is willing can pick up a subset of those tasks and provide her labels for a

small amount of payment. Typically, a fixed amount of payment per task is

predetermined and agreed upon between the requester and the workers, and

hence the worker is paid the amount proportional to the number of tasks

she answers. Further, as the verification of the correctness of the answers is

difficult, and also as the requesters are afraid of losing reputation among the

crowd, requesters typically choose to pay for every label she gets regardless

of the correctness of the provided labels. Hence, the budget of the total

payments the requester makes to the workers is proportional to the total

number of labels she collects.

One of the major issues in such crowdsourcing platforms is label quality

assurance. Some workers are spammers trying to make easy money, and

even those who are willing to work frequently make mistakes as the reward is

small and tasks are tedious. To correct for these errors, a common approach
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is to introduce redundancy by collecting answers from multiple workers on

the same task and aggregating these responses using some schemes such as

majority voting. A fundamental problem of interest in such a system is how

to maximize the accuracy of thus aggregated answers, while minimizing the

cost. Collecting multiple labels per task can improve the accuracy of our

estimates, but increases the budget proportionally. Given a fixed number of

tasks to be labelled, a requester hopes to achieve the best trade-off between

the accuracy, i.e. the average probability of error in aggregated responses

with respect to the ground truth labels, and the budget, i.e. the total number

of responses the requester collects on the crowdsourcing platform. There are

two design choices the requester has in achieving this goal: task assignment

and inference algorithm.

In typical crowdsourcing platforms, tasks are assigned as follows. Since

the workers are fleeting, the requester has no control over who will be the

next arriving worker. Workers arrive in an online fashion, complete the tasks

that they are given, and leave. Each arriving worker is completely new and

you may never get her back. Nevertheless, it might be possible to improve

accuracy under the same budget, by designing better task assignments. The

requester has the following control over the task assignment. At each point

in time, we have the control over which tasks to assign to the next arriving

worker. The requester is free to use all the information collected thus far,

including all the task assignments to previous workers and the answers col-

lected on those assigned tasks. By adaptively identifying tasks that are more

difficult and assigning more (future) workers on those tasks, one hopes to be

more efficient in the budget-accuracy trade-off. In this work, we make this

intuition precise, by studying a canonical crowdsourcing model and compar-

ing the fundamental trade-offs between adaptive schemes and non-adaptive

schemes. Unlike adaptive schemes, a non-adaptive scheme fixes all the task

assignments before any labels are collected and does not allow future assign-

ments to adapt to the labels collected thus far for each arriving worker.

Adaptive schemes, where tasks are assigned adaptively based on the data

collected thus far, are widely used in practical crowdsourcing systems to ef-

ficiently use a given fixed budget. However, existing theoretical analyses of

crowdsourcing systems suggest that the gain of adaptive task assignments

is minimal. To bridge this gap, in Chapter 4, we investigate this question

under a strictly more general probabilistic model, which has been recently
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introduced to model practical crowdsourced annotations. Under this general-

ized Dawid-Skene model, we characterize the fundamental trade-off between

budget and accuracy. We introduce a novel adaptive scheme that matches

this fundamental limit. We further quantify the fundamental gap between

adaptive and non-adaptive schemes, by comparing the trade-off with the one

for non-adaptive schemes. Our analyses confirm that the gap is significant.

The downstream goal of many crowdsourcing projects is to train supervised

learning models. Supervised learning requires large annotated datasets which

due to economic reasons cannot be collected alone from the experts. Since

crowdsourcing platforms such as Amazon Mechanical Turk (AMT), provide

access to low-skilled workers who can perform simple tasks, such as classifying

images, at low cost, most practitioners turn to these platforms for collecting

annotations for training supervised learning models.

Compared to experts, crowd-workers provide noisier annotations, possi-

bly owing to high variation in worker skill; and a per-answer compensation

structure that encourages rapid answers, even at the expense of accuracy. To

address variation in worker skill, practitioners typically collect multiple inde-

pendent labels for each training example from different workers. In practice,

these labels are often aggregated by applying a simple majority vote. Aca-

demics have proposed many efficient algorithms for estimating the ground

truth from noisy annotations. Research addressing the crowd-sourcing prob-

lem goes back to the early 1970s. [47] proposed a probabilistic model to

jointly estimate worker skills and ground truth labels and used expectation

maximization (EM) to estimate the parameters. [208, 205, 222] proposed

generalizations of the Dawid-Skene model, e.g. by estimating the difficulty

of each example.

However, crowdsourcing research seldom accounts for the downstream util-

ity of the produced annotations as training data in machine learning (ML)

algorithms. And ML research seldom exploits the noisy labels collected from

multiple human workers. A few recent papers use the original noisy labels

and the corresponding worker identities together with the predictions of a su-

pervised learning model trained on those same labels, to estimate the ground

truth [28, 83, 205]. However, these papers do not realize the full potential of

combining modeling and crowd-sourcing. In particular, they are unable to

estimate worker qualities when there is only one label per training example.

In Chapter 5, we present a new supervised learning algorithm that alter-
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nately models the labels and worker quality. The EM algorithm bootstraps

itself in the following way: Given a trained model, the algorithm estimates

worker qualities using the disagreement between workers and the current

predictions of the learning algorithm. Given estimated worker qualities, our

algorithm optimizes a suitably modified loss function. We show that accurate

estimates of worker quality can be obtained even when only collecting one la-

bel per example provided that each worker labels sufficiently many examples.

An accurate estimate of the worker qualities leads to learning a better model.

This addresses a shortcoming of the prior work and overcomes a significant

hurdle to achieving practical crowdsourcing without redundancy.

We give theoretical guarantees on the performance of our algorithm. We

analyze the two alternating steps: (a) estimating worker qualities from dis-

agreement with the model, (b) learning a model by optimizing the modified

loss function. We obtain a bound on the accuracy of the estimated worker

qualities and the generalization error of the model. Through the generaliza-

tion error bound, we establish that it is better to label many examples once

than to label less examples multiply when worker quality is above a thresh-

old. Empirically, we verify our approach on several multi-class classification

datasets: ImageNet and CIFAR10 (with simulated noisy workers), and MS-

COCO (using the real noisy annotator labels). Our experiments validate

that when the cost of obtaining unlabeled examples is negligible and the to-

tal annotation budget is fixed, it is best to collect a single label per training

example for as many examples as possible. Although this work applies our

approach to classification problems, the main ideas of the algorithm can be

extended to other tasks in supervised learning.

1.3 Spectrum Estimation

Computing and analyzing the set of singular values of a data in a matrix form,

which is called the spectrum, provide insights into the geometry and topology

of the data. Such a spectral analysis is routinely a first step in general data

analysis with the goal of checking if there exists a lower dimensional subspace

explaining the important aspects of the data, which itself might be high

dimensional. Concretely, it is a first step in dimensionality reduction methods

such as principal component analysis or canonical correlation analysis.
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However, spectral analysis becomes challenging in practical scenarios where

the data is only partially observed. We commonly observe pairwise relations

of randomly chosen pairs: each user only rates a few movies in recommenda-

tion systems, each player/team only plays against a few opponents in sports

leagues, each word appears in the same sentence with a small number of other

words in word count matrices, and each worker answers a few questions in

crowdsourcing. In other applications, we have more structured samples. For

example, in a network analysis we might be interested in the spectrum of

a large network, but only get to see the connections within a small subset

of nodes corresponding to sampling a sub-matrix of the adjacency matrix.

Whatever the sampling pattern is, typical number of paired relations we

observe is significantly smaller than the dimension of the data matrix.

In Chapter 6, we study all such variations in sampling patterns for partially

observed data matrices, and ask the following fundamental question: can we

estimate spectral properties of a data matrix from partial observations? We

propose a novel approach that allows us to estimate the spectrum, i.e. the

singular values. A crucial building block in our approach is that spectral

properties can be accurately approximated from the first few moments of the

spectrum known as the Schatten k-norms defined as

‖M‖k =
( d∑
i=1

σi(M)k
)1/k

, (1.1)

where σ1(M) ≥ σ2(M) ≥ · · · ≥ σd(M) ≥ 0 are the singular values of the

data matrix M ∈ Rd×d. Once we obtain accurate estimates of Schatten

k-norms, these estimates, as well as corresponding performance guarantees,

can readily be translated into accurate estimates of the spectrum of the ma-

trix. Further, if we are interested in estimating a class of functions known

as spectral sum functions, our estimates of the Schatten norms can be used

to estimate any spectral sum function using Chebyshev expansions. Our

theoretical analysis shows that Schatten norms can be recovered accurately

from strictly smaller number of samples compared to what is needed to re-

cover the underlying low-rank matrix. Numerical experiments suggest that

we significantly improve upon a competing approach of using matrix comple-

tion methods, below the matrix completion threshold, above which matrix

completion algorithms recover the underlying low-rank matrix exactly.
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We want to estimate the Schatten k-norm of a positive semidefinite matrix

M ∈ Rd×d from a subset of its entries. The restriction to positive semidefi-

nite matrices is primarily for notational convenience, and our analyses, the

estimator, and the efficient algorithms naturally generalize to any non-square

matrices. Namely, we can extend our framework to bipartite graphs and es-

timate Schatten k-norm of any matrix for any even k. Let Ω denote the set

of indices of samples we are given and let PΩ(M) = {(i, j,Mij)}(i,j)∈Ω denote

the samples. With a slight abuse of notation, we used PΩ(M) to also denote

the d× d sampled matrix:

PΩ(M)ij =

{
Mij if (i, j) ∈ Ω ,

0 otherwise ,

and it should be clear from the context which one we refer to. Although we

propose a framework that generally applies to any probabilistic sampling, it

is necessary to propose specific sampling scenarios to provide tight analyses

on the performance. Hence, we focus on Erdös-Rényi sampling.

There is an extensive line of research in low-rank matrix completion prob-

lems [31, 110], which addresses a fundamental question of how many samples

are required to complete a matrix (i.e. estimate all the missing entries) from

a small subset of sampled entries. It is typically assumed that each entry of

the matrix is sampled independently with a probability p ∈ (0, 1]. We refer

to this scenario as Erdös-Rényi sampling, as the resulting pattern of the sam-

ples encoded as a graph is distributed as an Erdös-Rényi random graph. The

spectral properties of such an sampled matrix have been well studied in the

literature [75, 1, 69, 110, 123]. In particular, it is known that the original ma-

trix is close in spectral norm to the sampled one where the missing entries are

filled in with zeros and properly rescaled under certain incoherence assump-

tions. This suggests using the singular values of the sampled and rescaled

matrix (d2/|Ω|)P(M) directly for estimating the Schatten norms. However,

in the sub-linear regime in which the number of samples |Ω| = d2p is compa-

rable to or significantly smaller than the degrees of freedom in representing

a symmetric rank-r matrix, which is dr − r2, the spectrum of the sampled

matrix is significantly different from the spectrum of the original matrix. In

this work, we design novel estimators that are more sample efficient in the

sub-linear regime where d2p� dr.
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Further, in Chapter 7 we give a novel application of the Schatten norm

estimation techniques. We give a new estimator for estimating the number

of connected components in a graph by sampling a subgraph. It is a chal-

lenging problem with no existing estimator that works for general graphs.

The connection between the observed subgraph and the number of connected

components has remained a mystery. In order to make this connection trans-

parent, we propose a highly redundant and large-dimensional representation

of the subgraph, which at first glance seems counter-intuitive. A subgraph

is represented by the counts of patterns, known as network motifs. This

representation is crucial in introducing a novel estimator for the number of

connected components for general graphs. The connection is made precise

via the Schatten k-norms of the graph Laplacian and the spectral represen-

tation of the number of connected components. We provide a guarantee on

the resulting mean squared error that characterizes the bias variance trade-

off. Experiments on special structured graphs suggest that we improve upon

competing algorithms tailored for those structures for a broad range of pa-

rameters.
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CHAPTER 2

DATA-DRIVEN RANK BREAKING FOR
EFFICIENT RANK AGGREGATION

Initially motivated by elections and voting, rank aggregation has been a

topic of mathematical interest dating back to Condorcet and Borda [49, 48].

Using probabilistic models to infer preferences has been popularized in oper-

ations research community for applications such as assortment optimization

and revenue management. The PL model studied in this paper is a special

case of MultiNomial Logit (MNL) models commonly used in discrete choice

modeling, which has a long history in operations research [149]. Efficient

inference algorithms has been proposed to either find the MLE efficiently

or approximately, such as the iterative approaches in [72, 59], minorization-

maximization approach in [92], and Markov chain approaches in [156, 146].

These approaches are shown to achieve minimax optimal error rate in the

traditional comparisons scenarios. Under the pairwise comparisons scenario,

Negahban et al. [156] provided Rank Centrality that provably achieves mini-

max optimal error rate for randomly chosen pairs, which was later generalized

to arbitrary pairwise comparisons in [157]. The analysis shows the explicit

dependence on the topology of data shows that the spectral gap of compar-

isons graph similar to the one presented in this paper. This analysis was

generalized to k-way comparisons in [84] and generalized to best-out-of-k

comparisons with sharper bounds in [182]. In an effort to give a guarantee

for exact recovery of the top-` items in the ranking, Chen et al. in [39] pro-

posed a new algorithm based on Rank Centrality that provides a tighter error

bound for L∞ norm, as opposed to the existing L2 error bounds. Another in-

teresting direction in learning to rank is non-parametric learning from paired

comparisons, initiated in several recent papers such as [57, 171, 183, 186].

More recently, a more general problem of learning personal preferences

from ordinal data has been studied [213, 136, 55]. The MNL model provides

a natural generalization of the PL model to this problem. When users are

classified into a small number of groups with same preferences, mixed MNL
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model can be learned from data as studied in [7, 160, 212]. A more general

scenario is when each user has his/her individual preferences, but inherently

represented by a lower dimensional feature. This problem was first posed

as an inference problem in [138] where convex relaxation of nuclear norm

minimization was proposed with provably optimal guarantees. This was later

generalized to k-way comparisons in [161]. A similar approach was studied

with a different guarantees and assumptions in [164]. Our algorithm and

ideas of rank-breaking can be directly applied to this collaborative ranking

under MNL, with the same guarantees for consistency in the asymptotic

regime where sample size grows to infinity. However, the analysis techniques

for MNL rely on stronger assumptions on how the data is collected, and

especially on the independence of the samples. It is not immediate how the

analysis techniques developed in this paper can be applied to learn MNL.

In an orthogonal direction, new discrete choice models with sparse struc-

tures has been proposed recently in [67] and optimization algorithms for

revenue management has been proposed [68]. In a similar direction, new

discrete choice models based on Markov chains has been introduced in [21],

and corresponding revenue management algorithms has been studied in [70].

However, typically these models are analyzed in the asymptotic regime with

infinite samples, with the exception of [8]. A non-parametric choice models

for pairwise comparisons also have been studied in [171, 183]. This provides

an interesting opportunities to studying learning to rank for these new choice

models.

We consider a fixed design setting, where inference is separate from data

collection. There is a parallel line of research which focuses on adaptive

ranking, mainly based on pairwise comparisons. When performing sorting

from noisy pairwise comparisons, Braverman et al. in [30] proposed efficient

approaches and provided performance guarantees. Following this work, there

has been recent advances in adaptive ranking [3, 98, 147].

2.1 Problem formulation.

The premise in the current race to collect more data on user activities is

that, a hidden true preference manifests in the user’s activities and choices.

Such data can be explicit, as in ratings, ranked lists, pairwise comparisons,
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and like/dislike buttons. Others are more implicit, such as purchase history

and viewing times. While more data in general allows for a more accurate

inference, the heterogeneity of user activities makes it difficult to infer the

underlying preferences directly. Further, each user reveals her preference on

only a few contents.

Traditional collaborative filtering fails to capture the diversity of modern

data sets. The sparsity and heterogeneity of the data renders typical sim-

ilarity measures ineffective in the nearest-neighbor methods. Consequently,

simple measures of similarity prevail in practice, as in Amazon’s “people who

bought ... also bought ...” scheme. Score-based methods require translat-

ing heterogeneous data into numeric scores, which is a priori a difficult task.

Even if explicit ratings are observed, those are often unreliable and the scale

of such ratings vary from user to user.

We propose aggregating ordinal data based on users’ revealed preferences

that are expressed in the form of partial orderings (notice that our use of

the term is slightly different from its original use in revealed preference the-

ory). We interpret user activities as manifestation of the hidden preferences

according to discrete choice models (in particular the Plackett-Luce model

defined in (2.1)). This provides a more reliable, scale-free, and widely appli-

cable representation of the heterogeneous data as partial orderings, as well

as a probabilistic interpretation of how preferences manifest. In full general-

ity, the data collected from each individual can be represented by a partially

ordered set (poset). Assuming consistency in a user’s revealed preferences,

any ordered relations can be seamlessly translated into a poset, represented

as a Hasse diagram by a directed acyclic graph (DAG). The DAG below

represents ordered relations a > {b, d}, b > c, {c, d} > e, and e > f . For

example, this could have been translated from two sources: a five star rating

on a and a three star ratings on b, c, d, a two star rating on e, and a one star

rating on f ; and the item b being purchased after reviewing c as well.

There are n users or agents, and each agent j provides his/her ordinal eval-

uation on a subset Sj of d items or alternatives. We refer to Sj ⊂ {1, 2, . . . , d}
as offerings provided to j, and use κj = |Sj| to denote the size of the offerings.

We assume that the partial ordering over the offerings is a manifestation of

her preferences as per a popular choice model known as Plackett-Luce (PL)

model. As we explain in detail below, the PL model produces total orderings

(rather than partial ones). The data collector queries each user for a partial
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Figure 2.1: A DAG representation of consistent partial ordering of a user j,
also called a Hasse diagram (left). A set of rank-breaking graphs extracted
from the Hasse diagram for the separator item a and e, respectively (right).

ranking in the form of a poset over Sj. For example, the data collector can

ask for the top item, unordered subset of three next preferred items, the fifth

item, and the least preferred item. In this case, an example of such poset

could be a < {b, c, d} < e < f , which could have been generated from a total

ordering produced by the PL model and taking the corresponding partial or-

dering from the total ordering. Notice that we fix the topology of the DAG

first and ask the user to fill in the node identities corresponding to her total

ordering as (randomly) generated by the PL model. Hence, the structure of

the poset is considered deterministic, and only the identity of the nodes in

the poset is considered random. Alternatively, one could consider a differ-

ent scenario where the topology of the poset is also random and depends on

the outcome of the preference, which is out-side the scope of this paper and

provides an interesting future research direction.

The PL model is a special case of random utility models, defined as follows

[201, 14]. Each item i has a real-valued latent utility θi. When presented

with a set of items, a user’s reveled preference is a partial ordering according

to noisy manifestation of the utilities, i.e. i.i.d. noise added to the true

utility θi’s. The PL model is a special case where the noise follows the

standard Gumbel distribution, and is one of the most popular model in social

choice theory [148, 150]. PL has several important properties, making this

model realistic in various domains, including marketing [82], transportation

[149, 15], biology [188], and natural language processing [153]. Precisely, each

user j, when presented with a set Sj of items, draws a noisy utility of each

item i according to

ui = θi + Zi ,
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where Zi’s follow the independent standard Gumbel distribution. Then we

observe the ranking resulting from sorting the items as per noisy observed

utilities uj’s. Alternatively, the PL model is also equivalent to the following

random process. For a set of alternatives Sj, a ranking σj : [|S|] → S

is generated in two steps: (1) independently assign each item i ∈ Sj an

unobserved value Xi, exponentially distributed with mean e−θi ; (2) select a

ranking σj so that Xσj(1) ≤ Xσj(2) ≤ · · · ≤ Xσj(|Sj |).

The PL model (i) satisfies Luce’s ‘independence of irrelevant alternatives’

in social choice theory [173], and has a simple characterization as sequential

(random) choices as explained below; and (ii) has a maximum likelihood

estimator (MLE) which is a convex program in θ in the traditional scenarios

of pairwise, best-out-of-k and k-way comparisons. Let P(a > {b, c, d}) denote

the probability a was chosen as the best alternative among the set {a, b, c, d}.
Then, the probability that a user reveals a linear order (a > b > c > d) is

equivalent as making sequential choice from the top to bottom:

P(a > b > c > d) = P(a > {b, c, d}) P(b > {c, d}) P(c > d)

=
eθa

(eθa + eθb + eθc + eθd)

eθb

(eθb + eθc + eθd)

eθc

(eθc + eθd)
.

We use the notation (a > b) to denote the event that a is preferred over b.

In general, for user j presented with offerings Sj, the probability that the

revealed preference is a total ordering σj is

P(σj) =
∏

i∈{1,...,κj−1}

(eθσ−1(i))/(

κj∑
i′=i

eθσ−1(i′)).

We consider the true utility θ∗ ∈ Ωb, where we define Ωb as

Ωb ≡
{
θ ∈ Rd

∣∣ ∑
i∈[d]

θi = 0 , |θi| ≤ b for all i ∈ [d]
}
.

Note that by definition, the PL model is invariant under shifting the utility

θi’s. Hence, the centering ensures uniqueness of the parameters for each PL

model. The bound b on the dynamic range is not a restriction, but is written

explicitly to capture the dependence of the accuracy in our main results.

We have n users each providing a partial ordering of a set of offerings Sj

according to the PL model. Let Gj denote both the DAG representing the
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partial ordering from user j’s preferences. With a slight abuse of notations,

we also let Gj denote the set of rankings that are consistent with this DAG.

For general partial orderings, the probability of observing Gj is the sum

of all total orderings that is consistent with the observation, i.e. P(Gj) =∑
σ∈Gj P(σ). The goal is to efficiently learn the true utility θ∗ ∈ Ωb, from

the n sampled partial orderings. One popular approach is to compute the

maximum likelihood estimate (MLE) by solving the following optimization:

maximize
θ∈Ωb

n∑
j=1

logP(Gj) .

This optimization is a simple convex optimization, in particular a logit re-

gression, when the structure of the data {Gj}j∈[n] is traditional. This is

one of the reasons the PL model is attractive. However, for general posets,

this can be computationally challenging. Consider an example of position-p

ranking, where each user provides which item is at p-th position in his/her

ranking. Each term in the log-likelihood for this data involves summation

over O((p − 1)!) rankings, which takes O(n (p − 1)!) operations to evaluate

the objective function. Since p can be as large as d, such a computational

blow-up renders MLE approach impractical. A common remedy is to resort

to rank-breaking, which might result in inconsistent estimates.

Rank-breaking. Rank-breaking refers to the idea of extracting a set

of pairwise comparisons from the observed partial orderings and applying

estimators tailored for paired comparisons treating each piece of comparisons

as independent. Both the choice of which paired comparisons to extract and

the choice of parameters in the estimator, which we call weights, turns out to

be crucial as we will show. Inappropriate selection of the paired comparisons

can lead to inconsistent estimators as proved in [13], and the standard choice

of the parameters can lead to a significantly suboptimal performance.

A naive rank-breaking that is widely used in practice is to apply rank-

breaking to all possible pairwise relations that one can read from the partial

ordering and weighing them equally. We refer to this practice as full rank-

breaking. In the example in Figure 2.1, full rank-breaking first extracts the

bag of comparisons C = {(a > b), (a > c), (a > d), (a > e), (a > f), . . . , (e >

f)} with 13 paired comparison outcomes, and apply the maximum likelihood

estimator treating each paired outcome as independent. Precisely, the full
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rank-breaking estimator solves the convex optimization of

θ̂ ∈ arg max
θ∈Ωb

∑
(i>i′)∈C

(
θi − log

(
eθi + eθi′

))
. (2.1)

There are several efficient implementation tailored for this problem [72, 92,

156, 146], and under the traditional scenarios, these approaches provably

achieve the minimax optimal rate [84, 182]. For general non-traditional data

sets, there is a significant gain in computational complexity. In the case of

position-p ranking, where each of the n users report his/her p-th ranking item

among κ items, the computational complexity reduces from O(n (p− 1)!) for

the MLE in (2.1) to O(n p (κ − p)) for the full rank-breaking estimator in

(2.1). However, this gain comes at the cost of accuracy. It is known that the

full-rank breaking estimator is inconsistent [13]; the error is strictly bounded

away from zero even with infinite samples.

Perhaps surprisingly, Azari Soufiani et al. [13] recently characterized the

entire set of consistent rank-breaking estimators. Instead of using the bag of

paired comparisons, the sufficient information for consistent rank-breaking is

a set of rank-breaking graphs defined as follows.

Recall that a user j provides his/her preference as a poset represented

by a DAG Gj. Consistent rank-breaking first identifies all separators in the

DAG. A node in the DAG is a separator if one can partition the rest of the

nodes into two parts. A partition Atop which is the set of items that are

preferred over the separator item, and a partition Abottom which is the set

of items that are less preferred than the separator item. One caveat is that

we allow Atop to be empty, but Abottom must have at least one item. In the

example in Figure 2.1, there are two separators: the item a and the item e.

Using these separators, one can extract the following partial ordering from

the original poset: (a > {b, c, d} > e > f). The items a and e separate the set

of offerings into partitions, hence the name separator. We use `j to denote

the number of separators in the poset Gj from user j. We let pj,a denote

the ranked position of the a-th separator in the poset Gj, and we sort the

positions such that pj,1 < pj,2 < . . . < pj,`j . The set of separators is denoted

by Pj = {pj,1, pj,2, · · · , pj,`j}. For example, since the separator a is ranked at

position 1 and e is at the 5-th position, `j = 2, pj,1 = 1, and pj,2 = 5. Note

that f is not a separator (whereas a is) since corresponding Abottom is empty.
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Conveniently, we represent this extracted partial ordering using a set of

DAGs, which are called rank-breaking graphs. We generate one rank-breaking

graph per separator. A rank breaking graph Gj,a = (Sj, Ej,a) for user j and

the a-th separator is defined as a directed graph over the set of offerings Sj,

where we add an edge from a node that is less preferred than the a-th separa-

tor to the separator, i.e. Ej,a = {(i, i′) | i′ is the a-th separator, and σ−1
j (i) >

pj,a}. Note that by the definition of the separator, Ej,a is a non-empty set.

An example of rank-breaking graphs are shown in Figure 2.1.

This rank-breaking graphs were introduced in [12], where it was shown

that the pairwise ordinal relations that is represented by edges in the rank-

breaking graphs are sufficient information for using any estimation based on

the idea of rank-breaking. Precisely, on the converse side, it was proved

in [13] that any pairwise outcomes that is not present in the rank-breaking

graphs Gj,a’s lead to inconsistency for a general θ∗. On the achievability side,

it was proved that all pairwise outcomes that are present in the rank-breaking

graphs give a consistent estimator, as long as all the paired comparisons in

each Gj,a are weighted equally.

It should be noted that rank-breaking graphs are defined slightly differently

in [12]. Specifically, [12] introduced a different notion of rank-breaking graph,

where the vertices represent positions in total ordering. An edge between two

vertices i1 and i2 denotes that the pairwise comparison between items ranked

at position i1 and i2 is included in the estimator. Given such observation from

the PL model, [12] and [13] prove that a rank-breaking graph is consistent if

and only if it satisfies the following property. If a vertex i1 is connected to any

vertex i2, where i2 > i1, then i1 must be connected to all the vertices i3 such

that i3 > i1. Although the specific definitions of rank-breaking graphs are

different from our setting, the mathematical analysis of [12] still holds when

interpreted appropriately. Specifically, we consider only those rank-breaking

that are consistent under the conditions given in [12]. In our rank-breaking

graph Gj,a, a separator node is connected to all the other item nodes that

are ranked below it (numerically higher positions).

In the algorithm described in (2.33), we satisfy this sufficient condition for

consistency by restricting to a class of convex optimizations that use the same

weight λj,a for all (κ− pj,a) paired comparisons in the objective function, as

opposed to allowing more general weights that defer from a pair to another

pair in a rank-breaking graph Gj,a.
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Algorithm. Consistent rank-breaking first identifies separators in the

collected posets {Gj}j∈[n] and transform them into rank-breaking graphs

{Gj,a}j∈[n],a∈[`j ] as explained above. These rank-breaking graphs are input

to the MLE for paired comparisons, assuming all directed edges in the rank-

breaking graphs are independent outcome of pairwise comparisons. Precisely,

the consistent rank-breaking estimator solves the convex optimization of max-

imizing the paired log likelihoods

LRB(θ) =
n∑
j=1

`j∑
a=1

λj,a

{ ∑
(i,i′)∈Ej,a

(
θi′ − log

(
eθi + eθi′

))}
, (2.2)

where Ej,a’s are defined as above via separators and different choices of the

non-negative weights λj,a’s are possible and the performance depends on

such choices. Each weight λj,a determine how much we want to weigh the

contribution of a corresponding rank-breaking graph Gj,a. We define the

consistent rank-breaking estimate θ̂ as the optimal solution of the convex

program:

θ̂ ∈ arg max
θ∈Ωb

LRB(θ) . (2.3)

By changing how we weigh each rank-breaking graph (by choosing the λj,a’s),

the convex program (2.3) spans the entire set of consistent rank-breaking es-

timators, as characterized in [13]. However, only asymptotic consistency was

known, which holds independent of the choice of the weights λj,a’s. Naturally,

a uniform choice of λj,a = λ was proposed in [13].

Note that this can be efficiently solved, since this is a simple convex op-

timization, in particular a logit regression, with only O(
∑n

j=1 `j κj) terms.

For a special case of position-p breaking, the O(n (p − 1)!) complexity of

evaluating the objective function for the MLE is now significantly reduced

to O(n (κ − p)) by rank-breaking. Given this potential exponential gain

in efficiency, a natural question of interest is “what is the price we pay in

the accuracy?”. We provide a sharp analysis of the performance of rank-

breaking estimators in the finite sample regime, that quantifies the price of

rank-breaking. Similarly, for a practitioner, a core problem of interest is how

to choose the weights in the optimization in order to achieve the best accu-

racy. Our analysis provides a data-driven guideline for choosing the optimal

19



weights.

Contributions. In this paper, we provide an upper bound on the error

achieved by the rank-breaking estimator of (2.3) for any choice of the weights

in Theorem 7.3. This explicitly shows how the error depends on the choice of

the weights, and provides a guideline for choosing the optimal weights λj,a’s

in a data-driven manner. We provide the explicit formula for the optimal

choice of the weights and provide the the error bound in Theorem 2.2. The

analysis shows the explicit dependence of the error in the problem dimension

d and the number of users n that matches the numerical experiments.

If we are designing surveys and can choose which subset of items to offer to

each user and also can decide which type of ordinal data we can collect, then

we want to design such surveys in a way to maximize the accuracy for a given

number of questions asked. Our analysis provides how the accuracy depends

on the topology of the collected data, and provides a guidance when we do

have some control over which questions to ask and which data to collect.

One should maximize the spectral gap of corresponding comparison graph.

Further, for some canonical scenarios, we quantify the price of rank-breaking

by comparing the error bound of the proposed data-driven rank-breaking

with the lower bound on the MLE, which can have a significantly larger

computational cost (Theorem 2.4).

Notations. Following is a summary of all the notations defined above.

We use d to denote the total number of items and index each item by

i ∈ {1, 2, . . . , d}. θ ∈ Ωb denotes vector of utilities associated with each item.

θ∗ represents true utility and θ̂ denotes the estimated utility. We use n to

denote the number of users/agents and index each user by j ∈ {1, 2, . . . , n}.
Sj ⊆ {1, . . . , d} refer to the offerings provided to the j-th user and we

use κj = |Sj| to denote the size of the offerings. Gj denote the DAG

(Hasse diagram) representing the partial ordering from user j’s preferences.

Pj = {pj,1, pj,2, · · · , pj,`j} denotes the set of separators in the DAG Gj, where

pj,1, · · · , pj,`j are the positions of the separators, and `j is the number of

separators. Gj,a = (Sj, Ej,a) denote the rank-breaking graph for the a-th

separator extracted from the partial ordering Gj of user j.

For any positive integer N , let [N ] = {1, · · · , N}. For a ranking σ over S,

i.e., σ is a mapping from [|S|] to S, let σ−1 denote the inverse mapping.For

a vector x, let ‖x‖2 denote the standard l2 norm. Let 1 denote the all-ones
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vector and 0 denote the all-zeros vector with the appropriate dimension.

Let Sd denote the set of d × d symmetric matrices with real-valued entries.

For X ∈ Sd, let λ1(X) ≤ λ2(X) ≤ · · · ≤ λd(X) denote its eigenvalues sorted

in increasing order. Let Tr(X) =
∑d

i=1 λi(X) denote its trace and ‖X‖ =

max{|λ1(X)|, |λd(X)|} denote its spectral norm. For two matricesX, Y ∈ Sd,
we write X � Y if X − Y is positive semi-definite, i.e., λ1(X − Y ) ≥ 0. Let

ei denote a unit vector in Rd along the i-th direction.

2.2 Comparisons Graph and the Graph Laplacian

In the analysis of the convex program (2.3), we show that, with high probabil-

ity, the objective function is strictly concave with λ2(H(θ)) ≤ −Cb γ λ2(L) <

0 (Lemma 2.11) for all θ ∈ Ωb and the gradient is bounded by ‖∇LRB(θ∗)‖2 ≤
C ′b

√
log d

∑
j∈[n] `j (Lemma 2.10). Shortly, we will define γ and λ2(L), which

captures the dependence on the topology of the data, and C ′b and Cb are con-

stants that only depend on b. Putting these together, we will show that there

exists a θ ∈ Ωb such that

‖θ̂ − θ∗‖2 ≤
2‖∇LRB(θ∗)‖2

−λ2(H(θ))
≤ C ′′b

√
log d

∑
j∈[n] `j

γ λ2(L)
.

Here λ2(H(θ)) denotes the second largest eigenvalue of a negative semi-

definite Hessian matrix H(θ) of the objective function. The reason the second

largest eigenvalue shows up is because the top eigenvector is always the all-

ones vector which by the definition of Ωb is infeasible. The accuracy depends

on the topology of the collected data via the comparison graph of given data.

Definition 2.1. (Comparison graph H). We define a graph H([d], E) where

each alternative corresponds to a node, and we put an edge (i, i′) if there

exists an agent j whose offerings is a set Sj such that i, i′ ∈ Sj. Each edge

(i, i′) ∈ E has a weight Aii′ defined as

Aii′ =
∑

j∈[n]:i,i′∈Sj

`j
κj(κj − 1)

,

where κj = |Sj| is the size of each sampled set and `j is the number of

separators in Sj defined by rank-breaking.
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Define a diagonal matrix D = diag(A1), and the corresponding graph

Laplacian L = D − A, such that

L =
n∑
j=1

`j
κj(κj − 1)

∑
i<i′∈Sj

(ei − ei′)(ei − ei′)>. (2.4)

Let 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λd(L) denote the (sorted) eigenvalues of

L. Of special interest is λ2(L), also called the spectral gap, which measured

how well-connected the graph is. Intuitively, one can expect better accuracy

when the spectral gap is larger, as evidenced in previous learning to rank

results in simpler settings [157, 182, 84]. This is made precise in (2.4), and

in the main result of Theorem 2.2, we appropriately rescale the spectral gap

and use α ∈ [0, 1] defined as

α ≡ λ2(L)(d− 1)

Tr(L)
=

λ2(L)(d− 1)∑n
j=1 `j

. (2.5)

The accuracy also depends on the topology via the maximum weighted degree

defined as Dmax ≡ maxi∈[d] Dii = maxi∈[d]{
∑

j:i∈Sj `j/κj}. Note that the

average weighted degree is
∑

iDii/d = Tr(L)/d, and we rescale it by Dmax

such that

β ≡ Tr(L)

dDmax

=

∑n
j=1 `j

dDmax

. (2.6)

We will show that the performance of rank breaking estimator depends on

the topology of the graph through these two parameters. The larger the

spectral gap α the smaller error we get with the same effective sample size.

The degree imbalance β ∈ [0, 1] determines how many samples are required

for the analysis to hold. We need smaller number of samples if the weighted

degrees are balanced, which happens if β is large (close to one).

The following quantity also determines the convexity of the objective func-

tion.

γ ≡ min
j∈[n]

{(
1− pj,`j

κj

)d2e2be−2}
. (2.7)

Note that γ is between zero and one, and a larger value is desired as the ob-

jective function becomes more concave and a better accuracy follows. When
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we are collecting data where the size of the offerings κj’s are increasing with

d but the position of the separators are close to the top, such that κj = ω(d)

and pj,`j = O(1), then for b = O(1) the above quantity γ can be made ar-

bitrarily close to one, for large enough problem size d. On the other hand,

when pj,`j is close to κj, the accuracy can degrade significantly as stronger

alternatives might have small chance of showing up in the rank breaking.

The value of γ is quite sensitive to b. The reason we have such a inferior de-

pendence on b is because we wanted to give a universal bound on the Hessian

that is simple. It is not difficult to get a tighter bound with a larger value of

γ, but will inevitably depend on the structure of the data in a complicated

fashion.

To ensure that the (second) largest eigenvalue of the Hessian is small

enough, we need enough samples. This is captured by η defined as

η ≡ max
j∈[n]
{ηj} , where ηj =

κj
max{`j, κj − pj,`j}

. (2.8)

Note that 1 < ηj ≤ κj/`j. A smaller value of η is desired as we require smaller

number of samples, as shown in Theorem 2.2. This happens, for instance,

when all separators are at the top, such that pj,`j = `j and ηj = κj/(κj − `j),
which is close to one for large κj. On the other hand, when all separators

are at the bottom of the list, then η can be as large as κj.

We discuss the role of the topology of data captures by these parameters

in Section 2.4.

2.3 Main Results

We present the main theoretical results accompanied by corresponding nu-

merical simulations in this section.

2.3.1 Upper Bound on the Achievable Error

We present the main result that provides an upper bound on the resulting

error and explicitly shows the dependence on the topology of the data. As

explained above, we assume that each user provides a partial ranking ac-

cording to his/her position of the separators. Precisely, we assume the set
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of offerings Sj, the number of separators `j, and their respective positions

Pj = {pj,1, . . . , pj,`j} are predetermined. Each user draws the ranking of

items from the PL model, and provides the partial ranking according to the

separators of the form of {a > {b, c, d} > e > f} in the example in the Figure

2.1.

Theorem 2.2. Suppose there are n users, d items parametrized by θ∗ ∈ Ωb,

each user j is presented with a set of offerings Sj ⊆ [d], and provides a partial

ordering under the PL model. When the effective sample size
∑n

j=1 `j is large

enough such that

n∑
j=1

`j ≥
211e18bη log(`max + 2)2

α2γ2β
d log d , (2.9)

where b ≡ maxi |θ∗i | is the dynamic range, `max ≡ maxj∈[n] `j, α is the

(rescaled) spectral gap defined in (2.5), β is the (rescaled) maximum degree

defined in (2.6), γ and η are defined in Eqs. (2.7) and (2.8), then the rank-

breaking estimator in (2.3) with the choice of

λj,a =
1

κj − pj,a
, (2.10)

for all a ∈ [`j] and j ∈ [n] achieves

1√
d

∥∥θ̂ − θ∗∥∥
2
≤ 4

√
2e4b(1 + e2b)2

αγ

√
d log d∑n
j=1 `j

, (2.11)

with probability at least 1− 3e3d−3.

Consider an ideal case where the spectral gap is large such that α is a

strictly positive constant and the dynamic range b is finite and maxj∈[n] pj,`j/κj =

C for some constant C < 1 such that γ is also a constant independent of the

problem size d. Then the upper bound in (2.11) implies that we need the

effective sample size to scale as O(d log d), which is only a logarithmic factor

larger than the number of parameters to be estimated. Such a logarithmic

gap is also unavoidable and due to the fact that we require high probability

bounds, where we want the tail probability to decrease at least polynomially

in d. We discuss the role of the topology of the data in Section 2.4.

The upper bound follows from an analysis of the convex program similar
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to those in [156, 84, 182]. However, unlike the traditional data collection

scenarios, the main technical challenge is in analyzing the probability that a

particular pair of items appear in the rank-breaking. We provide a proof in

Section 2.7.1.
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Figure 2.2: Simulation confirms ‖θ∗ − θ̂‖2
2 ∝ 1/(` n), and smaller error is

achieved for separators that are well spread out.

In Figure 2.2 , we verify the scaling of the resulting error via numerical

simulations. We fix d = 1024 and κj = κ = 128, and vary the number of

separators `j = ` for fixed n = 128000 (left), and vary the number of samples

n for fixed `j = ` = 16 (middle). Each point is average over 100 instances.

The plot confirms that the mean squared error scales as 1/(` n). Each sample

is a partial ranking from a set of κ alternatives chosen uniformly at random,

where the partial ranking is from a PL model with weights θ∗ chosen i.i.d.

uniformly over [−b, b] with b = 2. To investigate the role of the position

of the separators, we compare three scenarios. The top-`-separators choose

the top ` positions for separators, the random-`-separators among top-half

choose ` positions uniformly random from the top half, and the random-`-

separators choose the positions uniformly at random. We observe that when

the positions of the separators are well spread out among the κ offerings,

which happens for random-`-separators, we get better accuracy.

The figure on the right provides an insight into this trend for ` = 16

and n = 16000. The absolute error |θ∗i − θ̂i| is roughly same for each item

i ∈ [d] when breaking positions are chosen uniformly at random between 1 to

κ− 1 whereas it is significantly higher for weak preference score items when

breaking positions are restricted between 1 to κ/2 or are top-`. This is due to

the fact that the probability of each item being ranked at different positions

is different, and in particular probability of the low preference score items
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being ranked in top-` is very small. The third figure is averaged over 1000

instances. Normalization constant C is n/d2 and 103`/d2 for the first and

second figures respectively. For the first figure n is chosen relatively large

such that n` is large enough even for ` = 1.

2.3.2 The Price of Rank Breaking for the Special Case of
Position-p Ranking

Rank-breaking achieves computational efficiency at the cost of estimation

accuracy. In this section, we quantify this tradeoff for a canonical example of

position-p ranking, where each sample provides the following information: an

unordered set of p− 1 items that are ranked high, one item that is ranked at

the p-th position, and the rest of κj−p items that are ranked on the bottom.

An example of a sample with position-4 ranking six items {a, b, c, d, e, f}
might be a partial ranking of ({a, b, d} > {e} > {c, f}). Since each sample

has only one separator for 2 < p, Theorem 2.2 simplifies to the following

Corollary.

Corollary 2.3. Under the hypotheses of Theorem 2.2, there exist positive

constants C and c that only depend on b such that if n ≥ C(ηd log d)/(α2γ2β)

then

1√
d

∥∥θ̂ − θ∗∥∥
2
≤ c

αγ

√
d log d

n
. (2.12)

Note that the error only depends on the position p through γ and η, and is

not sensitive. To quantify the price of rank-breaking, we compare this result

to a fundamental lower bound on the minimax rate in Theorem 2.4. We can

compute a sharp lower bound on the minimax rate, using the Cramér-Rao

bound, and a proof is provided in Section 2.7.3.

Theorem 2.4. Let U denote the set of all unbiased estimators of θ∗ and

suppose b > 0, then

inf
θ̂∈U

sup
θ∗∈Ωb

E[‖θ̂ − θ∗‖2] ≥ 1

2p log(κmax)2

d∑
i=2

1

λi(L)
≥ 1

2p log(κmax)2

(d− 1)2

n
,
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where κmax = maxj∈[n] |Sj| and the second inequality follows from the Jensen’s

inequality.

Note that the second inequality is tight up to a constant factor, when the

graph is an expander with a large spectral gap. For expanders, α in the bound

(3.23) is also a strictly positive constant. This suggests that rank-breaking

gains in computational efficiency by a super-exponential factor of (p−1)!, at

the price of increased error by a factor of p, ignoring poly-logarithmic factors.

2.3.3 Tighter Analysis for the Special Case of Top-`
Separators Scenario

The main result in Theorem 2.2 is general in the sense that it applies to

any partial ranking data that is represented by positions of the separators.

However, the bound can be quite loose, especially when γ is small, i.e. pj,`j
is close to κj. For some special cases, we can tighten the analysis to get a

sharper bound. One caveat is that we use a slightly sub-optimal choice of

parameters λj,a = 1/κj instead of 1/(κj − a), to simplify the analysis and

still get the order optimal error bound we want. Concretely, we consider a

special case of top-` separators scenario, where each agent gives a ranked list

of her most preferred `j alternatives among κj offered set of items. Precisely,

the locations of the separators are (pj,1, pj,2, . . . , pj,`j) = (1, 2, . . . , `j).

Theorem 2.5. Under the PL model, n partial orderings are sampled over d

items parametrized by θ∗ ∈ Ωb, where the j-th sample is a ranked list of the

top-`j items among the κj items offered to the agent. If

n∑
j=1

`j ≥
212e6b

βα2
d log d , (2.13)

where b ≡ maxi,i′ |θ∗i − θ∗i′ | and α, β are defined in (2.5) and (2.6), then the

rank-breaking estimator in (2.3) with the choice of λj,a = 1/κj for all a ∈ [`j]

and j ∈ [n] achieves

1√
d

∥∥θ̂ − θ∗∥∥
2
≤ 16(1 + e2b)2

α

√
d log d∑n
j=1 `j

, (2.14)

with probability at least 1− 3e3d−3.
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A proof is provided in Section 2.7.4. In comparison to the general bound in

Theorem 2.2, this is tighter since there is no dependence in γ or η. This gain

is significant when, for example, pj,`j is close to κj. As an extreme example,

if all agents are offered the entire set of alternatives and are asked to rank

all of them, such that κj = d and `j = d− 1 for all j ∈ [n], then the generic

bound in (2.11) is loose by a factor of (e4b/2
√

2)dd2e
2be−2, compared to the

above bound.

In the top-` separators scenario, the data set consists of the ranking among

top-`j items of the set Sj, i.e., [σj(1), σj(2), · · · , σj(`j)]. The corresponding

log-likelihood of the PL model is

L(θ)

=
n∑
j=1

`j∑
m=1

[
θσj(m) − log

(
exp(θσj(m)) + exp(θσj(m+1)) + · · ·+ exp(θσj(κj))

)]
,

(2.15)

where σj(a) is the alternative ranked at the a-th position by agent j. The

Maximum Likelihood Estimator (MLE) for this traditional data set is effi-

cient. Hence, there is no computational gain in rank-breaking. Consequently,

there is no loss in accuracy either, when we use the optimal weights pro-

posed in the above theorem. Figure 2.3 illustrates that the MLE and the

data-driven rank-breaking estimator achieve performance that is identical,

and improve over naive rank-breaking that uses uniform weights. We also

compare performance of Generalized Method-of-Moments (GMM) proposed

by [12] with our algorithm. In addition, we show that performance of GMM

can be improved by optimally weighing pairwise comparisons with λj,a. MSE

of GMM in both the cases, uniform weights and optimal weights, is larger

than our rank-breaking estimator. However, GMM is on average about four

times faster than our algorithm. We choose λj,a = 1/(κj − a) in the simu-

lations, as opposed to the 1/κj assumed in the above theorem. This settles

the question raised in [84] on whether it is possible to achieve optimal accu-

racy using rank-breaking under the top-` separators scenario. Analytically,

it was proved in [84] that under the top-` separators scenario, naive rank-

breaking with uniform weights achieves the same error bound as the MLE,

up to a constant factor. However, we show that this constant factor gap

is not a weakness of the analyses, but the choice of the weights. Theorem
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2.5 provides a guideline for choosing the optimal weights, and the numerical

simulation results in Figure 2.3 show that there is in fact no gap in practice,

if we use the optimal weights. We use the same settings as that of the first

figure of Figure 2.2 for the figure below.
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Figure 2.3: The proposed data-driven rank-breaking achieves performance
identical to the MLE, and improves over naive rank-breaking with uniform
weights.

To prove the order-optimality of the rank-breaking approach up to a con-

stant factor, we can compare the upper bound to a Cramér-Rao lower bound

on any unbiased estimators, in the following theorem. A proof is provided in

Section 2.7.5.

Theorem 2.6. Consider ranking {σj(i)}i∈[`j ] revealed for the set of items Sj,

for j ∈ [n]. Let U denote the set of all unbiased estimators of θ∗ ∈ Ωb. If

b > 0, then

inf
θ̂∈U

sup
θ∗∈Ωb

E[‖θ̂ − θ∗‖2] ≥
(

1− 1

`max

`max∑
i=1

1

κmax − i+ 1

)−1 d∑
i=2

1

λi(L)

≥ (d− 1)2∑n
j=1 `j

, (2.16)

where `max = maxj∈[n] `j and κmax = maxj∈[n] κj. The second inequality

follows from the Jensen’s inequality.

Consider a case when the comparison graph is an expander such that α is

a strictly positive constant, and b = O(1) is also finite. Then, the Cramér-

Rao lower bound show that the upper bound in (2.14) is optimal up to a

logarithmic factor.
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2.3.4 Optimality of the Choice of the Weights

We propose the optimal choice of the weights λj,a’s in Theorem 2.2. In

this section, we show numerical simulations results comparing the proposed

approach to other naive choices of the weights under various scenarios. We

fix d = 1024 items and the underlying preference vector θ∗ is uniformly

distributed over [−b, b] for b = 2. We generate n rankings over sets Sj of size

κ for j ∈ [n] according to the PL model with parameter θ∗. The comparison

sets Sj’s are chosen independently and uniformly at random from [d].

 0.01

 0.1

 1

 1000  10000  100000

Naive rank-breaking
data-driven rank-breaking

sample size n

C ‖θ̂ − θ∗‖22

Figure 2.4: Data-driven rank-breaking is consistent, while a random
rank-breaking results in inconsistency.

Figure 2.4 illustrates that a naive choice of rank-breakings can result in

inconsistency. We create partial orderings data set by fixing κ = 128 and se-

lect ` = 8 random positions in {1, . . . , 127}. Each data set consists of partial

orderings with separators at those 8 random positions, over 128 randomly

chosen subset of items. We vary the sample size n and plot the resulting

mean squared error for the two approaches. The data-driven rank-breaking,

which uses the optimal choice of the weights, achieves error scaling as 1/n as

predicted by Theorem 2.2, which implies consistency. For fair comparisons,

we feed the same number of pairwise orderings to a naive rank-breaking esti-

mator. This estimator uses randomly chosen pairwise orderings with uniform

weights, and is generally inconsistent. However, when sample size is small,

inconsistent estimators can achieve smaller variance leading to smaller er-

ror. Normalization constant C is 103`/d2, and each point is averaged over

100 trials. We use the minorization-maximization algorithm from [92] for

computing the estimates from the rank-breakings.

Even if we use the consistent rank-breakings first proposed in [13], there

is ambiguity in the choice of the weights. We next study how much we gain

by using the proposed optimal choice of the weights. The optimal choice,
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λj,a = 1/(κj − pj,a), depends on two parameters: the size of the offerings κj

and the position of the separators pj,a. To distinguish the effect of these two

parameters, we first experiment with fixed κj = κ and illustrate the gain of

the optimal choice of λj,a’s.
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Figure 2.5: There is a constant factor gain of choosing optimal λj,a’s when
the size of offerings are fixed, i.e. κj = κ (left). We choose a particular set
of separators where one separators is at position one and the rest are at the
bottom. An example for ` = 3 and κ = 10 is shown, where the separators
are indicated by blue (right).

Figure 2.5 illustrates that the optimal choice of the weights improves over

consistent rank-breaking with uniform weights by a constant factor. We

fix κ = 128 and n = 128000. As illustrated by a figure on the right, the

position of the separators are chosen such that there is one separator at

position one, and the rest of ` − 1 separators are at the bottom. Precisely,

(pj,1, pj,2, pj,3, . . . , pj,`) = (1, 128−`+1, 128−`+2, . . . , 127). We consider this

scenario to emphasize the gain of optimal weights. Observe that the MSE

does not decrease at a rate of 1/` in this case. The parameter γ which appears

in the bound of Theorem 2.2 is very small when the breaking positions pj,a are

of the order κj as is the case here, when ` is small. Normalization constant

C is n/d2.

The gain of optimal weights is significant when the size of Sj’s are highly

heterogeneous. Figure 2.6 compares performance of the proposed algorithm,

for the optimal choice and uniform choice of weights λj,a when the comparison

sets Sj’s are of different sizes. We consider the case when n1 agents provide

their top-`1 choices over the sets of size κ1, and n2 agents provide their top-1

choice over the sets of size κ2. We take n1 = 1024, `1 = 8, and n2 = 10n1`1.

Figure 2.6 shows MSE for the two choice of weights, when we fix κ1 = 128,

and vary κ2 from 2 to 128. As predicted from our bounds, when optimal
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Figure 2.6: The gain of choosing optimal λj,a’s is significant when κj’s are
highly heterogeneous.

choice of λj,a is used MSE is not sensitive to sample set sizes κ2. The error

decays at the rate proportional to the inverse of the effective sample size,

which is n1`1 +n2`2 = 11n1`1. However, with λj,a = 1 when κ2 = 2, the MSE

is roughly 10 times worse. Which reflects that the effective sample size is

approximately n1`1, i.e. pairwise comparisons coming from small set size do

not contribute without proper normalization. This gap in MSE corroborates

bounds of Theorem 7.3. Normalization constant C is 103/d2.

2.4 The Role of the Topology of the Data

We study the role of topology of the data that provides a guideline for design-

ing the collection of data when we do have some control, as in recommenda-

tion systems, designing surveys, and crowdsourcing. The core optimization

problem of interest to the designer of such a system is to achieve the best

accuracy while minimizing the number of questions.

2.4.1 The Role of the Graph Laplacian

Using the same number of samples, comparison graphs with larger spectral

gap achieve better accuracy, compared to those with smaller spectral gaps.

To illustrate how graph topology effects the accuracy, we reproduce known

spectral properties of canonical graphs, and numerically compare the perfor-

mance of data-driven rank-breaking for several graph topologies. We follow

the examples and experimental setup from [182] for a similar result with pair-

wise comparisons. Spectral properties of graphs have been a topic of wide

interest for decades. We consider a scenario where we fix the size of offerings
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as κj = κ = O(1) and each agent provides partial ranking with ` separators,

positions of which are chosen uniformly at random. The resulting spectral

gap α of different choices of the set Sj’s are provided below. The total num-

ber edges in the comparisons graph (counting hyper-edges as multiple edges)

is defined as |E| ≡
(
κ
2

)
n.

• Complete graph: when |E| is larger than
(
d
2

)
, we can design the com-

parison graph to be a complete graph over d nodes. The weight Aii′

on each edge is n `/(d(d − 1)), which is the effective number of sam-

ples divided by twice the number of edges. Resulting spectral gap is

one, which is the maximum possible value. Hence, complete graph is

optimal for rank aggregation.

• Sparse random graph: when we have limited resources we might not

be able to afford a dense graph. When |E| is of order o(d2), we have a

sparse graph. Consider a scenario where each set Sj is chosen uniformly

at random. To ensure connectivity, we need n = Ω(log d). Following

standard spectral analysis of random graphs, we have α = Θ(1). Hence,

sparse random graphs are near-optimal for rank-aggregation.

• Chain graph: we consider a chain of sets of size κ overlapping only by

one item. For example, S1 = {1, . . . , κ} and S2 = {κ, κ+1, . . . , 2κ−1},
etc. We choose n to be a multiple of τ ≡ (d− 1)/(κ− 1) and offer each

set n/τ times. The resulting graph is a chain of size κ cliques, and

standard spectral analysis shows that α = Θ(1/d2). Hence, a chain

graph is strictly sub-optimal for rank aggregation.

• Star-like graph: We choose one item to be the center, and every offer

set consists of this center node and a set of κ − 1 other nodes chosen

uniformly at random without replacement. For example, center node

= {1}, S1 = {1, 2, . . . , κ} and S2 = {1, κ+1, κ+2, . . . , 2κ−1}, etc. n is

chosen in the way similar to that of the Chain graph. Standard spectral

analysis shows that α = Θ(1) and star-like graphs are near-optimal for

rank-aggregation.

• Barbell-like graph: We select an offering S = {S ′, i, j}, |S ′| = κ − 2

uniformly at random and divide rest of the items into two groups V1

and V2. We offer set S nκ/d times. For each offering of set S, we offer
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d/κ − 1 sets chosen uniformly at random from the two groups {V1, i}
and {V2, j}. The resulting graph is a barbell-like graph, and standard

spectral analysis shows that α = Θ(1/d2). Hence, a chain graph is

strictly sub-optimal for rank aggregation.

Figure 2.7 illustrates how graph topology effects the accuracy. When θ∗ is

chosen uniformly at random, the accuracy does not change with d (left), and

the accuracy is better for those graphs with larger spectral gap. However,

for a certain worst-case θ∗, the error increases with d for the chain graph

and the barbell-like graph, as predicted by the above analysis of the spectral

gap. We use ` = 4, κ = 17 and vary d from 129 to 2049. κ is kept small

to make the resulting graphs more like the above discussed graphs. Figure

on left shows accuracy when θ∗ is chosen i.i.d. uniformly over [−b, b] with

b = 2. Error in this case is roughly same for each of the graph topologies

with chain graph being the worst. However, when θ∗ is chosen carefully error

for chain graph and barbell-like graph increases with d as shown in the figure

right. We chose θ∗ such that all the items of a set have same weight, either

θi = 0 or θi = b for chain graph and barbell-like graph. We divide all the

sets equally between the two types for chain graph. For barbell-like graph,

we keep the two types of sets on the two different sides of the connector

set and equally divide items of the connector set into two types. Number of

samples n is 100(d−1)/(κ−1) and each point is averaged over 100 instances.

Normalization constant C is n`/d2.
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Figure 2.7: For randomly chosen θ∗ the error does not change with d (left).
However, for particular worst-case θ∗ the error increases with d for the
Chain graph and the Barbell-like graph as predicted by the analysis of the
spectral gap (right).
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2.4.2 The Role of the Position of the Separators

As predicted by theorem 2.2, rank-breaking fails when γ is small, i.e. the

position of the separators are very close to the bottom. An extreme example

is the bottom-` separators scenario, where each person is offered κ randomly

chosen alternatives, and is asked to give a ranked list of bottom ` alternatives.

In other words, the ` separators are placed at (pj,1, . . . , pj,`) = (κj−`, . . . , κ−
1). In this case, γ ' 0 and the error bound is large. This is not a weakness

of the analysis. In fact we observe large errors under this scenario. The

reason is that many alternatives that have large weights θi’s will rarely be

even compared once, making any reasonable estimation infeasible.

Figure 2.8 illustrates this scenario. We choose ` = 8, κ = 128, and d =

1024. The other settings are same as that of the first figure of Figure 2.2.

The left figure plots the magnitude of the estimation error for each item. For

about 200 strong items among 1024, we do not even get a single comparison,

hence we omit any estimation error. It clearly shows the trend: we get good

estimates for about 400 items in the bottom, and we get large errors for

the rest. Consequently, even if we only take those items that have at least

one comparison into account, we still get large errors. This is shown in the

figure right. The error barely decays with the sample size. However, if we

focus on the error for the bottom 400 items, we get good error rate decaying

inversely with the sample size. Normalization constant C in the second figure

is 102 x d/` and 102(400)d/` for the first and second lines respectively, where

x is the number of items that appeared in rank-breaking at least once. We

solve convex program (2.3) for θ restricted to the items that appear in rank-

breaking at least once. The second figure of Figure 2.8 is averaged over 1000

instances.
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Figure 2.8: Under the bottom-` separators scenario, accuracy is good only
for the bottom 400 items (left). As predicted by Theorem 2.7, the mean
squared error on the bottom 400 items scale as 1/n, where as the overall
mean squared error does not decay (right).

We make this observation precise in the following theorem. Applying rank-

breaking to only to those weakest d̃ items, we prove an upper bound on the

achieved error rate that depends on the choice of the d̃. Without loss of

generality, we suppose the items are sorted such that θ∗1 ≤ θ∗2 ≤ · · · ≤ θ∗d.

For a choice of d̃ = `d/(2κ), we denote the weakest d̃ items by θ̃∗ ∈ Rd̃ such

that θ̃∗i = θ∗i − (1/d̃)
∑d̃

i′=1 θ
∗
i′ , for i ∈ [d̃]. Since θ∗ ∈ Ωb, θ̃

∗ ∈ [−2b, 2b]d̃. The

space of all possible preference vectors for [d̃] items is given by Ω̃ = {θ̃ ∈ Rd̃ :∑d̃
i=1 θ̃i = 0} and Ω̃2b = Ω̃ ∩ [−2b, 2b]d̃.

Although the analysis can be easily generalized, to simplify notations, we

fix κj = κ and `j = ` and assume that the comparison sets Sj, |Sj| = κ,

are chosen uniformly at random from the set of d items for all j ∈ [n]. The

rank-breaking log likelihood function LRB(θ̃) for the set of items [d̃] is given

by

LRB(θ̃) =
n∑
j=1

`j∑
a=1

λj,a

{ ∑
(i,i′)∈Ej,a

I{
i,i′∈[d̃]

}(θi′ − log
(
eθi + eθi′

))}
.(2.17)

We analyze the rank-breaking estimator

̂̃
θ ≡ max

θ̃∈Ω̃2b

LRB(θ̃) . (2.18)

We further simplify notations by fixing λj,a = 1, since from Equation (2.24),

we know that the error increases by at most a factor of 4 due to this sub-

optimal choice of the weights, under the special scenario studied in this the-
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orem.

Theorem 2.7. Under the bottom-` separators scenario and the PL model,

Sj’s are chosen uniformly at random of size κ and n partial orderings are

sampled over d items parametrized by θ∗ ∈ Ωb. For d̃ = `d/(2κ) and any

` ≥ 4, if the effective sample size is large enough such that

n` ≥
(

214e8b

χ2

κ3

`3

)
d log d , (2.19)

where

χ ≡ 1

4

(
1− exp

(
− 2

9(κ− 2)

))
, (2.20)

then the rank-breaking estimator in (2.18) achieves

1√
d̃

∥∥̂̃θ − θ̃∗∥∥
2
≤ 128(1 + e4b)2

χ

κ3/2

`3/2

√
d log d

n`
, (2.21)

with probability at least 1− 3e3d−3.

Consider a scenario where κ = O(1) and ` = Θ(κ). Then, χ is a strictly

positive constant, and also κ/` is s finite constant. It follows that rank-

breaking requires the effective sample size n` = O(d log d/ε2) in order to

achieve arbitrarily small error of ε > 0, on the weakest d̃ = ` d/(2κ) items.

2.5 Real-World Data Sets

On real-world data sets on sushi preferences [104], we show that the data-

driven rank-breaking improves over Generalized Method-of-Moments (GMM)

proposed by [12]. This is a widely used data set for rank aggregation, for

instance in [12, 14, 147, 124, 137, 136]. The data set consists of complete

rankings over 10 types of sushi from n = 5000 individuals. Below, we follow

the experimental scenarios of the GMM approach in [12] for fair comparisons.

To validate our approach, we first take the estimated PL weights of the 10

types of sushi, using [92] implementation of the ML estimator, over the entire

input data of 5000 complete rankings. We take thus created output as the

ground truth θ∗. To create partial rankings and compare the performance
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of the data-driven rank-breaking to the state-of-the-art GMM approach in

Figure 2.9, we first fix ` = 6 and vary n to simulate top-`-separators scenario

by removing the known ordering among bottom 10− ` alternatives for each

sample in the data set (left). We next fix n = 1000 and vary ` and simulate

top-`-separators scenarios (right). Each point is averaged over 1000 instances.

The mean squared error is plotted for both algorithms.
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Figure 2.9: The data-driven rank-breaking achieves smaller error compared
to the state-of-the-art GMM approach.

Figure 2.10 illustrates the Kendall rank correlation of the rankings esti-

mated by the two algorithms and the ground truth. Larger value indicates

that the estimate is closer to the ground truth, and the data-driven rank-

breaking outperforms the state-of-the-art GMM approach.
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Figure 2.10: The data-driven rank-breaking achieves larger Kendall rank
correlation compared to the state-of-the-art GMM approach.

To validate whether PL model is the right model to explain the sushi

data set, we compare the data-driven rank-breaking, MLE for the PL model,

GMM for the PL model, Borda count and Spearman’s footrule optimal

aggregation. We measure the Kendall rank correlation between the esti-

mates and the samples and show the result in Table 2.1. In particular, if
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σ1, σ2, · · · , σn denote sample rankings and σ̂ denote the aggregated ranking

then the correlation value is (1/n)
∑n

i=1

(
1 − 4K(σ̂,σi)

κ(κ−1)

)
, where K(σ1, σ2) =∑

i<j∈[κ] I{(σ−1
1 (i)−σ−1

1 (j))(σ−1
2 (i)−σ−1

2 (j))<0}. The results are reported for different

number of samples n and different values of ` under the top-` separators

scenarios. When ` = 9, we are using all the complete rankings, and all algo-

rithms are efficient. When ` < 9, we have partial orderings, and Spearman’s

footrule optimal aggregation is NP-hard. We instead use scaled footrule ag-

gregation (SFO) given in [58]. Most approaches achieve similar performance,

except for the Spearman’s footrule. The proposed data-driven rank-breaking

achieves a slightly worse correlation compared to other approaches. However,

note that none of the algorithms are necessarily maximizing the Kendall cor-

relation, and are not expected to be particularly good in this metric.

MLE
under

PL

data-
driven

RB
GMM

Borda
count

Spear-
man’s

footrule
n = 500,
` = 9

0.306 0.291 0.315 0.315 0.159

n = 5000,
` = 9

0.309 0.309 0.315 0.315 0.079

n = 5000,
` = 2

0.199 0.199 0.201 0.200 0.113

n = 5000,
` = 5

0.217 0.200 0.217 0.295 0.152

Table 2.1: Kendall rank correlation on sushi data set.

We compare our algorithm with the GMM algorithm on two other real-

world data-sets as well. We use jester data set [78] that consists of over

4.1 million continuous ratings between −10 to +10 of 100 jokes from 48, 483

users. The average number of jokes rated by an user is 72.6 with minimum

and maximum being 36 and 100 respectively. We convert continuous ratings

into ordinal rankings. This data-set has been used by [154, 166, 40, 125] for

rank aggregation and collaborative filtering.

Similar to the settings of sushi data experiments, we take the estimated

PL weights of the 100 jokes over all the rankings as ground truth. Figure

2.11 shows comparative performance of the data-driven rank-breaking and

the GMM for the two scenarios. We first fix ` = 10 and vary n to simulate
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random-10 separators scenario (left). We next take all the rankings n =

73421 and vary ` to simulate random-` separators scenario (rights). Since

sets have different sizes, while varying ` we use full breaking if the setsize is

smaller than `. Each point is averaged over 100 instances. The mean squared

error is plotted for both algorithms.
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Figure 2.11: jester data set: The data-driven rank-breaking achieves smaller
error compared to the state-of-the-art GMM approach.

We perform similar experiments on American Psychological Association

(APA) data-set [54]. The APA elects a president each year by asking each

member to rank order a slate of five candidates. The data-set represents full

rankings given by 5738 members of the association in 1980’s election. The

mean squared error is plotted for both algorithms under the settings similar

to that of jester data-set.
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Figure 2.12: APA data set: The data-driven rank-breaking achieves smaller
error compared to the state-of-the-art GMM approach.
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2.6 Discussion

We study the problem of learning the PL model from ordinal data. Under the

traditional data collection scenarios, several efficient algorithms find the max-

imum likelihood estimates and at the same time provably achieve minimax

optimal performance. However, for some non-traditional scenarios, compu-

tational complexity of finding the maximum likelihood estimate can scale

super-exponentially in the problem size. We provide the first finite-sample

analysis of computationally efficient estimators known as rank-breaking es-

timators. This provides guidelines for choosing the weights in the estimator

to achieve optimal performance, and also explicitly shows how the accuracy

depends on the topology of the data.

This paper provides the first analytical result in the sample complexity of

rank-breaking estimators, and quantifies the price we pay in accuracy for the

computational gain. In general, more complex higher-order rank-breaking

can also be considered, where instead of breaking a partial ordering into a

collection of paired comparisons, we break it into a collection of higher-order

comparisons. The resulting higher-order rank-breakings will enable us to tra-

verse the whole spectrum of computational complexity between the pairwise

rank-breaking and the MLE. We believe this paper opens an interesting new

direction towards understanding the whole spectrum of such approaches.

However, analyzing the Hessian of the corresponding objective function is

significantly more involved and requires new technical innovations.

2.7 Proofs

2.7.1 Proof of Theorem 2.2

We prove a more general result for an arbitrary choice of the parameter

λj,a > 0 for all j ∈ [n] and a ∈ [`j]. The following theorem proves the

(near)-optimality of the choice of λj,a’s proposed in (6.27), and implies the

corresponding error bound as a corollary.

Theorem 2.8. Under the hypotheses of Theorem 2.2 and any λj,a’s, the
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rank-breaking estimator achieves

1√
d

∥∥ θ̂ − θ∗ ∥∥
2

≤ 4
√

2e4b(1 + e2b)2
√
d log d

α γ

√∑n
j=1

∑`j
a=1

(
λj,a
)2(

κj − pj,a
)(
κj − pj,a + 1

)
∑n

j=1

∑`j
a=1 λj,a(κj − pj,a)

,

(2.22)

with probability at least 1− 3e3d−3, if

n∑
j=1

`j∑
a=1

λj,a(κj − pj,a) ≥ 26e18b ηδ

α2βγ2τ
d log d , (2.23)

where γ, η, τ , δ, α, β, are now functions of λj,a’s and defined in (2.7), (2.8),

(2.25), (2.27) and (2.30).

We first claim that λj,a = 1/(κj−pj,a+1) is the optimal choice for minimiz-

ing the above upper bound on the error. From Cauchy-Schwartz inequality

and the fact that all terms are non-negative, we have that√∑n
j=1

∑`j
a=1

(
λj,a
)2

(κj − pj,a)(κj − pj,a + 1)∑n
j=1

∑`j
a=1 λj,a(κj − pj,a)

≥ 1√∑n
j=1

∑`j
a=1

(κj−pj,a)

(κj−pj,a+1)

,

(2.24)

where λj,a = 1/(κj − pj,a + 1) achieves the universal lower bound on the

right-hand side with an equality. Since
∑n

j=1

∑`j
a=1

(κj−pj,a)

(κj−pj,a+1)
≥ ∑n

j=1 `j,

substituting this into (7.24) gives the desired error bound in (2.11). Although

we have identified the optimal choice of λj,a’s, we choose a slightly different

value of λ = 1/(κj−pj,a) for the analysis. This achieves the same desired error

bound in (2.11), and significantly simplifies the notations of the sufficient

conditions.

We first define all the parameters in the above theorem for general λj,a.

With a slight abuse of notations, we use the same notations for H, L, α and

β for both the general λj,a’s and also the specific choice of λj,a = 1/(κj−pj,a).
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It should be clear from the context what we mean in each case. Define

τ ≡ min
j∈[n]

τj , where τj ≡
∑`j

a=1 λj,a(κj − pj,a)
`j

(2.25)

δj,1 ≡
{

max
a∈[`j ]

{
λj,a(κj − pj,a)

}
+

`j∑
a=1

λj,a

}
, and δj,2 ≡

`j∑
a=1

λj,a

(2.26)

δ ≡ max
j∈[n]

{
4δ2
j,1 +

2
(
δj,1δj,2 + δ2

j,2

)
κj

ηj`j

}
. (2.27)

Note that δ ≥ δ2
j,1 ≥ maxa λ

2
j,a(κj − pj,a)2 ≥ τ 2, and for the choice of λj,a =

1/(κj − pj,a) it simplifies as τ = τj = 1. We next define a comparison graph

H for general λj,a, which recovers the proposed comparison graph for the

optimal choice of λj,a’s

Definition 2.9. (Comparison graph H). Each item i ∈ [d] corresponds to a

vertex i. For any pair of vertices i, i′, there is a weighted edge between them

if there exists a set Sj such that i, i′ ∈ Sj; the weight equals
∑

j:i,i′∈Sj
τj`j

κj(κj−1)
.

Let A denote the weighted adjacency matrix, and let D = diag(A1). De-

fine,

Dmax ≡ max
i∈[d]

Dii = max
i∈[d]

{ ∑
j:i∈Sj

τj`j
κj

}
≥ τmin max

i∈[d]

{ ∑
j:i∈Sj

`j
κj

}
.

(2.28)

Define graph Laplacian L as L = D − A, i.e.,

L =
n∑
j=1

τj`j
κj(κj − 1)

∑
i<i′∈Sj

(ei − ei′)(ei − ei′)>. (2.29)

Let 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λd(L) denote the sorted eigenvalues of L.

Note that Tr(L) =
∑d

i=1

∑
j:i∈Sj τj`j/κj =

∑n
j=1 τj`j. Define α and β such

that

α ≡ λ2(L)(d− 1)

Tr(L)
=
λ2(L)(d− 1)∑n

j=1 τj`j
and β ≡ Tr(L)

dDmax

=

∑n
j=1 τj`j

dDmax

. (2.30)

For the proposed choice of λj,a = 1/(κj − pj,a), we have τj = 1 and the

definitions of H, L, α, and β reduce to those defined in Definition 2.1. We
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are left to prove an upper bound, δ ≤ 32(log(`max + 2))2, which implies the

sufficient condition in (2.9) and finishes the proof of Theorem 2.2. We have,

δj,1 = max
a∈[`j ]

{
λj,a(κj − pj,a)

}
+

`j∑
a=1

λj,a = 1 +

`j∑
a=1

1

κj − pj,a

≤ 1 +

`j∑
a=1

1

a

≤ 2 log(`j + 2) , (2.31)

where in the first inequality follows from taking the worst case for the po-

sitions, i.e. pj,a = κj − `j + a − 1 Using the fact that for any integer x,∑`−1
a=0 1/(x+ a) ≤ log((x+ `− 1)/(x− 1)), we also have

δj,2κj
ηj`j

≤
`j∑
a=1

1

κj − pj,a
max {`j, κj − pj,`j}

`j

≤ min
{

log(`j + 2) , log
(κj − pj,`j + `j − 1

κj − pj,`j − 1

)}max {`j, κj − pj,`j}
`j

≤ log(`j + 2)`j
max {`j, κj − pj,`j − 1}

max {`j, κj − pj,`j}
`j

≤ 2 log(`j + 2) , (2.32)

where the first inequality follows from the definition of ηj, Equation (2.8).

From (2.31), (2.32), and the fact that δj,2 ≤ log(`j + 2), we have

δ = max
j∈[n]

{
4δ2
j,1 +

2
(
δj,1δj,2 + δ2

j,2

)
κj

ηj`j

}
≤ 28(log(`max + 2))2 .

2.7.2 Proof of Theorem 7.3

We first introduce two key technical lemmas. In the following lemma we show

that Eθ∗ [∇LRB(θ∗)] = 0 and provide a bound on the deviation of ∇LRB(θ∗)

from its mean. The expectation Eθ∗ [·] is with respect to the randomness in

the samples drawn according to θ∗. The log likelihood Equation (2.2) can be
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rewritten as

LRB(θ) =
n∑
j=1

`j∑
a=1

∑
i<i′∈Sj

I{
(i,i′)∈Gj,a

}λj,a(θiI{
σ−1
j (i)<σ−1

j (i′)
}

+θi′I{
σ−1
j (i)>σ−1

j (i′)
} − log

(
eθi + eθi′

))
. (2.33)

We use (i, i′) ∈ Gj,a to mean either (i, i′) or (i′, i) belong to Ej,a. Taking the

first-order partial derivative of LRB(θ), we get

∇iLRB(θ∗)

=
∑
j:i∈Sj

`j∑
a=1

∑
i′∈Sj
i′ 6=i

λj,a I{
(i,i′)∈Gj,a

} (I{
σ−1
j (i)<σ−1

j (i′)
} − exp(θ∗i )

exp(θ∗i ) + exp(θ∗i′)

)
.

(2.34)

Lemma 2.10. Under the hypotheses of Theorem 2.2, with probability at least

1− 2e3d−3,

∥∥∇LRB(θ∗)
∥∥

2
≤

√√√√6 log d
n∑
j=1

`j∑
a=1

(
λj,a
)2(

κj − pj,a
)(
κj − pj,a + 1

)
.

The Hessian matrix H(θ) ∈ Sd with Hii′(θ) = ∂2LRB(θ)
∂θi∂θi′

is given by

H(θ)

= −
n∑
j=1

`j∑
a=1

∑
i<i′∈Sj

I{
(i,i′)∈Gj,a

}λj,a((ei − ei′)(ei − ei′)>
exp(θi + θi′)

[exp(θi) + exp(θi′)]2

)
.

(2.35)

It follows from the definition that −H(θ) is positive semi-definite for any θ ∈
Rd. The smallest eigenvalue of −H(θ) is equal to zero and the corresponding

eigenvector is all-ones vector. The following lemma lower bounds its second

smallest eigenvalue λ2(−H(θ)).
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Lemma 2.11. Under the hypotheses of Theorem 2.2, if

n∑
j=1

`j∑
a=1

λj,a(κj − pj,a) ≥ 26e18b ηδ

α2βγ2τ
d log d (2.36)

then with probability at least 1− d−3, the following holds for any θ ∈ Ωb:

λ2(−H(θ)) ≥ e−4b

(1 + e2b)2

αγ

d− 1

n∑
j=1

`j∑
a=1

λj,a(κj − pj,a) . (2.37)

Define ∆ = θ̂ − θ∗. It follows from the definition that ∆ is orthogonal

to the all-ones vector. By the definition of θ̂ as the optimal solution of the

optimization (2.3), we know that LRB(θ̂) ≥ LRB(θ∗) and thus

LRB(θ̂)− LRB(θ∗)− 〈∇LRB(θ∗),∆〉 ≥ −〈∇LRB(θ∗),∆〉
≥ −‖∇LRB(θ∗)‖2‖∆‖2, (2.38)

where the last inequality follows from the Cauchy-Schwartz inequality. By

the mean value theorem, there exists a θ = aθ̂+ (1− a)θ∗ for some a ∈ [0, 1]

such that θ ∈ Ωb and

LRB(θ̂)− LRB(θ∗)− 〈∇LRB(θ∗),∆〉 =
1

2
∆>H(θ)∆

≤ −1

2
λ2(−H(θ))‖∆‖2

2, (2.39)

where the last inequality holds because the Hessian matrix −H(θ) is positive

semi-definite with H(θ)1 = 0 and ∆>1 = 0. Combining (2.38) and (2.39),

‖∆‖2 ≤
2‖∇LRB(θ∗)‖2

λ2(−H(θ))
. (2.40)

Note that θ ∈ Ωb by definition. Theorem 7.3 follows by combining Equation

(2.40) with Lemma 2.10 and Lemma 2.11.

Proof of Lemma 2.10

The idea of the proof is to view ∇LRB(θ∗) as the final value of a discrete

time vector-valued martingale with values in Rd. Define ∇LGj,a(θ∗) as the
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gradient vector arising out of each rank-breaking graph {Gj,a}j∈[n],a∈[`j ] that

is

∇iLGj,a(θ∗) ≡
∑
i′∈Sj
i′ 6=i

λj,a I{
(i,i′)∈Gj,a

} (I{
σ−1
j (i)<σ−1

j (i′)
} − exp(θ∗i )

exp(θ∗i ) + exp(θ∗i′)

)
.

(2.41)

Consider ∇LGj,a(θ∗) as the incremental random vector in a martingale of∑
j=1 `j time steps. Lemma 2.12 shows that the expectation of each in-

cremental vector is zero. Observe that the conditioning event {i′′ ∈ S :

σ−1(i′′) < pj,a} given in (2.43) is equivalent to conditioning on the history

{Gj,a′}a′<a. Therefore, using the assumption that the rankings {σj}j∈[n] are

mutually independent, we have that the conditional expectation of∇LGj,a(θ∗)
conditioned on {Gj′,a′′}j′<j,a′′∈[`j′ ]

is zero. Further, the conditional expecta-

tion of ∇LGj,a(θ∗) is zero even when conditioned on the rank breaking due

to previous separators {Gj,a′}a′<a that are ranked higher (i.e. a′ < a), which

follows from the next lemma.

Lemma 2.12. For a position-p rank breaking graph Gp, defined over a set

of items S, where p ∈ [|S| − 1],

P
[
σ−1(i) < σ−1(i′)

∣∣∣ (i, i′) ∈ Gp

]
=

exp(θ∗i )

exp(θ∗i ) + exp(θ∗i′)
, (2.42)

for all i, i′ ∈ S and also

P
[
σ−1(i) < σ−1(i′)

∣∣∣ (i, i′) ∈ Gp and {i′′ ∈ S : σ−1(i′′) < p}
]

=
exp(θ∗i )

exp(θ∗i ) + exp(θ∗i′)
. (2.43)

This is one of the key technical lemmas since it implies that the proposed

rank-breaking is consistent, i.e. Eθ∗ [∇LRB(θ∗)] = 0. Throughout the proof

of Theorem 2.2, this is the only place where the assumption on the proposed

(consistent) rank-breaking is used. According to a companion theorem in

[13, Theorem 2], it also follows that any rank-breaking that is not union of

position-p rank-breakings results in inconsistency, i.e. Eθ∗ [∇LRB(θ∗)] 6= 0.

We claim that for each rank-breaking graphGj,a, ‖∇LGj,a(θ∗)‖2
2 ≤ (λj,a)

2(κj−
pj,a)(κj − pj,a + 1). By Lemma 2.13 which is a generalization of the vector
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version of the Azuma-Hoeffding inequality found in [89, Theorem 1.8], we

have

P
[∥∥∇LRB(θ∗)

∥∥
2
≥ δ
]

≤ 2e3 exp

(
−δ2

2
∑n

j=1

∑`j
a=1

(
λj,a
)2(

κj − pj,a
)(
κj − pj,a + 1

)) ,
which implies the result.

Lemma 2.13. Let (X1, X2, · · · , Xn) be real-valued martingale taking values

in Rd such that X0 = 0 and for every 1 ≤ i ≤ n, ‖Xi−Xi−1‖2 ≤ ci, for some

non-negative constant ci. Then for every δ > 0,

P[‖Xn‖2 ≥ δ] ≤ 2e3e
− δ2

2
∑n
i=1

c2
i . (2.44)

It follows from the upper bound on ‖∇LGj,a(θ∗)‖2
2 ≤ c2

i with c2
i = λ2

(
(kj−

pj,a)
2 + (kj − pj,a)

)
. In the expression (2.41), ∇LGj,a(θ∗) has one entry at

pj,a-th position that is compared to (kj − pj,a) other items and (kj − pj,a)

entries that is compared only once, giving the bound

‖∇LGj,a(θ∗)‖2
2 ≤ λ2

j,a(kj − pj,a)2 + λ2
j,a(kj − pj,a) .

Proof of Lemma 2.12

Define event E ≡ {(i, i′) ∈ Gp}. Observe that

E =
{(

I{(σ−1(i)=p} + I{σ−1(i′))=p} = 1
)
∧
(
σ−1(i), σ−1(i′) ≥ p

)}
.

Consider any set Ω ⊂ S \{i, i′} such that |Ω| = p−1. Let M denote an event

that items of the set Ω are ranked in top-(p − 1) positions in a particular
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order. It is easy to verify the following:

P
[
σ−1(i) < σ−1(i′)

∣∣∣E,M] =
P
[(
σ−1(i) < σ−1(i′)

)
, E,M

]
P
[
E,M

]
=

P
[(
σ−1(i) = p

)
,M
]

P
[(
σ−1(i) = p

)
,M
]

+ P
[(
σ−1(i′) = p

)
,M
]

=
exp(θ∗i )

exp(θ∗i ) + exp(θ∗i′)
= P

[
σ−1(i) < σ−1(i′)

]
.

Since M is any particular ordering of the set Ω and Ω is any subset of S\{i, i′}
such that |Ω| = p−1, conditioned on event E probabilities of all the possible

events M over all the possible choices of set Ω sum to 1.

Proof of Lemma 2.13

It follows exactly along the lines of proof of Theorem 1.8 in [89].

Proof of Lemma 2.11

The Hessian H(θ) is given in (2.35). For all j ∈ [n], define M (j) ∈ Sd as

M (j) ≡
`j∑
a=1

λj,a
∑

i<i′∈Sj

I{
(i,i′) ∈ Gj,a

}(ei − ei′)(ei − ei′)>, (2.45)

and let M ≡ ∑n
j=1M

(j). Observe that M is positive semi-definite and the

smallest eigenvalue of M is zero with the corresponding eigenvector given

by the all-ones vector. If |θi| ≤ b, for all i ∈ [d],
exp(θi+θi′ )

[exp(θi)+exp(θi′ )]
2 ≥ e2b

(1+e2b)2 .

Recall the definition of H(θ) from Equation (2.35). It follows that −H(θ) �
e2b

(1+e2b)2M for θ ∈ Ωb. Since, −H(θ) and M are symmetric matrices, from

Weyl’s inequality we have, λ2(−H(θ)) ≥ e2b

(1+e2b)2λ2(M). Again from Weyl’s

inequality, it follows that

λ2(M) ≥ λ2(E[M ])− ‖M − E[M ]‖ , (2.46)
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where ‖·‖ denotes the spectral norm. We will show in (2.51) that λ2(E[M ]) ≥
2γe−6b(α/(d− 1))

∑n
j=1 τj`j, and in (2.63) that

‖M − E[M ]‖ ≤ 8e3b

√√√√ηδ log d

βτd

n∑
j=1

τj`j.

λ2(M) ≥ 2e−6bαγ

d− 1

n∑
j=1

τj`j − 8e3b

√√√√ηδ log d

βτd

n∑
j=1

τj`j ≥
e−6bαγ

d− 1

n∑
j=1

τj`j ,

(2.47)

where the last inequality follows from the assumption that
∑n

j=1 τj`j ≥
26e18b ηδ

α2βγ2τ
d log d. This proves the desired claim.

To prove the lower bound on λ2(E[M ]), notice that

E[M ] =
n∑
j=1

`j∑
a=1

λj,a
∑

i<i′∈Sj

P
[
(i, i′) ∈ Gj,a

∣∣∣(i, i′ ∈ Sj)](ei − ei′)(ei − ei′)> .
(2.48)

The following lemma provides a lower bound on P[(i, i′) ∈ Gj,a|(i, i′ ∈ Sj)].

Lemma 2.14. Consider a ranking σ over a set S ⊆ [d] such that |S| = κ.

For any two items i, i′ ∈ S, θ ∈ Ωb, and 1 ≤ ` ≤ κ− 1,

Pθ
[
σ−1(i) = `, σ−1(i′) > `

]
≥ e−6b(κ− `)

κ(κ− 1)

(
1− `

κ

)αi,i′,`,θ−2

, (2.49)

where the probability Pθ is with respect to the sampled ranking resulting from

PL weights θ ∈ Ωb, and αi,i′,`,θ is defined as 1 ≤ αi,i′,`,θ = dα̃i,i′,`,θe, and

α̃i,i′,`,θ is,

α̃i,i′,`,θ ≡ max
`′∈[`]

max
Ω⊆S\{i,i′}
:|Ω|=κ−`′

{
exp(θi) + exp(θi′)(∑

j∈Ω exp(θj)
)
/|Ω|

}
. (2.50)

Note that we do not need max`′∈[`] in the above equation as the expression

achieves its maxima at `′ = `, but we keep the definition to avoid any confu-

sion. In the worst case, 2e−2b ≤ α̃i,i′,`,θ ≤ 2e2b. Therefore, using definition of
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rank breaking graph Gj,a, and Equations (2.48) and (3.30) we have,

E[M ] � γe−6b

n∑
j=1

`j∑
a=1

λj,a
2(κj − pj,a)
κj(κj − 1)

∑
i<i′∈Sj

(ei − ei′)(ei − ei′)>

� 2γe−6b

n∑
j=1

1

κj(κj − 1)

`j∑
a=1

λj,a(κj − pj,a)
∑

i<i′∈Sj

(ei − ei′)(ei − ei′)>

= 2γe−6bL, (2.51)

where we used γ ≤ (1− pj,`j/κj)α1−2 which follows for the definition in (2.7).

(2.51) follows from the definition of Laplacian L, defined for the comparison

graph H in Definition 2.9. Using λ2(L) = (α/(d− 1))
∑n

j=1 τj`j from (2.30),

we get the desired bound λ2(E[M ]) ≥ 2γe−6b(α/(d− 1))
∑n

j=1 τj`j.

Next we need to upper bound ‖∑n
j=1 E[(M j)2]‖ to bound the deviation of

M from its expectation. To this end, we prove an upper bound on P[σ−1
j (i) =

pj,a | i ∈ Sj] in the following lemma.

Lemma 2.15. Under the hypotheses of Lemma 2.14,

Pθ
[
σ−1(i) = `

]
≤ e6b

κ

(
1− `

κ+ αi,`,θ

)αi,`,θ−1

≤ e6b

κ− ` , (2.52)

where 0 ≤ αi,`,θ = bα̃i,`,θc, and α̃i,`,θ is,

α̃i,`,θ ≡ min
`′∈[`]

min
Ω∈S\{i}

:|Ω|=κ−`′+1

{
exp(θi)(∑

j∈Ω exp(θj)
)
/|Ω|

}
. (2.53)

In the worst case, e−2b ≤ α̃i,`,θ ≤ e2b. Note that αi,`,θ = 0 gives the worst

upper bound.

Therefore using Equation (2.52), for all i ∈ [d], we have,

P
[
σ−1
j (i) ∈ Pj

]
≤ min

{
1,

e6b`j
κj − pj,`j

}
≤ e6b`j

max{`j, κj − pj,`j}
≤ e6bη`j

κj
,

(2.54)

where we used η defined in Equation (2.8). Define a diagonal matrix D(j) ∈
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Sd and a matrix A(j) ∈ Sd,

A
(j)
ii′ ≡ I{

i,i′∈Sj
} `j∑

a=1

λj,aI{
(i,i′)∈Gj,a

} , for all i, i′ ∈ [d] , (2.55)

and D
(j)
ii =

∑
i′ 6=iA

(j)
ii′ . Observe that M (j) = D(j) − A(j). For all i ∈ [d], we

have,

D
(j)
ii = I{

i∈Sj
} κj∑
i′=1

I{
σ−1
j (i)=i′

} `j∑
a=1

λj,adegGj,a(σ
−1
j (i′))

≤ I{
i∈Sj
}{I{

σ−1
j (i)∈Pj

}(max
a∈[`j ]

{
λj,a(κj − pj,a)

}
+

`j∑
a=1

λj,a

)

+I{
σ−1
j (i)/∈Pj

}( `j∑
a=1

λj,a

)}

= I{
i∈Sj
}{I{

σ−1
j (i)∈Pj

}δj,1 + I{
σ−1
j (i)/∈Pj

}δj,2}, (2.56)

where the last equality follows from the definition of δj,1 and δj,2 in Equation

(2.26). Note that maxi∈[d]{Dii} = δj,1. Using (2.54) and (2.56), we have,

E
[
D

(j)
ii

]
≤ I{

i∈Sj
}{e6bη`j

κj

(
δj,1 +

δj,2κj
η`j

)}
. (2.57)

Similarly we have,

E
[(
D

(j)
ii

)2
]
≤ I{

i∈Sj
}{e6bη`j

κj

(
δ2
j,1 +

δ2
j,2κj

η`j

)}
(2.58)

For all i ∈ [d], we have,

E

[
d∑

i′=1

((
A(j)

)2)
ii′

]
≤ E

[( d∑
i′=1

A
(j)
ii′

)
max
i∈[d]

{ d∑
i′=1

A
(j)
ii′

}]

≤ E
[
D

(j)
ii δj,1

]
≤ I{

i∈Sj
}{e6bη`j

κj

(
δ2
j,1 +

δj,1δj,2κj
η`j

)}
. (2.59)
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Using (2.58) and (2.59), we have, for all i ∈ [d],

d∑
i′=1

∣∣∣E[((M (j)
)2)

ii′

]∣∣∣
=

d∑
i′=1

∣∣∣∣∣E[((D(j)
)2)

ii′

]
− E

[(
D(j)A(j)

)
ii′

]
−E
[(
A(j)D(j)

)
ii′

]
+ E

[((
A(j)

)2)
ii′

]∣∣∣∣∣
≤ 2E

[(
D

(j)
ii

)2
]

+
d∑

i′=1

(
E
[
δj,1
(
A(j)

)
ii′

]
+ E

[((
A(j)

)2)
ii′

])

≤ I{
i∈Sj
}{e6bη`j

κj

(
4δ2
j,1 +

2
(
δj,1δj,2 + δ2

j,2

)
κj

η`j

)}

= I{
i∈Sj
}{e6bδη`j

κj

}
, (2.60)

where the last equality follows from the definition of δ, Equation (2.27).

To bound ‖∑n
j=1 E[(M (j))2]‖, we use the fact that for J ∈ Rd×d, ‖J‖ ≤

maxi∈[d]

∑d
i′=1 |Jii′ |. Therefore, we have∥∥∥∥∥

n∑
j=1

E
[
(M (j))2

]∥∥∥∥∥ ≤ e6bδηmax
i∈[d]

{ ∑
j:i∈Sj

`j
κj

}

=
e6bηδ

τ
Dmax (2.61)

=
e6bηδ

βτd

n∑
j=1

τj`j , (2.62)

where (2.61) follows from the definition of Dmax in Equation(2.28) and (2.62)

follows from the definition of β in (2.30). Observe that from Equation (2.56),

‖M (j)‖ ≤ 2δj,1 ≤ 2
√
δ. Applying matrix Bernstein inequality, we have,

P
[∥∥M − E[M ]

∥∥ ≥ t
]
≤ d exp

(
−t2/2

e6bηδ
βτd

∑n
j=1 τj`j + 4

√
δt/3

)
.
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Therefore, with probability at least 1− d−3, we have,

∥∥M − E[M ]
∥∥ ≤ 4e3b

√√√√ηδ log d

βτd

n∑
j=1

τj`j +
64
√
δ log d

3
≤ 8e3b

√√√√ηδ log d

βτd

n∑
j=1

τj`j ,

(2.63)

where the second inequality uses
∑n

j=1 τj`j ≥ 26(βτ/η)d log d which follows

from the assumption that
∑n

j=1 τj`j ≥ 26e18b ηδ
τγ2α2β

d log d and the fact that

α, β ≤ 1, γ ≤ 1, η ≥ 1, and δ > τ 2.

Proof of Lemma 2.14

Since providing a lower bound on Pθ
[
σ−1(i) = `, σ−1(i′) > `

]
for arbitrary

θ is challenging, we construct a new set of parameters {θ̃j}j∈[d] from the

original θ. These new parameters are constructed such that it is both easy

to compute the probability and also provides a lower bound on the original

distribution. We denote the sum of the weights by W ≡ ∑j∈S exp(θj). We

define a new set of parameters {θ̃j}j∈S:

θ̃j =

{
log(α̃i,i′,`,θ/2) for j = i or i′ ,

0 otherwise .
(2.64)
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Similarly define W̃ ≡∑j∈S exp(θ̃j) = κ− 2 + α̃i,i′,`,θ. We have,

Pθ
[
σ−1(i) = `, σ−1(i′) > `

]
=

∑
j1∈S
j1 6=i,i′

(
exp(θj1)

W

∑
j2∈S

j2 6=i,i′,j1

(
exp(θj2)

W − exp(θj1)
· · ·

( ∑
j`−1∈S
j`−1 6=i,i′,
j1,··· ,j`−2

exp(θj`−1
)

W −∑j`−2

k=j1
exp(θk)

exp(θi)

W −∑j`−1

k=j1
exp(θk)

)
· · ·
))

=
exp(θi)

W

∑
j1∈S
j1 6=i,i′

(
exp(θj1)

W − exp(θj1)

∑
j2∈S

j2 6=i,i′,j1

(
exp(θj2)

W − exp(θj1)− exp(θj2)
· · ·

∑
j`−1∈S
j`−1 6=i,i′,
j1,··· ,j`−2

(
exp(θj`−1

)

W −∑j`−1

k=j1
exp(θk)

)
· · ·
))

(2.65)

Consider the last summation term in the above equation and let Ω` = S \
{i, i′, j1, . . . , j`−2}. Observe that, |Ω`| = κ − ` and from equation (3.39),
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exp(θi)+exp(θi′ )∑
j∈Ω`

exp(θj)
≤ α̃i,i′,`,θ

κ−` . We have,

∑
j`−1∈Ω`

exp(θj`−1
)

W −∑j`−1

k=j1
exp(θk)

=
∑

j`−1∈Ω`

exp(θj`−1
)

W −∑j`−2

k=j1
exp(θk)− exp(θj`−1

)

≥
∑

j`−1∈Ω`
exp(θj`−1

)

W −∑j`−2

k=j1
exp(θk)−

(∑
j`−1∈Ω`

exp(θj`−1
)
)
/|Ω`|

(2.66)

=

∑
j`−1∈Ω`

exp(θj`−1
)

exp(θi) + exp(θi′) +
∑

j`−1∈Ω`
exp(θj`−1

)−
(∑

j`−1∈Ω`
exp(θj`−1

)
)
/|Ω`|

=

(
exp(θi) + exp(θi′)∑
j`−1∈Ω`

exp(θj`−1
)

+ 1− 1

κ− `

)−1

≥
(

α̃1

κ− ` + 1− 1

κ− `

)−1

(2.67)

=
κ− `

α̃1 + κ− `− 1

=
∑

j`−1∈Ω`

exp(θ̃j`−1
)

W̃ −∑j`−2

k=j1
exp(θ̃k)− exp(θ̃j`−1

)
, (2.68)

where (3.41) follows from the Jensen’s inequality and the fact that for any

c > 0, 0 < x < c, x
c−x is convex in x. Equation (3.42) follows from the

definition of α̃i,i′,`,θ, (3.39), and the fact that |Ω`| = κ − `. Equation (3.43)

uses the definition of {θ̃j}j∈S.

Consider {Ω˜̀}2≤˜̀≤`−1, |Ω˜̀| = κ− ˜̀, corresponding to the subsequent sum-

mation terms in (3.40). Observe that
exp(θi)+exp(θi′ )∑

j∈Ω˜̀ exp(θj)
≤ α̃i,i′,`,θ/|Ω˜̀|. Therefore,

each summation term in equation (3.40) can be lower bounded by the corre-
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sponding term where {θj}j∈S is replaced by {θ̃j}j∈S. Hence, we have

Pθ
[
σ−1(i) = `, σ−1(i′) > `

]
≥ exp(θi)

W

∑
j1∈S
j1 6=i,i′

(
exp(θ̃j1)

W̃ − exp(θ̃j1)

∑
j2∈S

j2 6=i,i′,j1

(
exp(θ̃j2)

W̃ − exp(θ̃j1)− exp(θ̃j2)
· · ·

∑
j`−1∈S
j`−1 6=i,i′,
j1,··· ,j`−2

(
exp(θ̃j`−1

)

W̃ −∑j`−1

k=j1
exp(θ̃k)

)))

≥ e−4b exp(θ̃i)

W̃

∑
j1∈S
j1 6=i,i′

(
exp(θ̃j1)

W̃ − exp(θ̃j1)

∑
j2∈S

j2 6=i,i′,j1

(
exp(θ̃j2)

W̃ − exp(θ̃j1)− exp(θ̃j2)
· · ·

∑
j`−1∈S
j`−1 6=i,i′,
j1,··· ,j`−2

(
exp(θ̃j`−1

)

W̃ −∑j`−1

k=j1
exp(θ̃k)

)))

=
(
e−4b

)
Pθ̃
[
σ−1(i) = `, σ−1(i′) > `

]
. (2.69)

The second inequality uses exp(θi)
W
≥ e−2b/κ and exp(θ̃i)

W̃
≤ e2b/κ. Observe that

exp(θ̃j) = 1 for all j 6= i, i′ and exp(θ̃i) + exp(θ̃i′) = α̃i,i′,`,θ ≤ dα̃i,i′,`,θe =

αi,i′,`,θ ≥ 1. Therefore, we have

Pθ̃
[
σ−1(i) = `, σ−1(i′) > `

]
=

(
κ− 2

`− 1

)
(α̃i,i′,`,θ/2)(`− 1)!

(κ− 2 + α̃i,i′,`,θ)(κ− 2 + α̃i,i′,`,θ − 1) · · · (κ− 2 + α̃i,i′,`,θ − (`− 1))

≥ (κ− 2)!

(κ− `− 1)!

e−2b

(κ+ αi,i′,`,θ − 2)(κ+ αi,i′,`,θ − 3) · · · (κ+ αi,i′,`,θ − (`+ 1))

(2.70)

=
e−2b(κ− `+ αi,i′,`,θ − 2)(κ− `+ αi,i′,`,θ − 3) · · · (κ− `)

(κ+ αi,i′,`,θ − 2)(κ+ αi,i′,`,θ − 3) · · · (κ− 1)

=
e−2b

(κ− 1)

(κ− `+ αi,i′,`,θ − 2)(κ− `+ αi,i′,`,θ − 3) · · · (κ− `)
(κ+ αi,i′,`,θ − 2)(κ+ αi,i′,`,θ − 3) · · · (κ)

≥ e−2b

(κ− 1)

(
1− `

κ

)αi,i′,`,θ−1

=
e−2b(κ− `)
κ(κ− 1)

(
1− `

κ

)αi,i′,`,θ−2

, (2.71)
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where (2.70) follows from the fact that α̃i,i′,`,θ ≥ 2e−2b. Claim (3.30) follows

by combining Equations (3.44) and (3.45).

Proof of Lemma 2.15

Analogous to the proof of Lemma 2.14, we construct a new set of parameters

{θ̃j}j∈[d] from the original θ. We denote the sum of the weights by W ≡∑
j∈S exp(θj). We define a new set of parameters {θ̃j}j∈S:

θ̃j =

{
log(α̃i,`,θ) for j = i ,

0 otherwise .
(2.72)

Similarly define W̃ ≡∑j∈S exp(θ̃j) = κ− 1 + α̃i,`,θ. We have,

Pθ
[
σ−1(i) = `

]
=
∑
j1∈S
j1 6=i

(
exp(θj1)

W

∑
j2∈S
j2 6=i,j1

(
exp(θj2)

W − exp(θj1)
· · ·

( ∑
j`−1∈S
j`−1 6=i,
j1,··· ,j`−2

exp(θj`−1
)

W −∑j`−2

k=j1
exp(θk)

exp(θi)

W −∑j`−1

k=j1
exp(θk)

)))

≤
∑
j1∈S
j1 6=i

(
exp(θj1)

W

∑
j2∈S
j2 6=i,j1

(
exp(θj2)

W − exp(θj1)
· · ·

( ∑
j`−1∈S
j`−1 6=i,
j1,··· ,j`−2

exp(θj`−1
)

W −∑j`−2

k=j1
exp(θk)

)))
e2b

κ− `+ 1
(2.73)

Consider the last summation term in the equation (3.47), and let Ω` = S \
{i, j1, . . . , j`−2}, such that |Ω`| = κ − ` + 1. Observe that from equation

58



(2.53), exp(θi)∑
j∈Ω`

exp(θj)
≥ α̃i,`,θ

κ−`+1
. We have,

∑
j`−1∈Ω`

exp(θj`−1
)

W −∑j`−2

k=j1
exp(θk)

=

∑
j`−1∈Ω`

exp(θj`−1
)

exp(θi) +
∑

j`−1∈Ω`
exp(θj`−1

)

≤
(

α̃i,`,θ
κ− `+ 1

+ 1

)−1

=
κ− `+ 1

α̃i,`,θ + κ− `+ 1

=
∑

j`−1∈Ω`

exp(θ̃j`−1
)

W̃ −∑j`−2

k=j1
exp(θ̃k)

, (2.74)

where (2.74) follows from the definition of {θ̃}j∈S.

Consider {Ω˜̀}2≤˜̀≤`−1, |Ω˜̀| = κ − ˜̀+ 1, corresponding to the subsequent

summation terms in (3.47). Observe that exp(θi)∑
j∈Ω˜̀ exp(θj)

≥ α̃i,`,θ/|Ω˜̀|. There-

fore, each summation term in equation (3.40) can be lower bounded by the

corresponding term where {θj}j∈S is replaced by {θ̃j}j∈S. Hence, we have

Pθ
[
σ−1(i) = `

]
≤

∑
j1∈S
j1 6=i

(
exp(θ̃j1)

W̃

∑
j2∈S
j2 6=i,j1

(
exp(θ̃j2)

W̃ − exp(θ̃j1)
· · ·

( ∑
j`−1∈S
j`−1 6=i,
j1,··· ,j`−2

exp(θ̃j`−1
)

W̃ −∑j`−2

k=j1
exp(θ̃k)

)))
e2b

κ− `+ 1

≤ e4b
∑
j1∈S
j1 6=i

(
exp(θ̃j1)

W̃

∑
j2∈S
j2 6=i,j1

(
exp(θ̃j2)

W̃ − exp(θ̃j1)
· · ·

( ∑
j`−1∈S
j`−1 6=i,
j1,··· ,j`−2

exp(θ̃j`−1
)

W̃ −∑j`−2

k=j1
exp(θ̃k)

exp(θ̃i)

W̃ −∑j`−1

k=j1
exp(θ̃k)

)))

≤ e4bPθ̃
[
σ−1(i) = `

]
(2.75)

The second inequality uses α̃2/(κ − ` + α̃i,`,θ) ≥ e−2b/(κ − ` + 1). Observe

that exp(θ̃j) = 1 for all j 6= i and exp(θ̃i) = α̃i,`,θ ≥ bα̃i,`,θc = αi,`,θ ≥ 0.
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Therefore, we have

Pθ̃
[
σ−1(i) = `

]
=

(
κ− 1

`− 1

)
α̃i,`,θ(`− 1)!

(κ− 1 + α̃i,`,θ)(κ− 2 + α̃i,`,θ) · · · (κ− `+ α̃i,`,θ)

≤ (κ− 1)!

(κ− `)!
e2b

(κ− 1 + αi,`,θ)(κ− 2 + αi,`,θ) · · · (κ− `+ αi,`,θ)

≤ e2b

κ

(
1− `

κ+ αi,`,θ

)αi,`,θ−1

, (2.76)

Note that equation (3.48) holds for all values of αi,`,θ ≥ 0. Claim 2.52 follows

by combining Equations (2.75) and (3.48).

2.7.3 Proof of Theorem 2.4

Let H(θ) ∈ Sd be Hessian matrix such that Hii′(θ) = ∂2L(θ)
∂θi∂θi′

. The Fisher in-

formation matrix is defined as I(θ) = −Eθ[H(θ)]. Fix any unbiased estimator

θ̂ of θ ∈ Ωb. Since, θ̂ ∈ U , θ̂ − θ is orthogonal to 1. The Cramér-Rao lower

bound then implies that E[‖θ̂ − θ∗‖2] ≥∑d
i=2

1
λi(I(θ))

. Taking the supremum

over both sides gives

sup
θ

E[‖θ̂ − θ‖2] ≥ sup
θ

d∑
i=2

1

λi(I(θ))
≥

d∑
i=2

1

λi(I(0))
.

The following lemma provides a lower bound on Eθ[H(0)], where 0 indicates

the all-zeros vector.

Lemma 2.16. Under the hypotheses of Theorem 2.4,

Eθ[H(0)] � −
n∑
j=1

2p log(κj)
2

κj(κj − 1)

∑
i′<i∈Sj

(ei − ei′)(ei − ei′)> . (2.77)

Observe that I(0) is positive semi-definite. Moreover, λ1(I(0)) is zero and

the corresponding eigenvector is the all-ones vector. It follows that

I(0) �
n∑
j=1

2p log(κj)
2

κj(κj − 1)

∑
i′<i∈Sj

(ei − ei′)(ei − ei′)>

� 2p log(κmax)2

n∑
j=1

1

κj(κj − 1)

∑
i′<i∈Sj

(ei − ei′)(ei − ei′)>︸ ︷︷ ︸
=L

,

60



where L is the Laplacian defined for the comparison graph H, Definition 2.1,

as `j = 1 for all j ∈ [n] in this setting. By Jensen’s inequality, we have

d∑
i=2

1

λi(L)
≥ (d− 1)2∑d

i=2 λi(L)
=

(d− 1)2

Tr(L)
=

(d− 1)2

n
.

Proof of Lemma 2.16

Define Lj(θ) for j ∈ [n] such that L(θ) =
∑n

j=1 Lj(θ). Let H(j)(θ) ∈ Sd be

the Hessian matrix such that H
(j)
ii′ (θ) =

∂2Lj(θ)
∂θi∂θi′

for i, i′ ∈ Sj. We prove that

for all j ∈ [n],

Eθ[H(j)(0)] � −2p log(κj)
2

κj(κj − 1)

∑
i′<i∈Sj

(ei − ei′)(ei − ei′)> . (2.78)

In the following, we omit superscript/subscript j for brevity. With a slight

abuse of notation, we use I{Ω−1(i)=a} = 1 if item i is ranked at the a-th

position in all the orderings σ ∈ Ω. Let P[θ] be the likelihood of observing

Ω−1(p) = i(p) and the set Λ (the set of the items that are ranked before the

p-th position). We have,

P(θ) =
∑
σ∈Ω

(
exp

(∑p
m=1 θσ(m)

)∏p
a=1

(∑κ
m′=a exp

(
θσ(m′)

))
)
. (2.79)

For i, i′ ∈ Sj, we have

Hii′(θ) =
1

P(θ)

∂2P(θ)

∂θi∂θi′
− ∇iP(θ)∇i′P(θ)(

P(θ)
)2 (2.80)

We claim that at θ = 0,

−Hii′(0) =



C1 if i = i′,
{

Ω−1(i) ≥ p
}

C2 + A2
3 − C3 if i = i′,

{
Ω−1(i) < p

}
−B1 if i 6= i′,

{
Ω−1(i) ≥ p, Ω−1(i′) ≥ p

}
−B2 if i 6= i′,

{
Ω−1(i) ≥ p, Ω−1(i′) < p

}
−B2 if i 6= i′,

{
Ω−1(i) < p, Ω−1(i′) ≥ p

}
−(B3 +B4 − A2

3) if i 6= i′,
{

Ω−1(i) < p, Ω−1(i′) < p
}
.

(2.81)
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where constants A3, B1, B2, B3, B4, C1, C2 and C3 are defined in Equations

(2.88), (2.90), (2.91), (2.92), (2.93), (2.95), (2.96) and (2.97) respectively.

From this computation of the Hessian, note that we have

H(0) =
∑
i′<i∈S

(ei − ei′)(ei − ei′)>
(
Hii′(0)

)
. (2.82)

which follows directly from the fact that the diagonal entries are summations

of the off-diagonals, i.e. C1 = B1(κ − p) + B2(p − 1) and C2 + A2
3 − C3 =

B2(κ−p+1)+(B3+B4−A2
3)(p−2). The second equality follows from the fact

that C2 = B2(κ−p+1)+B3(p−2) and A2
3(p−1) = B4(p−2)+C3. Note that

since θ = 0, all items are exchangeable. Hence, E[Hii′(0)] = E[Hii(0)]/(κ−1),

and substituting this into (2.82) and using Equations (2.81), we get

E
[
H(0)

]
= − 1

κ− 1

(
P
[
Ω−1(i) ≥ p

]
C1 + P

[
Ω−1(i) < p

]
(C2 + A2

3 − C3)

)
∑
i′<i∈S

(ei − ei′)(ei − ei′)>

� − 1

κ(κ− 1)

∑
i′<i∈S

(ei − ei′)(ei − ei′)>(
(κ− p+ 1) log

(
κ

κ− p

)
+ (p− 1)

(
log

(
κ

κ− p+ 1

)
+ log

(
κ

κ− p+ 1

)2))
(2.83)

� −2p log(κ)2

κ(κ− 1)

∑
i′<i∈S

(ei − ei′)(ei − ei′)> , (2.84)

where (2.83) uses
∑p

a=1
1

κ−a+1
≤ log

(
κ
κ−p

)
and C3 ≥ 0. Equation (2.84)

follows from the fact that for any x > 0, log(1 + x) ≤ x. To prove (2.81), we

have the first order partial derivative of P(θ) given by

∇iP(θ)

= I{Ω−1(i)≤p}P(θ)

−
∑
σ∈Ω

(
exp

(∑p
m=1 θσ(m)

)∏p
a=1

(∑κ
m′=a exp

(
θσ(m′)

))
(

p∑
a=1

I{σ−1(i)≥a} exp(θi)∑κ
m′=a exp

(
θσ(m′)

))) . (2.85)
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Define constants A1, A2 and A3 such that

A1 ≡ P(θ)
∣∣
{θ=0} =

(p− 1)!

κ(κ− 1) · · · (κ− p+ 1)
, (2.86)

A2 ≡
(

p∑
a=1

exp(θi)∑κ
m′=a exp

(
θσ(m′)

))∣∣∣∣∣
{θ=0}

=

(
1

κ
+

1

κ− 1
+ · · ·+ 1

κ− p+ 1

)
,

(2.87)

A3 ≡
(

(p− 1)(p− 2)!

(p− 1)!(κ)
+

(p− 2)(p− 2)!

(p− 1)!(κ− 1)
+ · · ·+ (p− 2)!

(p− 1)!(κ− p+ 2)

)
.

(2.88)

Observe that, for all i ∈ [d],

∇iP(θ)
∣∣
{θ=0} = A1

(
I{Ω−1

j (i)=p}(1− A2) + I{Ω−1
j (i)<p}(1− A3)− I{Ω−1

j (i)>p}A2

)
.

(2.89)

Further define constants B1, B2, B3 and B4 such that

B1

≡
(

1

κ2
+

1

(κ− 1)2
+ · · ·+ 1

(κ− p+ 1)2

)
, (2.90)

B2

≡
(

p− 1

(p− 1)κ2
+

p− 2

(p− 1)(κ− 1)2
+ · · ·+ 1

(p− 1)(κ− p+ 2)2

)
, (2.91)

B3

≡
(

(p− 1)(p− 2)(p− 3)!

(p− 1)!κ2
+

(p− 2)(p− 3)(p− 3)!

(p− 1)!(κ− 1)2
+ · · ·

+
2(p− 3)!

(p− 1)!(κ− p+ 3)2

)
, (2.92)

B4

≡ (p− 3)!

(p− 1)!

( ∑
a,b∈[p−1],b 6=a

(
1

κ
+

1

κ− 1
+ · · ·+ 1

κ− a+ 1

)
(

1

κ
+

1

κ− 1
+ · · ·+ 1

κ− b+ 1

))
. (2.93)
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Observe that,

∂2P(θ)

∂θi∂θi′

∣∣∣∣
θ=0

= I{
Ω−1(i),Ω−1(i′)>p

}A1

(
(−A2)(−A2) +B1

)
+
(
I{

Ω−1(i)>p,Ω−1(i′)=p
} + I{

Ω−1(i)=p,Ω−1(i′)>p
})A1

(
(−A2)(1− A2) +B1

)
+
(
I{

Ω−1(i)=p,Ω−1(i′)<p
} + I{

Ω−1(i)<p,Ω−1(i′)=p
})

A1

(
(1− A3) + (−A2)(1− A3) +B2

)
+
(
I{

Ω−1(i)>p,Ω−1(i′)<p
} + I{

Ω−1(i)<p,Ω−1(i′)>p
})A1

(
(−A2)(1− A3) +B2

)
+ I{

Ω−1(i)<p,Ω−1(i′)<p
}A1

(
(1− A3) + (−A3) +B4 +B3

)
. (2.94)

The claims in (2.81) are easy to verify by combining Equations (2.89) and

(2.94) with (2.80). Also, define constants C1, C2 and C3 such that,

C1 ≡
(
κ− 1

(κ)2
+

κ− 2

(κ− 1)2
+ · · ·+ κ− p

(κ− p+ 1)2

)
, (2.95)

C2 ≡
(

(p− 1)(p− 2)!(κ− 1)

(p− 1)!(κ)2
+

(p− 2)(p− 2)!(κ− 2)

(p− 1)!(κ− 1)2
+ · · ·

+
(p− 2)!(κ− p+ 1)

(p− 1)!(κ− p+ 2)2

)
, (2.96)

C3 ≡
(p− 2)!

(p− 1)!

( ∑
a,b∈[p−1],b=a

(
1

κ
+

1

κ− 1
+ · · ·+ 1

κ− a+ 1

)
(

1

κ
+

1

κ− 1
+ · · ·+ 1

κ− b+ 1

))
, (2.97)

such that,

∂2P(θ)

∂θ2
i

∣∣∣∣
θ=0

= I{Ω−1(i)>p}A1

(
(−A2)(−A2)− C1

)
+I{Ω−1(i)=p}A1

(
(1− A2)− A2(1− A2)− C1

)
+ I{Ω−1(i)<p}A1

(
(1− A3)− A3 − C2 + C3

)
. (2.98)

The claims (2.81) is easy to verify by combining Equations (2.89) and (2.98)
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with (2.80).

2.7.4 Proof of Theorem 2.5

The proof is analogous to the proof of Theorem 7.3. It differs primarily in

the lower bound that is achieved for the second smallest eigenvalue of the

Hessian matrix H(θ), (2.35).

Lemma 2.17. Under the hypotheses of Theorem 2.5, if

n∑
j=1

`j ≥ (212e6b/βα2)d log d

then with probability at least 1− d−3,

λ2(−H(θ)) ≥ α

2(1 + e2b)2

1

d− 1

n∑
j=1

`j . (2.99)

Using Lemma 2.10 that is derived for the general value of λj,a and pj,a,

and by substituting λj,a = 1/(κj − 1) and pj,a = a for each j ∈ [n], we get

that with probability at least 1− 2e3d−3,

‖∇LRB(θ∗)‖2 ≤

√√√√16 log d
n∑
j=1

`j . (2.100)

Theorem 2.5 follows from Equations (2.100), (2.99) and (2.40).

Proof of Lemma 2.17

Define M (j) ∈ Sd as

M (j) =
1

κj − 1

∑
i<i′∈Sj

`j∑
a=1

I{(i,i′) ∈ Gj,a}(ei − ei′)(ei − ei′)>, (2.101)

and let M =
∑n

j=1M
(j). Similar to the analysis carried out in the proof of

Lemma 2.11, we have λ2(−H(θ)) ≥ e2b

(1+e2b)2λ2(M), when λj,a = 1/(κj − 1)

is substituted in the Hessian matrix H(θ), Equation (2.35). From Weyl’s
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inequality we have that

λ2(M) ≥ λ2(E[M ])− ‖M − E[M ]‖ . (2.102)

We will show in (2.107) that λ2(E[M ]) ≥ e−2b(α/(d − 1))
∑n

j=1 `j and in

(2.112) that ‖M − E[M ]‖ ≤ 32eb
√

log d
βd

∑n
j=1 `j.

λ2(M) ≥ αe−2b

d− 1

n∑
j=1

`j − 32eb

√√√√ log d

βd

n∑
j=1

`j ≥
αe−2b

2(d− 1)

n∑
j=1

`j , (2.103)

where the last inequality follows from the assumption that

n∑
j=1

`j ≥ (212e6b/βα2)d log d .

This proves the desired claim.

To prove the lower bound on λ2(E[M ]), notice that

E[M ]

=
n∑
j=1

1

κj − 1

∑
i<i′∈Sj

E

[
`j∑
a=1

I{(i,i′)∈Gj,a}
∣∣∣(i, i′ ∈ Sj)](ei − ei′)(ei − ei′)> .

(2.104)

Using the fact that pj,a = a for each j ∈ [n], and the definition of rank-

breaking graph Gj,a, we have that

E

[
`j∑
a=1

I{(i,i′)∈Gj,a}
∣∣∣(i, i′ ∈ Sj)]

= P
[
I{σ−1

j (i)≤`j} + I{σ−1
j (i′)≤`j} ≥ 1

∣∣∣(i, i′ ∈ Sj)]
≥ P

[
(σ−1(i) ≤ `j

∣∣∣(i, i′ ∈ Sj)] . (2.105)

The following lemma provides a lower bound on P[(σ−1(i) ≤ `j|(i, i′ ∈ Sj)].

Lemma 2.18. Consider a ranking σ over a set of items S of size κ. For any
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item i ∈ S,

P[(σ−1(i) ≤ `] ≥ e−2b `

κ
. (2.106)

Therefore, using the fact that (ei − ei′)(ei − ei′)> is positive semi-definite,

and Equations (2.104), (2.105) and (2.106) we have

E[M ] � e−2b

n∑
j=1

`j
κj(κj − 1)

∑
i<i′∈Sj

(ei − ei′)(ei − ei′)> = e−2bL,

(2.107)

where L is the Laplacian defined for the comparison graph H, Definition

2.1. Using λ2(L) = (α/(d− 1))
∑n

j=1 `j from (2.5), we get the desired bound

λ2(E[M ]) ≥ e−2b(α/(d− 1))
∑n

j=1 `j.

For top-`j rank breaking, M (j) is also given by

M (j)

=
1

κj − 1

(
(κj − `j)diag(e{Ij}) + `jdiag(e{Sj})

− e{Ij}e>{Sj} − e{Sj}e>{Ij} + e{Ij}e
>
{Ij}

)
, (2.108)

where e{Sj}, e{Ij} ∈ Rd are zero-one vectors, e{Sj} has support corresponding

to the set of items Sj and e{Ij} has support corresponding to the random

top-`j items in the ranking σj. Ij = {σj(1), σj(2), · · · , σj(`j)} for j ∈ [n].

(M (j))2 is given by

(M (j))2 =
1

(κj − 1)2

(
(κ2

j − `2
j)diag(e{Ij}) + `j

2diag(e{Sj})−

(κj + `j)(e{Ij}e
>
{Sj} + e{Sj}e

>
{Ij} − e{Ij}e>{Ij}) + `je{Sj}e

>
{Sj}

)
.

Note that P[i ∈ Ij|i ∈ Sj] ≤ `je
2b/κj for all i ∈ Sj. Its proof is similar to the

proof of Lemma 2.18. Therefore, we have E[diag(e{Ij})] � `je
2b/κjdiag(e{1}).

To bound ‖∑n
j=1 E[(M (j))2]‖, we use the fact that for J ∈ Rd×d, ‖J‖ ≤

maxi∈[d]

∑d
i′=1 |Jii′ |. Maximum of row sums of E[e{Ij}e

>
{Ij}] is upper bounded

by maxi∈[d]

{
`jP[i ∈ Ij|i ∈ Sj]

}
≤ `j

2e2b/κj. Therefore using triangle in-
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equality, we have,∥∥∥∥∥
n∑
j=1

E
[
(M (j))2

]∥∥∥∥∥
≤ max

i∈[d]

{ ∑
j:i∈Sj

1

(κj − 1)2

(
(κ2

j − `j2)`je
2b

κj
+ `j

2

+e2b(κj + `j)(2`j + `j
2/κj) + `jκj

)}

≤ max
i∈[d]

{ ∑
j:i∈Sj

`je
2b

κj

(
(κ2

j − `j2)

(κj − 1)2
+

`jκj
(κj − 1)2

+
2(κj + `j)κj

(κj − 1)2

+
(κj + `j)`j
(κj − 1)2

+
κ2
j

(κj − 1)2

)}

≤ max
i∈[d]

{ ∑
j:i∈Sj

`je
2b

κj

(
(κ2

j − 1)

(κj − 1)2
+
κj(κj − 1)

(κj − 1)2
+

4κ2
j

(κj − 1)2

+
2κj(κj − 1)

(κj − 1)2
+

κ2
j

(κj − 1)2

)}

≤ max
i∈[d]

{ ∑
j:i∈Sj

`je
2b

κj

(
3 + 2 + 16 + 4 + 4

)}
(2.109)

≤ 29e2b max
i∈[d]

{ ∑
j:i∈Sj

`j
κj

}
= 29e2bDmax (2.110)

=
29e2b

βd

n∑
j=1

`j , (2.111)

where (2.109) uses the fact that κj ≥ 2 and 1 ≤ `j ≤ κj − 1 for all j ∈ [n].

(2.110) follows from the definition of Dmax, Definition 2.1 and (2.111) follows

from the Equation (2.6). Also, note that ‖Mj‖ ≤ 2 for all j ∈ [n]. Applying

matrix Bernstien inequality, we have,

P
[
‖M − E[M ]‖ ≥ t

]
≤ d exp

(
−t2/2

29e2b

βd

∑n
j=1 `j + 4t/3

)
.
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Therefore, with probability at least 1− d−3, we have,

‖M − E[M ]‖ ≤ 22eb

√√√√ log d

βd

n∑
j=1

`j +
64 log d

3
≤ 32eb

√√√√ log d

βd

n∑
j=1

`j , (2.112)

where the second inequality follows from the assumption that
∑n

j=1 `j ≥
212d log d and β ≤ 1.

Proof of Lemma 2.18

Define imin ≡ arg mini∈S θi. We claim the following. For all i ∈ S and any

1 ≤ ` ≤ |S| − 1,

P[σ−1(i) > `] ≤ P[σ−1(imin) > `] and P[σ−1(imin) = `] ≥ P[σ−1(imin) = 1] .

(2.113)

Therefore P[σ−1(i) ≤ `] ≥ P[σ−1(imin) ≤ `]. Using P[σ−1(imin) = 1] >

e−2b/κ, we get the desired bound P[σ−1(i) ≤ `] > e−2b`/κ.

To prove the claim (2.113), let σ̂`1 denote a ranking of top-` items of the set

S and P[σ̂`1] be the probability of observing σ̂`1. Let i ∈ (σ̂`1)−1 denote that

i = (σ̂`1)−1(j) for some 1 ≤ j ≤ `. Let

Ω1 =
{
σ̂`1 : i /∈ (σ̂`1)−1, imin ∈ (σ̂`1)−1

}
andΩ2 =

{
σ̂`1 : i ∈ (σ̂`1)−1, imin /∈ (σ̂`1)−1

}
.

We have P[σ−1(i) > `] − P[σ−1(imin) > `] =
∑

σ̂`1∈Ω1
P[σ̂`1] −∑σ̂`1∈Ω2

P[σ̂`1].

Now, take any ranking σ̂`1 ∈ Ω1 and construct another ranking σ̃`1 from σ̂`1

by replacing imin with i-th item. Observe that P[σ̂`1] ≤ P[σ̃`1] and σ̃`1 ∈ Ω2.

Moreover, such a construction gives a bijective mapping between Ω1 and Ω2.

Hence, the first claim is proved. For the second claim, let

Ω̂1 =
{
σ̂`1 : (σ̂`1)−1(imin) = 1

}
and Ω̂2 =

{
σ̂`1 : (σ̂`1)−1(imin) = `

}
.

We have P[σ−1(imin) = 1]− P[σ−1(imin) = `] =
∑

σ̂`1∈Ω̂1
P[σ̂`1]−∑σ̂`1∈Ω̂2

P[σ̂`1].

Now, take any ranking σ̂`1 ∈ Ω̂1 and construct another ranking σ̃`1 from σ̂`1

by swapping items at 1st position and `-th position. Observe that P[σ̂`1] ≤
P[σ̃`1] and σ̃`1 ∈ Ω̂2. Moreover, such a construction gives a bijective mapping

between Ω̂1 and Ω̂2. Hence, the claim is proved.
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2.7.5 Proof of Theorem 2.6

The first order partial derivative of L(θ), Equation (2.15), is given by

∇iL(θ)

=
∑
j:i∈Sj

`j∑
m=1

I{σ−1
j (i)≥m}

[
I{σj(m)=i}

− exp(θi)

exp(θσj(m)) + exp(θσj(m+1)) + · · ·+ exp(θσj(κj))

]
, ∀i ∈ [d]

and the Hessian matrix H(θ) ∈ Sd with Hii′(θ) = ∂2L(θ)
∂θi∂θi′

is given by

H(θ) =

−
n∑
j=1

∑
i<i′∈Sj

(ei − ei′)(ei − ei′)>

`j∑
m=1

exp(θi + θi′)I{σ−1
j (i),σ−1

j (i′)≥m}

[exp(θσj(m)) + exp(θσj(m+1)) + · · ·+ exp(θσj(κj))]
2
. (2.114)

It follows from the definition that −H(θ) is positive semi-definite for any

θ ∈ Rn.

The Fisher information matrix is defined as I(θ) = −Eθ[H(θ)] and given

by

I(θ) =
n∑
j=1

∑
i<i′∈Sj

(ei − ei′)(ei − ei′)>

`j∑
m=1

E

[
I{σ−1

j (i),σ−1
j (i′)≥m}

[exp(θσj(m)) + · · ·+ exp(θσj(κj))]
2

]
exp(θi + θi′).

Since −H(θ) is positive semi-definite, it follows that I(θ) is positive semi-

definite. Moreover, λ1(I(θ)) is zero and the corresponding eigenvector is the

all-ones vector. Fix any unbiased estimator θ̂ of θ ∈ Ωb. Since, θ̂ ∈ U ,

θ̂ − θ is orthogonal to 1. The Cramér-Rao lower bound then implies that
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E[‖θ̂ − θ∗‖2] ≥∑d
i=2

1
λi(I(θ))

. Taking the supremum over both sides gives

sup
θ

E[‖θ̂ − θ‖2] ≥ sup
θ

d∑
i=2

1

λi(I(θ))
≥

d∑
i=2

1

λi(I(0))
.

If θ equals the all-zero vector, then

Pθ[σ−1
j (i), σ−1

j (i′) ≥ m] =

(
κj−m+1

2

)(
κj
2

) =
(κj −m+ 1)(κj −m)

κj(κj − 1)
.

It follows from the definition that

I(0) =
n∑
j=1

∑
i<i′∈Sj

(ei − ei′)(ei − ei′)>
`j∑
m=1

(κj −m)

κj(κj − 1)(κj −m+ 1)

� `
(

1− 1

`j

`j∑
m=1

1

κmax −m+ 1

) n∑
j=1

1

κj(κj − 1)

∑
i<i′∈Sj

(ei − ei′)(ei − ei′)>︸ ︷︷ ︸
=L

,

where L is the Laplacian defined for the comparison graph H, Definition 2.1.

By Jensen’s inequality, we have

d∑
i=2

1

λi(L)
≥ (d− 1)2∑d

i=2 λi(L)
=

(d− 1)2

Tr(L)
=

(d− 1)2

n
.

2.7.6 Proof of Theorem 2.7

We prove a slightly more general result that implies the desired theorem. For

` ≥ 4, we can choose β1 = 1/2. Then, the condition that γβ1 ≤ 1 implies

d̃ ≤ (`/2 + 1)(d− 2)/(κ− 2), which implies d̃ ≤ `d/(2κ). With the choice of

d̃ = `d/(2κ), this implies Theorem 2.7.

Theorem 2.19. Under the bottom-` separators scenario and the PL model,

n partial orderings are sampled over d items parametrized by θ∗ ∈ Ωb. For

any β1 with 0 ≤ β1 ≤ `−2
`

, define

γβ1 ≡
d̃(κ− 2)

(b`β1c+ 1)(d− 2)
, (2.115)
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and for γβ1 ≤ 1,

χβ1 ≡
(
1− b`β1c /`

)2

(
1− exp

(
− (b`β1c+ 1)2(1− γβ1)2

2(κ− 2)

))
.(2.116)

If

n` ≥
(

212e8b

χ2
β1

d2

d̃2

κ

`

)
d log d , (2.117)

then the rank-breaking estimator in (2.18) achieves

1√
d̃

∥∥̂̃θ − θ̃∗∥∥
2
≤ 32

√
2(1 + e4b)2

χβ1

d3/2

d̃3/2

√
d log d

n`
, (2.118)

with probability at least 1− 3e3d−3.

Proof is very similar to the proof of Theorem 7.3. It mainly differs in the

lower bound that is achieved for the second smallest eigenvalue of the Hessian

matrix H(θ̃) of LRB(θ̃), Equation (2.17). Equation (2.17) can be rewritten

as

LRB(θ̃) =

n∑
j=1

∑̀
a=1

∑
i<i′∈Sj
:i,i′∈[d̃]

I{
(i,i′)∈Gj,a

}λj,a(θ̃iI{
σ−1
j (i)<σ−1

j (i′)
} + θ̃i′I{

σ−1
j (i)>σ−1

j (i′)
}

− log
(
eθ̃i + eθ̃i′

))
, (2.119)

where (i, i′) ∈ Gj,a implies either (i, i′) or (i′, i) belong to Ej,a. The Hessian

matrix H(θ̃) ∈ S d̃ with Hii′(θ̃) = ∂2LRB(θ̃)

∂θ̃i∂θ̃i′
is given by

H(θ̃) =

−
n∑
j=1

∑̀
a=1

∑
i<i′∈Sj :
i,i′∈[d̃]

I{
(i,i′)∈Gj,a

}((ẽi − ẽi′)(ẽi − ẽi′)>
exp(θ̃i + θ̃i′)

[exp(θ̃i) + exp(θ̃i′)]2

)
.

(2.120)

The following lemma gives a lower bound for λ2(−H(θ̃)).
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Lemma 2.20. Under the hypothesis of Theorem 2.19, with probability at

least 1− d−3,

λ2(−H(θ̃)) ≥ χβ1

8(1 + e4b)2

nd̃`2

d2
. (2.121)

Observe that although θ̃∗ ∈ Rd̃, Lemma 2.10 can be directly applied to

upper bound ‖∇LRB(θ̃∗)‖2. It might be possible to tighten the upper bound,

given that d̃ ≤ d. However, for `� κ, for the smallest preference score item,

imin ≡ arg mini∈[d] θ̃
∗
i , the upper bound P[σ−1(imin) > κ− `] ≤ 1 is tight upto

constant factor (Lemma 2.15). Substituting λj,a = 1 and pj,a = κ− `+ a for

each j ∈ [n], a ∈ [`], in Lemma 2.10, we have that with probability at least

1− 2e3d−3,

‖∇LRB(θ̃∗)‖2 ≤ (`− 1)
√

8n` log d. (2.122)

Theorem 2.19 follows from Equations (2.40), (2.121) and (2.122).

Proof of Lemma 2.20

Define M̃ (j) ∈ S d̃,

M̃ (j) =
∑

i<i′∈Sj :i,i′∈[d̃]

∑̀
a=1

I{(i,i′)∈Gj,a}(ẽi − ẽi′)(ẽi − ẽi′)>, (2.123)

and let M̃ =
∑n

j=1 M̃
(j). Similar to the analysis in Lemma 2.11, we have

λ2(−H(θ̃)) ≥ e4b

(1+e4b)2λ2(M̃). Note that we have e4b instead of e2b as θ̃ ∈ Ω̃2b.

We will show a lower bound on λ2(E[M̃ ]) in (2.129) and an upper bound on

‖M̃ −E[M̃ ]‖ in (2.133). Therefore using λ2(M̃) ≥ λ2(E[M̃ ])−‖M̃ −E[M̃ ]‖,

λ2(M̃) ≥ e−4b

4
(1− β1)2

(
1− exp

(
− (b`β1c+ 1)2(1− γβ1)2

2(κ− 2)

))
︸ ︷︷ ︸

≡χβ1

nd̃`2

d2

− 8`

√
nκ log d

d
. (2.124)
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The desired claim follows from the assumption that n` ≥
(

212e8b

χ2
β1

d2

d̃2

κ
`

)
d log d,

where χβ1 is defined in (2.117). To prove the lower bound on λ2(E[M̃ ]),

notice that

E
[
M̃
]

=
n∑
j=1

∑
i<i′∈[d̃]

E

[∑̀
a=1

I{
(i,i′)∈Gj,a

}∣∣∣(i, i′ ∈ Sj)]P[i, i′ ∈ Sj](ẽi − ẽi′)(ẽi − ẽi′)> .
(2.125)

Since the sets Sj are chosen uniformly at random, P[i, i′ ∈ Sj] = κ(κ −
1)/d(d − 1). Using the fact that pj,a = κ − ` + a for each j ∈ [n], and the

definition of rank breaking graph Gj,a, we have that

E

[∑̀
a=1

I{
(i,i′)∈Gj,a

}∣∣∣(i, i′ ∈ Sj)] = P
[(
σ−1
j (i), σ−1

j (i′) > κ− `
)∣∣∣(i, i′ ∈ Sj)] .

(2.126)

The following lemma provides a lower bound on P[(σ−1
j (i), σ−1

j (i′)) > κ −
`|(i, i′ ∈ Sj)].

Lemma 2.21. Under the hypotheses of Theorem 2.19, for any two items

i, i′ ∈ [d̃], the following holds:

P
[
σ−1(i), σ−1(i′) > κ− `

∣∣∣ i, i′ ∈ S]
≥ e−4b(1− β1)2(1− exp(−ηβ1(1− γβ1)2))

2

`2

κ2
, (2.127)

where γβ1 ≡ d̃(κ− 2)/(b`β1c+ 1)(d− 2) and ηβ1 ≡ (b`β1c+ 1)2/2(κ− 2).

Therefore, using Equations (2.125), (2.126) and (2.127) we have,

E
[
M̃
]
� e−4b(1− β1)2(1− exp(−ηβ1(1− γβ1)2))

2

`2

κ2

κ(κ− 1)

d(d− 1)
n∑
j=1

∑
i<i′∈[d̃]

(ẽi − ẽi′)(ẽi − ẽi′)> . (2.128)

Define L̃ =
∑n

j=1

∑
i<i′∈[d̃](ẽi − ẽi′)(ẽi − ẽi′)

>. We have, λ1(L̃) = 0 and

λ2(L̃) = λ3(L̃) = · · · = λd̃(L̃). Therefore, using λ2(L̃) = Tr(L̃)/(d̃− 1) = nd̃.
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Using the fact that E[M̃ ] and L̃ are symmetric matrices, we have,

λ2(E
[
M̃
]
) ≥ e−4b(1− β1)2(1− exp(−ηβ1(1− γβ1)2))

4

nd̃`2

d2
. (2.129)

To get an upper bound on ‖M̃ −E[M̃ ]‖, notice that M̃ (j) is also given by,

M̃ (j) = ` diag(ẽ{Ij})− ẽ{Ij}ẽ>{Ij} , (2.130)

where ẽ{Ij} ∈ Rd̃ is a zero-one vector, with support corresponding to the

bottom-` subset of items in the ranking σj. Ij = {σj(κ− ` + 1), · · · , σj(κ)}
for j ∈ [n]. (M̃ (j))2 is given by

(M̃ (j))2 = `2 diag(ẽ{Ij})− ` ẽ{Ij}ẽ>{Ij} . (2.131)

Using the fact that sets {Sj}j∈[n] are chosen uniformly at random and P[i ∈
Ij|i ∈ Sj] ≤ 1, we have E[diag(ẽ{Ij})] � (κ/d)diag(ẽ{1}). Maximum of row

sums of E
[
ẽ{Ij}ẽ

>
{Ij}
]

is upper bounded by `κ/d. Therefore, from triangle

inequality we have ‖∑n
j=1 E[(M̃ (j))2]‖ ≤ 2n`2κ/d. Also, note that ‖M̃ (j)‖ ≤

2` for all j ∈ [n]. Applying matrix Bernstien inequality, we have that

P
[
‖M̃ − E[M̃ ]‖ ≥ t

]
≤ d exp

( −t2/2
2n`2κ/d+ 4`t/3

)
. (2.132)

Therefore, with probability at least 1− d−3, we have,

‖M̃ − E[M̃ ]‖ ≤ 4`

√
2nκ log d

d
+

64` log d

3
≤ 8`

√
nκ log d

d
, (2.133)

where the second inequality follows from the assumption that n` ≥ 212d log d.

Proof of Lemma 2.21

Without loss of generality, assume that i′ < i, i.e., θ̃∗i′ ≤ θ̃∗i . Define Ω such

that Ω = {j : j ∈ S, j 6= i, i′}. For any β1 ∈ [0, (` − 2)/`], define event Eβ1

that occurs if in the randomly chosen set S there are at most b`β1c items

that have preference scores less than θ̃∗i , i.e.,

Eβ1 ≡
{∑

j∈Ω I{θ̃∗i>θ̃∗j } ≤ b`β1c
}
. (2.134)
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We have,

P
[
σ−1(i), σ−1(i′) > κ− `

∣∣∣ i, i′ ∈ S]
> P

[
σ−1(i), σ−1(i′) > κ− `

∣∣∣ i, i′ ∈ S;Eβ1

]
P
[
Eβ1

∣∣∣ i, i′ ∈ S](2.135)

The following lemma provides a lower bound on P[σ−1(i), σ−1(i′) > κ −
` | i, i′ ∈ S;Eβ1 ].

Lemma 2.22. Under the hypotheses of Lemma 2.21,

P
[
σ−1(i), σ−1(i′) > κ− `

∣∣∣ i, i′ ∈ S;Eβ1

]
≥ e−4b(1− b`β1c /`)2

2

`2

κ2
.

(2.136)

Next, we provide a lower bound on P[Eβ1 | i, i′ ∈ S]. Fix i, i′ such that

i, i′ ∈ S. Selecting a set uniformly at random is probabilistically equivalent

to selecting items one at a time uniformly at random without replacement.

Without loss of generality, assume that i, i′ are the 1st and 2nd pick. Define

Bernoulli random variables Yj′ for 3 ≤ j′ ≤ κ corresponding to the outcome

of the j′-th random pick from the set of (d− j′− 1) items to generate the set

Ω such that Yj′ = 1 if and only if θ̃∗i > θ̃∗j′ .

Recall that γβ1 ≡ d̃(κ−2)/(b`β1c+1)(d−2) and ηβ1 ≡ (b`β1c+1)2/2(κ−2).

Construct Doob’s martingale (Z2, · · · , Zκ) from {Yk′}3≤k′≤κ such that Zj′ =

E[
∑κ

k′=3 Yk′ | Y3, · · · , Yj′ ], for 2 ≤ j′ ≤ κ. Observe that, Z2 = E[
∑κ

k′=3 Yk′ ] ≤
(i−2)(κ−2)

d−2
≤ γβ1(b`β1c + 1), where the last inequality follows from the as-

sumption that i ≤ d̃. Also, |Zj′ − Zj′−1| ≤ 1 for each j′. Therefore, we

have

P
[∑

j∈Ω I{θ̃∗i>θ̃∗j } ≤ b`β1c
]

= P
[∑κ

j′=3 Yj′ ≤ b`β1c
]

= 1− P
[∑κ

j′=3 Yj′ ≥ b`β1c+ 1
]

≥ 1− P
[
Zκ−2 − Z2 ≥ (`β1 + 1)− γ(b`β1c+ 1)

]
≥ 1− exp

(
− (b`β1c+ 1)2(1− γ1)2

2(κ− 2)

)
= 1− exp

(
− ηβ1(1− γβ1)2

)
, (2.137)

where the inequality follows from the Azuma-Hoeffding bound. Since, the

above inequality is true for any fixed i, i′ ∈ S, for random indices i, i′ we
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have P[Eβ1 | i, i′ ∈ S] ≥ 1 − exp(−ηβ1(1 − γβ1)2). Claim (2.127) follows by

combining Equations (2.135), (2.136) and (2.137).

Proof of Lemma 2.22

Without loss of generality, assume that i′ < i, i.e., θ̃∗i′ ≤ θ̃∗i . Define Ω = {j :

j ∈ S, j 6= i, i′}, and event Eβ1 = {i, i′ ∈ S;
∑

j∈Ω I{θ̃∗i>θ̃∗j } ≤ b`β1c}. Since set

S is chosen randomly, i, i′ and j ∈ Ω are random. Throughout this section,

we condition on the random indices i, i′ and the set Ω such that event Eβ1

holds. To get a lower bound on P[σ−1(i), σ−1(i′) > κ− `], define independent

exponential random variables Xj ∼ exp(eθ̃
∗
j ) for j ∈ S. Observe that given

event Eβ1 holds, there exists a set Ω1 ⊆ Ω such that

Ω1 =
{
j ∈ S : θ̃∗i ≤ θ̃∗j

}
, (2.138)

and |Ω1| = κ − b`β1c − 2. In fact there can be many such sets, and for

the purpose of the proof we can choose one such set arbitrarily. Note that

b`β1c+2 ≤ ` by assumption on β1, so |Ω1| ≥ κ−`. From the Random Utility

Model (RUM) interpretation of the PL model, we know that the PL model

is equivalent to ordering the items as per random cost of each item drawn

from exponential random variable with mean eθ̃
∗
i . That is, we rank items

according to Xj’s such that the lower cost items are ranked higher. From

this interpretation, we have that

P
[
σ−1(i), σ−1(i′) > κ− `

]
= P

[∑
j∈Ω

I{
min{Xi,Xi′} > Xj

} ≥ κ− `
]

> P
[ ∑
j′∈Ω1

I{
min{Xi,Xi′} > Xj′

} ≥ κ− `
]

(2.139)

The above inequality follows from the fact that Ω1 ⊆ Ω and |Ω1| ≥ κ − `.
It excludes some of the rankings over the items of the set S that constitute

the event {σ−1(i), σ−1(i′) > κ − `}. Define Ω2 = {Ω1, i, i
′}. Observe that

items i, i′ have the least preference scores among all the items in the set Ω2.

Therefore, the term in Equation (2.139) is the probability of the least two

preference score items in the set Ω2, that is of size (κ− b`β1c), being ranked

in bottom (`− b`β1c) positions.
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The following lemma shows that the probability of the least two preference

score items in a set being ranked at any two positions is lower bounded by

their probability of being ranked at 1st and 2nd position.

Lemma 2.23. Consider a set of items S and a ranking σ over it. Define

imin1 ≡ arg mini∈S θi, imin2 ≡ arg mini∈S\imin1
θi. For all 1 ≤ i1, i2 ≤ |S|,

i1 6= i2, following holds:

P
[
σ−1(imin1) = i1, σ

−1(imin2) = i2

]
≥ P

[
σ−1(imin1) = 1, σ−1(imin2) = 2

]
.

(2.140)

Using the fact that i′ = arg minj∈Ω2 θ̃
∗
j , i = arg minj∈Ω2\i′ θ̃

∗
j , for all 1 ≤

i1, i2 ≤ κ− b`β1c, i1 6= i2, we have that

P
[
σ−1(i′) = i1, σ

−1(i) = i2

]
≥ P

[
σ−1(i′) = 1, σ−1(i) = 2

]
≥ e−4b 1

κ2
,

(2.141)

where the second inequality follows from the definition of the PL model and

the fact that θ̃∗ ∈ Ω̃2b. Together with Equation (2.141) and the fact that

there are a total of (`−b`βc)(`−b`βc− 1) ≥ (`−b`βc)2/2 pair of positions

that i, i′ can occupy in order to being ranked in bottom (`− b`βc), we have,

P
[
σ−1(i), σ−1(i′) > κ− `

]
≥ e−4b(1− b`β1c /`)2

2

`2

κ2
. (2.142)

Since, the above inequality is true for any fixed i, i′ and j ∈ Ω such that

event E holds, it is true for random indices i, i′ and j ∈ Ω such that event E

holds, hence the claim is proved.

Proof of Lemma 2.23

Let σ̂ denote a ranking over the items of the set S and P[σ̂] be the probability

of observing σ̂. Let

Ω̂1 =
{
σ̂ : σ̂−1(imin1) = i1, σ̂

−1(imin2) = i2

}
and

Ω̂2 =
{
σ̂ : σ−1(imin1) = 1, σ−1(imin2) = 2

}
. (2.143)
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Now, take any ranking σ̂ ∈ Ω̂1 and construct another ranking σ̃ from σ̂ as

following. If i1 = 2, i2 = 1, then swap the items at i1-th and i2-th position in

ranking σ̂ to get σ̃. Else, if i1 < i2, then first: swap items at i1-th position

and 1st position, and second: swap items at i2-th position and 2nd position,

to get σ̃; if i2 < i1, then first: swap items at i2-th position and 2nd position,

and second: swap items at i1-th position and 1st position, to get σ̃.

Observe that P[σ̃] ≤ P[σ̂] and σ̃`1 ∈ Ω̂2. Moreover, such a construction

gives a bijective mapping between Ω̂1 and Ω̂2. Hence, the claim is proved.
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CHAPTER 3

COMPUTATIONAL AND STATISTICAL
TRADEOFFS IN RANK AGGREGATION

In classical statistical inference, we are typically interested in characteriz-

ing how more data points improve the accuracy, with little restrictions or

considerations on computational aspects of solving the inference problem.

However, with massive growths of the amount of data available and also the

complexity and heterogeneity of the collected data, computational resources,

such as time and memory, are major bottlenecks in many modern applica-

tions. As a solution, recent advances in learning theory introduce hierarchies

of algorithmic solutions, ordered by the respective computational complexity,

for several fundamental machine learning applications in [25, 187, 34, 2, 139].

Guided by sharp analyses on the sample complexity, these approaches pro-

vide theoretically sound guidelines that allow the analyst the flexibility to fall

back to simpler algorithms to enjoy the full merit of the improved run-time.

Inspired by these advances, we study the time-data tradeoff in rank aggre-

gation. In many applications such as election, policy making, polling, and

recommendation systems, we want to aggregate individual preferences to pro-

duce a global ranking that best represents the collective social preference. We

assume that the data comes from a parametric family of choice models, and

learns the parameters that determine the global ranking. Traditionally, each

revealed preference is assumed to have one of the following three structures.

Pairwise comparison, where one item is preferred over another, is common

in sports and chess matches. Best-out-of-κ comparison, where one is chosen

among a set of κ alternatives, is common in historical purchase data. κ-way

comparison, where we observe a linear ordering of a set of κ candidates, is

used in some elections and surveys. We will refer to such structures as tra-

ditional in comparisons to modern datasets with non-traditional structures

whose behavior change drastically. For such traditional preferences, efficient

schemes for rank aggregation have been proposed, such as [72, 92, 84, 39],

which we explain in detail in Section 3.2. However, modern datasets are
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unstructured and heterogeneous. As [114] show, this can lead to significant

increase in the computational complexity, requiring exponential run-time in

the size of the problem in the worst case.

To alleviate this computational challenge, we propose a hierarchy of esti-

mators which we call generalized rank-breaking, ordered in increasing com-

putational complexity and achieving increasing accuracy. The key idea is

to break down the heterogeneous revealed preferences into simpler pieces of

ordinal relations, and apply an estimator tailored for those simple structures

treating each piece as independent. Several aspects of rank-breaking makes

this problem interesting and challenging. A priori, it is not clear which

choices of the simple ordinal relations are rich enough to be statistically effi-

cient and yet lead to tractable estimators. Even if we identify which ordinal

relations to extract, the ignored correlations among those pieces can lead to

an inconsistent estimate, unless we choose carefully which pieces to include

and which to omit in the estimation. We further want sharp analysis on

the sample complexity, which reveals how computational and statistical effi-

ciencies trade off. We would like to address all these challenges in providing

generalized rank-breaking methods.

3.1 Problem formulation.

We study the problem of aggregating ordinal data based on users’ preferences

that are expressed in the form of partially ordered sets (poset). A poset is

a collection of ordinal relations among items. For example, consider a poset

{(i6 ≺ {i5, i4}), (i5 ≺ i3), ({i3, i4} ≺ {i1, i2})} over items {i1, . . . , i6}, where

(i6 ≺ {i5, i4}) indicates that item i5 and i4 are both preferred over item i6.

Such a relation is extracted from, for example, the user giving a 2-star rating

to i5 and i4 and a 1-star to i6.

We assume there are n users and d items. We denote the set of n users

by [n] = {1, . . . , n} and the set of d items by [d]. We assume that each

user j ∈ [n] is presented with a subset of items Sj ⊆ [d], and independently

provides her ordinal preference in the form of a poset, where the ordering is

drawn from the Plackett-Luce (PL) model. Since, an ordering drawn from

the PL model is consistent, a poset can be represented as a directed acyclic

graph (DAG). Let Gj denote the DAG representation of the poset provided
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by the user j over Sj ⊆ [d] according to the PL model with weights θ∗. The

task is to learn θ̂, an estimate of the true weights θ∗. Below is an example of

a DAG Gj. We use index i to denote items and j to denote users.

i1

i2

i3

i4

i5

i6

i1 i2

i3

i4i5

i6

i1 i2

i3

i4i5

i6

Gj e1 e2

Figure 3.1: An example of Gj for user j’s consistent poset, and two
rank-breaking hyper edges extracted from it: e1 = ({i6, i5, i4, i3} ≺ {i2, i1})
and e2 = ({i6} ≺ {i5, i4, i3}).

Plackett-Luce model. The PL model is a popular choice model from

operations research and psychology, used to model how people make choices

under uncertainty. It is a special case of random utility models, where each

item i is parametrized by a latent true utility θi ∈ R. When offered with

Sj, the user samples the perceived utility Ui for each item independently

according to Ui = θi + Zi, where Zi’s are i.i.d. noise. In particular, the PL

model assumes Zi’s follow the standard Gumbel distribution. The observed

poset is a partial observation of the ordering according to this perceived

utilities. We discuss possible extensions to general class of random utility

models in Section 3.2.

The particular choice of the Gumbel distribution has several merits, largely

stemming from the fact that the Gumbel distribution has a log-concave pdf

and is inherently memoryless. In our analyses, we use the log-concavity

to show that our proposed algorithm is a concave maximization (Remark

3.1) and the memoryless property forms the basis of our rank-breaking idea.

Precisely, the PL model is statistically equivalent to the following procedure.

Consider a ranking as a mapping from a position in the rank to an item,

i.e. σj : [|Sj|] → Sj. It can be shown that the PL model is generated

by first independently assigning each item i ∈ Sj an unobserved value Yi,

exponentially distributed with mean e−θi , and the resulting ranking σj is

inversely ordered in Yi’s so that Yσj(1) ≤ Yσj(2) ≤ · · · ≤ Yσj(|Sj |).

This inherits the memoryless property of exponential variables, such that

P(Y1 < Y2 < Y3) = P(Y1 < {Y2, Y3})P(Y2 < Y3), leading to a simple interpre-
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tation of the PL model as sequential choices:

Pθ(i3 ≺ i2 ≺ i1) = Pθ({i3, i2} ≺ i1)Pθ(i3 ≺ i2)

=
eθi1

eθi1 + eθi2 + eθi3
× eθi2

eθi2 + eθi3
. (3.1)

In general, for true utility θ∗, we have

Pθ∗ [σj] =

|Sj |−1∏
i=1

e
θ∗
σj(i)∑|Sj |

i′=i e
θ∗
σj(i′)

.

We assume that the true utility θ∗ ∈ Ωb where

Ωb =

{
θ ∈ Rd

∣∣∣∣ ∑
i∈[d]

θi = 0, |θi| ≤ b for all i ∈ [d]

}
. (3.2)

Notice that centering of θ ensures its uniqueness as PL model is invariant

under shifting of θ. The bound b on θi is written explicitly to capture the

dependence in our main results. We interchangeably refer θ as utilities and

weights.

Maximum Likelihood Estimate of DAG. Probability of observing a

DAG Gj is the sum of probabilities of all possible rankings that are consistent

with it. Precisely, under the PL model, for a DAG Gj, we have,

Pθ[Gj] =
∑
σ∈Gj

Pθ[σ] ,

where we slightly abuse the notation Gj to denote the set of all rankings σ

that are consistent with the observation. For example, if Gj consists of only

one hyper edge e1 = ({i3} ≺ {i2, i1}) then P[Gj] = P(i3 ≺ i2 ≺ i1) + P(i3 ≺
i1 ≺ i2). The maximum likelihood estimate (MLE) maximizes log-likelihood

of observing Gj for each j:

θ̂ ∈ arg max
θ∈Ωb

{ n∑
j=1

logPθ[Gj]
}
. (3.3)

When Gj has a traditional structure as explained earlier in this section, then

the optimization is a simple multinomial logit regression, that can be solved

efficiently with off-the-shelf convex optimization tools. [84] provides full anal-
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ysis of the statistical complexity of this MLE under traditional structures.

For general posets, it can be shown that the above optimization is a concave

maximization, using similar techniques as Remark 3.1. However, the summa-

tion over rankings in Gj can involve number of terms super exponential in the

size |Sj|, in the worst case. This renders MLE intractable and impractical.

Pairwise rank-breaking. A common remedy to this computational blow-

up is to use rank-breaking. Rank-breaking traditionally refers to pairwise

rank-breaking, where a bag of all the pairwise comparisons is extracted from

observations {Gj}j∈[n] and is applied to estimators that are tailored for pair-

wise comparisons, treating each paired outcome as independent. This is one

of the motivations behind the algorithmic advances in the popular topic of

aggregation from pairwise comparisons in [72, 92, 157, 182, 146].

It is computationally efficient to apply maximum likelihood estimator as-

suming independent pairwise comparisons, which takes O(d2) operations to

evaluate. However, this computational gain comes at the cost of statisti-

cal efficiency. [13] showed that if we include all paired comparisons, then

the resulting estimate can be statistically inconsistent due to the ignored

correlations among the paired orderings, even with infinite samples. In the

example from Figure 3.1, there are 12 paired relations implied by the DAG:

(i6 ≺ i5), (i6 ≺ i4), (i6 ≺ i3), . . . , (i3 ≺ i1), (i4 ≺ i1). In order to get a con-

sistent estimate, [13] provide a rule for choosing which pairs to include, and

[114] provide an estimator that optimizes how to weigh each of those chosen

pairs to get the best finite sample complexity bound. However, such a con-

sistent pairwise rank-breaking results in throwing away many of the ordered

relations, resulting in significant loss in accuracy. For example, including any

paired relation from Gj in the example results in a biased estimator. None

of the pairwise orderings can be used from Gj, without making the estimator

inconsistent as shown in [12]. Whether we include all paired comparisons or

only a subset of consistent ones, there is a significant loss in accuracy as illus-

trated in Figure 4.1. For the precise condition for consistent rank-breaking

we refer to [12, 13, 114].

The state-of-the-art approaches operate on either one of the two extreme

points on the computational and statistical trade-off. The MLE in (3.3)

requiresO(
∑

j∈[n] |Sj|!) summations to just evaluate the objective function, in

the worst case. On the other hand, the pairwise rank-breaking requires only
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O(d2) summations, but suffers from significant loss in the sample complexity.

Ideally, we would like to give the analyst the flexibility to choose a target

computational complexity she is willing to tolerate, and provide an algorithm

that achieves the optimal trade-off at the chosen operating point.

Contribution. We introduce a novel generalized rank-breaking that bridges

the gap between MLE and pairwise rank-breaking. Our approach allows the

user the freedom to choose the level of computational resources to be used,

and provides an estimator tailored for the desired complexity. We prove that

the proposed estimator is tractable and consistent, and provide an upper

bound and a lower bound on the error rate in the finite sample regime. The

analysis explicitly characterizes the dependence on the topology of the data.

This in turn provides a guideline for designing surveys and experiments in

practice, in order to maximize the sample efficiency. The proposed gener-

alized rank-breaking mechanism involves set-wise comparisons as opposed

to traditional pairwise comparisons. In order to compute the rank-breaking

estimate, we generalize the celebrated minorization maximization algorithm

for computing maximum likelihood estimate of pairwise comparisons [92] to

more general set-wise comparisons and give guarantees on its convergence.

3.2 Related work

In classical statistics, one is interested in the tradeoff between the sample

size and the accuracy, with little considerations to the computational com-

plexity or time. As more computations are typically required with increasing

availability of data, the computational resources are often the bottleneck.

Recently, a novel idea known as “algorithmic weakening” has been investi-

gated to overcome such a bottleneck, in which a hierarchy of algorithms is

proposed to allow for faster algorithms at the expense of decreased accuracy.

When guided by sound theoretical analyses, this idea allows the statistician

to achieve the same level of accuracy and save time when more data is avail-

able. This is radically different from classical setting where processing more

data typically requires more computational time.

Depending on the application, several algorithmic weakenings have been

studied. In the application of supervised learning, [25] proposed the idea that
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weaker approximate optimization algorithms are sufficient for learning when

more data is available. Various gradient based algorithms are analyzed that

show the time-accuracy-sample tradeoff. In a similar context, [187] analyze a

particular implementation of support vector machine and show that the tar-

get accuracy can be achieved faster when more data is available, by running

the iterative algorithm for shorter amount of time. In the application of de-

noising, [34] provide a hierarchy of convex relaxations where constraints are

defined by convex geometry with increasing complexity. For unsupervised

learning, [139] introduce a hierarchy of data representations that provide

more representative elements when more data is available at no additional

computation. Standard clustering algorithms can be applied to thus gener-

ated summary of the data, requiring less computational complexity.

In the application of rank aggregation, we follow the principle of algorith-

mic weakening and propose a novel rank-breaking to allow the practitioner

to navigate gracefully the time-sample trade off as shown in the Figure 4.2.

We propose a hierarchy of estimators indexed by M ∈ Z+ indicating how

complex the estimator is (defined formally in Section 3.3). Figure 4.2 shows

the result of a experiment on synthetic datasets on how much time (in sec-

onds) and how many samples are required to achieve a target accuracy. If

we are given more samples, then it is possible to achieve the target accuracy,

which in this example is MSE≤ 0.3d2 × 10−6, with fewer operations by us-

ing a simpler estimator with smaller M . The details of the experiment is

explained in Figure 4.1.

Rank aggregation under the PL model has been studied extensively under

the traditional scenario dating back to [214] who first introduced the PL

model for pairwise comparisons. Various approaches for estimating the PL

weights from traditional samples have been proposed. The problem can be

formulated as a convex optimization that can be solved efficiently using the

off-the-shelf solvers. However, tailored algorithms for finding the optimal

solution have been proposed in [72] and [92], which iteratively finds the fixed

point of the KKT condition. [157] introduce Rank Centrality, a novel spectral

ranking algorithm which formulates a random walk from the given data, and

show that the stationary distribution provides accurate estimates of the PL

weights. [146] provide a connection between those previous approaches, and

give a unified random walk approach that finds the fixed point of the KKT

conditions.
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Figure 3.2: Depending on how much computational resources are available,
the various choices of M achieve different operating points on the time-data
trade-off to achieve some fixed target accuracy ε > 0. If more samples are
available, one can resort to faster methods with smaller M while achieving
the same level of accuracy.

On the theoretical side, when samples consist of pairwise comparisons,

[192] first established consistency and asymptotic normality of the maximum

likelihood estimate when all teams play against each other. For a broader

class of scenarios where we allow for sparse observations, where the number

of total comparisons grow linearly in the number of teams, [157] show that

Rank Centrality achieves optimal sample complexity by comparing it to a

lower bound on the minimax rate. For a more general class of traditional

observations, including pairwise comparisons, [84] provide similar optimal

guarantee for the maximum likelihood estimator. [39] introduced Spectral

MLE that applies Rank Centrality followed by MLE, and showed that the

resulting estimate is optimal in L∞ error as well as the previously analyzed

L2 error. [182] study a new measure of the error induced by the Laplacian

of the comparisons graph and prove a sharper upper and lower bounds that

match up to a constant factor.

However, in modern applications, the computational complexity of the ex-

isting approaches blow-up due to the heterogeneity of modern datasets. Al-

though, statistical and computational tradeoffs have been investigated under

other popular choice models such as the Mallows models by [19] or stochas-

tically transitive models by [184], the algorithmic solutions do not apply to

random utility models and the analysis techniques do not extend. We pro-

vide a novel rank-breaking algorithms and provide finite sample complexity
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analysis under the PL model. This approach readily generalizes to some

RUMs such as the flipped Gumbel distribution. However, it is also known

from [13], that for general RUMs there is no consistent rank-breaking, and

the proposed approach does not generalize.

3.3 Generalized rank-breaking

Given Gj’s representing the users’ preferences, generalized rank-breaking ex-

tracts a set of ordered relations and applies an estimator treating each or-

dered relation as independent. Concretely, for each Gj, we first extract

a maximal ordered partition Pj of Sj that is consistent with Gj. An or-

dered partition is a partition with a linear ordering among the subsets, e.g.

Pj = ({i6} ≺ {i5, i4, i3} ≺ {i2, i1}) for Gj from Figure 3.1. This is maximal,

since we cannot further partition any of the subsets without creating artificial

ordered relations that are not present in the original Gj.
To precisely define maximal ordered partition Pj, first, let’s define an or-

dered partition P̃j of Sj that is consistent with Gj. Consider disjoint subsets

C1, · · · , C`j ⊆ Sj such that their union is Sj that is ∪`ja=1Ca = Sj. The subsets

C1, · · · , C`j define an ordered partition

P̃j = C1 ≺ C2 ≺ · · · ≺ C`j ,

if each ordered relation that can be read from this linear ordering of subsets

is present in the DAG Gj. Let |Pj| denote the size of the partition, that is

|Pj| = `j. A maximal ordered partition Pj is the one which has the largest

size.

Pj = arg max
P̃j

{
|P̃j|

}
.

It can be checked that for a given Gj there is a unique maximal ordered

partition Pj of Sj that is consistent with Gj.

Finding Maximal Ordered Partition. Given a DAG Gj, a corresponding

maximal ordered partition Pj can be extracted by recursively finding common

ancestors of the sink-nodes of the vertex induced sub-graph starting with the

DAG Gj. Algorithm 1 gives a pseudocode to find Pj’s. Common ancestors of
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all the sink nodes of a DAG can be found in time O(d2.6) using fast algorithms

given in [42, 16]. Therefore, computational complexity of the Algorithm 1 is

O(d3.6). In line 2, Algorithm 1, V (G) denotes the set of vertices of DAG G.

In line 5, G(S) denote the vertex induced subgraph of graph G corresponding

to vertex set S. Note that Algorithm 1 returns a unique maximal ordered

partition Pj for a given DAG Gj.

Algorithm 1 Finding Maximal Ordered Partition

Require: DAG Gj
Ensure: maximal ordered partition Pj

1: G ← Gj, Pj = {}
2: while |V (G)| > 0 do
3: S ← Common ancestors of all sink-nodes of DAG G [42]
4: Pj ← Pj � {V (G) \ S}
5: G ← G(S)
6: end while

In general there is no one-to-one mapping from a DAG Gj to its maximal

ordered partition Pj. There may be many ordered relations present in Gj
that are not represented in the ordered partition Pj. This gives a many-to-

one mapping from Gj to Pj. In our generalized rank-breaking framework, we

can only use those ordered relations that can be represented in an ordered

partition. This is required for the estimator to be consistent. This is the cost

we pay to reduce computational complexity fromO(|Sj|!), complexity of MLE

of DAG (3.3), to O(M !) for a suitably desired M ∈ Z+ as explained below.

However, if the DAG Gj represents a full ranking or a traditional structure

then its maximal ordered partition Pj will represent all the ordered relations

present in Gj and our rank-breaking will reduce to MLE of the DAG Gj. In

such a case, all the subsets of Pj will have cardinality one except the least

preferred set which can have more than one item in case of best-out-of κ

comparison.

Rank-Breaking Graph. The extracted maximal ordered partition Pj
is represented by a directed hypergraph Gj(Sj, Ej), which we call a rank-

breaking graph. Each edge e = (B(e), T (e)) ∈ Ej is a directed hyper edge

from a subset of nodes B(e) ⊆ Sj to another subset T (e) ⊆ Sj. The number

of edges in Ej is |Pj|−1. For each subset in Pj except for the least preferred

subset, there is a corresponding edge whose top-set T (e) is the subset, and
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the bottom-set B(e) is the set of all items less preferred than T (e). For the

example in Figure 3.1, we have Ej = {e1, e2} where e1 = (B(e1), T (e1)) =

({i6, i5, i4, i3}, {i2, i1}) and e2 = (B(e2), T (e2) = ({i6}, {i5, i4, i3}) extracted

from Gj. Algorithm 2 gives the precise method to construct a rank-breaking

graph.

Algorithm 2 Constructing Rank-Breaking Graph

Require: maximal ordered partition Pj = C1 ≺ C2 ≺ · · · ≺ C`j of set Sj
Ensure: directed hypergraph Gj(Sj, Ej)

1: construct directed hypergraph Gj(Sj, Ej = {})
2: for a = 2 to `j do
3: construct hyper edge e between top-set T (e) = Ca and bottom-set

B(e) = ∪a−1
a′=1Ca′

4: Ej ← Ej ∪ e
5: end for
6: Return Gj(Sj, Ej)

Denote the probability that T (e) is preferred over B(e) when T (e) ∪B(e)

is offered as

Pθ(e) = Pθ
(
B(e) ≺ T (e)

)
=

∑
σ∈ΛT (e)

exp
(∑|T (e)|

c=1 θσ(c)

)
∏|T (e)|

u=1

(∑|T (e)|
c′=u exp

(
θσ(c′)

)
+
∑

i∈B(e) exp (θi)
) , (3.4)

which follows from the definition of the PL model, where ΛT (e) is the set

of all rankings over T (e). The computational complexity of evaluating this

probability is determined by the size of the top-set |T (e)|, as it involves

(|T (e)|!) summations.

In the subsequent results, we show that by maximizing likelihood of the

hyper edges assuming they are independent we get a consistent estimator.

Therefore, our approach provides flexibility to choose which hyper edge to in-

clude in the likelihood maximization function. We let the analyst choose the

order M ∈ Z+ depending on how much computational resource is available,

and include only those edges with |T (e)| ≤ M in the likelihood objective

function.

If in a given Gj there are no hyper edges with top sets of size less than M ,

then the analyst does not get any ordered relations from that rank-breaking

graph under her computational constraint reflected in the particular choice
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of M . Artificially reducing the size of the top-sets so as to get the hyper

edges with top sets of size less than M implies we need to add new ordered

relations that are not present in the DAG provided by the user. Such an

estimator could result in a non-zero bias. A concrete example of such cases

has been studied in Azari Soufiani et al. 2013, where the authors showed

that for M = 1, applying rank-breaking to those comparisons with top-set

larger than one results in non-zero bias.

We emphasize that M is chosen by the analyst and our estimator works

for any choice of M ∈ Z+. Given unlimited computational resources, an

analyst would chose M = d, and all the hyper edges would be included in

the likelihood objective function.

Sampling. We assume that for each j ∈ [n], the topology of DAG Gj
which represent the partial preference order provided by the j-th user is

fixed apriori. Also, the set of hyper edges e ∈ Ej of each rank breaking

graph Gj(Sj, Ej) that are included in the likelihood objective function are

fixed apriori. The randomness that we observe is in the position of the Sj

items in the DAG Gj. For an hyper edge e ∈ Ej, the randomness is in which

items of the set Sj appear in the bottom |B(e)| positions and the bottom

|T (e)|+ |B(e)| positions in the preference order of the user j. Note that this

precisely captures the randomness due to the PL model in the observed DAG

Gj. We do not impose any restrictions on the topology of the DAG Gj’s and

each of them can be different. Further, our analysis captures effect of their

topologies on the statistical efficiency of the estimation.

Pseudo-MLE of Rank-Breaking Graph. We apply the MLE for com-

parisons over paired subsets, assuming all hyper edges in the rank-breaking

graph Gj are independently drawn. Precisely, for any choice of M ∈ Z+,

we propose order-M rank-breaking estimate, which is the solution that max-

imizes the log-likelihood under the independence assumption:

θ̂ ∈ arg max
θ∈Ωb
LRB(θ) , where

LRB(θ) =
∑
j∈[n]

∑
e∈Ej :|T (e)|≤M

lnPθ(e) . (3.5)

Due to independence assumption, we refer to it as pseudo-MLE. In a special

case when M = 1, this can be transformed into the traditional pairwise

91



rank-breaking, where (i) this is a concave maximization; (ii) the estimate

is (asymptotically) unbiased and consistent as shown in [12, 13]; and (iii)

and the finite sample complexity have been analyzed in [114]. Although, this

order-1 rank-breaking provides a significant gain in computational efficiency,

the information contained in higher-order edges are unused, resulting in a

significant loss in accuracy.

We provide the analyst the freedom to choose the computational com-

plexity he/she is willing to tolerate. However, for general M , it has not

been known if the optimization in (7.12) is tractable and/or if the solution

is consistent. Since Pθ(B(e) ≺ T (e)) as explicitly written in (3.4) is a sum

of log-concave functions, it is not clear if the sum is also log-concave. Due

to the ignored dependency in the formulation (7.12), it is not clear if the

resulting estimate is consistent.

We first establish that it is a concave maximization in Section 3.3.1. Though

one can use any off-the-shelf convex maximization tool to compute θ̂, we pro-

vide an efficient minorization-maximization (MM) algorithm for estimating

θ̂, Section 3.3.2. In Section 3.3.3, we show that the MM algorithm converges

to the unique global optimal solution θ̂ under the standard assumption given

by [72] for pairwise comparisons. Under the same assumption, we show that

the estimate θ̂ is consistent, Section 3.3.4. In Section 3.3.5, we give the com-

plete algorithm to compute θ̂ using the proposed MM algorithm, given Gj’s
representing users’ preferences. In Section 7.4 and Section 3.5, we provide a

sharp analysis of the performance in the finite sample regime, characterizing

the trade-off between computation and sample size, and verify the results

from the numerical experiments.

3.3.1 Concavity of likelihood of rank-breaking graph

In the following, we show that likelihood of a hyper edge is log-concave for a

family of Random Utility Models including the PL model.

Remark 3.1. LRB(θ) is concave in θ ∈ Rd.

Proof. Recall that Pθ(B(e) ≺ T (e)) is the probability that an agent ranks

the collection of items T (e) above B(e) when offered S = B(e) ∪ T (e). We

want to show that Pθ(B(e) ≺ T (e)) is log-concave under the PL model. We
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prove a slightly general result which works for a family of RUMs in the lo-

cation family. RUM are defined as a probabilistic model where there is a

real-valued utility parameter θi associated with each items i ∈ S, and an

agent independently samples random utilities {Ui}i∈S for each item i with

conditional distribution µi(·|θi). Then the ranking is obtained by sorting the

items in decreasing order as per the observed random utilities Ui’s. Location

family is a subset of RUMs where the shapes of µi’s are fixed and the only

parameters are the means of the distributions. For location family, the noisy

utilities can be written as Ui = θi + Zi for i.i.d. random variable Zi’s. In

particular, it is PL model when Zi’s follow the independent standard Gum-

bel distribution. We will show that for the location family if the probability

density function for each Zi’s is log-concave then logPθ(B(e) ≺ T (e)) is con-

cave. The desired claim follows as the pdf of standard Gumbel distribution is

log-concave. We use the following Theorem from [168]. A similar technique

was used to prove concavity when |T (e)| = 1 in [14].

Lemma 3.2 (Extension of Theorem 9 in [168]). Suppose g1(θ, Y ), · · · , gr(θ, Y )

are concave functions in R2q, where θ, Y ∈ Rq, and Z is a q−component ran-

dom vector whose probability distribution is logarithmic concave in Rq, then

the function

h(θ) = P[g1(θ, Z) ≥ 0, · · · , gr(θ, Z) ≥ 0], for θ ∈ Rq

is logarithmic concave on Rq. Moreover, concavity is strict if the probability

density function of Z is strictly logarithmic concave and θ 6= θ̃ implies H(θ) 6=
H(θ̃). Where H(θ) is

H(θ) ≡
{
Y
∣∣ gi(θ, Y ) ≥ 0, i = 1, · · · , r

}
.

Proof. Theorem 9 in [168] proves concavity. The strict concavity follows

from the fact that for a strictly logarithmic concave measure the following

inequality is strict if H(θ) 6= H(θ̃).

P[Z ∈ λH(θ) + (1− λ)H(θ̃)] ≥ P[Z ∈ λH(θ)]λP[Z ∈ (1− λ)H(θ̃)]1−λ ,

where λ ∈ (0, 1). For a detailed proof, we refer the reader to the proof of

Theorem 9 in [168]. 2
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To apply the above lemma to get concavity, let q = |S|, r = 1, g1(θ, Y ) =

mini∈T (e){θi +Yi}−maxi′∈B(e){θi′ +Yi′}. Observe that g1(θ, Y ) is concave in

R2q, and Pθ(B(e) ≺ T (e)) = P(g1(θ, Z) ≥ 0). We use strict concavity part of

the lemma in the subsequent section. 2

3.3.2 Minorization-maximization algorithm for pseudo-MLE
of rank-breaking graph

We give a minorization-maximization algorithm for computing θ̂ defined in

(3.5). It is inspired from the MM algorithm given by [92] for the case of

pairwise comparisons and full-ranking. For any fixed parameter θ(t) ∈ Rd,

and a hyper edge e in a rank breaking graph G, define Q(e, θ; θ(t)) as

Q(e, θ; θ(t)) ≡
∑

σ∈ΛT (e)

Pθ(t)(e, σ)

Pθ(t)(e)

|T (e)|∑
u=1

θσ(u) −
∑|T (e)|

c′=u exp
(
θσ(c′)

)
+
∑

i∈B(e) exp (θi)∑|T (e)|
c′=u exp

(
θ

(t)
σ(c′)

)
+
∑

i∈B(e) exp
(
θ

(t)
i

)


where Pθ(e, σ) is defined such that Pθ(e) =
∑

σ∈ΛT (e)
Pθ(e, σ). Recall from

Equation (3.4) that ΛT (e) is the set of all rankings over T (e).

Pθ(e, σ) ≡
exp

(∑|T (e)|
c=1 θσ(c)

)
∏|T (e)|

u=1

(∑|T (e)|
c′=u exp

(
θσ(c′)

)
+
∑

i∈B(e) exp (θi)
) .

We show that Q(e, θ; θ(t)) minorizes ln(Pθ(e)) at θ(t). It is equal to ln(Pθ(e)),
up to a constant, if and only if θ(t) = θ.

Lemma 3.3.

Q(e, θ; θ(t)) + f(e, θ(t)) ≤ ln(Pθ(e)) with equality if θ = θ(t) ,

where f(e, θ(t)) is a function of the hyper edge e and the parameter θ(t), it

does not depend upon θ.

We give a proof of the Lemma in Section 3.6.1. It follows that for any

Q(e, θ; θ(t)) satisfying minorizing condition in the above lemma,

Q(e, θ; θ(t)) ≥ Q(e, θ(t); θ(t)) implies ln(Pθ(e)) ≥ ln(Pθ(t)(e)) . (3.6)
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Property (3.6) suggests an iterative algorithm in which we let θ(t) be the

parameter vector before the t-th iteration and define θ(t+1) to be the maxi-

mizer of the Q(e, θ; θ(t)). Since this algorithm consists of alternately creating

a minorizing function Q(e, θ; θ(t)) and then maximizing it, it is called an MM

algorithm [93]. To compute θ̂ in (3.5), starting from an arbitrary initializa-

tion θ(1), we estimate θ(t+1) by maximizing

θ(t+1) = arg max
θ∈Rd


n∑
j=1

∑
e∈Ej :|T (e)|≤M

Q(e, θ; θ(t))

 .

Since the parameters {θi}i∈[d] are separated in Q(e, θ; θ(t)), its maximization

can be explicitly accomplished as, for i ∈ [d]

Ni

eθ
(t+1)
i

=

n∑
j=1

∑
e∈Ej :|T (e)|≤M

∑
σ∈ΛT (e)

Pθ(t)(e, σ)

Pθ(t)(e)

|T (e)|∑
u=1

δi,e,σ,u

|T (e)|∑
c′=u

exp
(
θ

(t)
σ(c′)

)
+
∑
i∈B(e)

exp
(
θ

(t)
i

)−1

,

(3.7)

where Ni is the total number of hyper edges in which the i-th item is in the

top set.

Ni =
n∑
j=1

∑
e∈Ej :|T (e)|≤M

I[i ∈ T (e)] .

δi,e,σ,u is the indicator variable defined as

δi,e,σ,u =

1 , if i ∈ {T (e) ∪B(e)} and σ−1(i) ≥ u ,

0 , otherwise.
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3.3.3 Convergence properties of the MM algorithm

In the following we show that limt→∞ θ
(t), (3.7), converges to the global opti-

mal solution of the pseudo-likelihood objective given in (3.5) under standard

assumption on the observed comparisons.

For pairwise comparisons, [72] noted that if it is possible to partition the

set of items into two subsets A and B such that there are never any inter-set

comparisons, then there is no basis for rating any item in set A with respect to

any item in set B. On the other hand, if in all the inter-set comparisons, items

from set A are preferred over the items in set B, then if all the parameters θi

belonging to set A are doubled and the resulting vector θ renormalized, the

likelihood must increase; thus the likelihood has no maximizer. The following

assumption [72] eliminates these possibilities.

Assumption 3.4. In every possible partition of the items into two nonempty

subsets, some item in the second set is preferred over some item in the first

set at least once.

Assumption 3.4 has a graph-theoretic interpretation: if the items are the

nodes of a graph and the directed edge (i, j) denotes that there is at least one

user who prefers i over j, then Assumption 3.4 is equivalent to the statement

that there is a path from i to j for all nodes i and j. It implies that there exists

a unique maximizer of the log-likelihood function of pairwise comparisons.

In our setting, Assumption 3.4 makes sense if we interpret i being preferred

over j to mean that there exists a hyper edge e such that i is in its top set

T (e) and j is in its bottom set B(e). In the following, we show that under

this assumption, the MM algorithm, Equation (3.7), produces a sequence

θ(1), θ(2), · · · guaranteed to converge to the unique estimate, (3.5).

In general, it is always not possible to prove that the sequence of pa-

rameters θ(t) defined by an MM algorithm converges at all. Nonetheless, it

is often possible to obtain convergence results in specific cases. For pair-

wise comparisons, using property of stationary point, [72] showed that the

MM algorithm converges to the unique maximum likelihood estimate under

Assumption 3.4. [92] established strict concavity of the likelihood function

under Assumption 3.4 and proved the same result using the Liapounov’s

theorem. We follow the approach used by [92]. The following Liapounov’s

theorem guarantees that the MM algorithm converges to the stationary point
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of the pseudo log-likelihood objective (3.5). In Remark 3.6, we show that the

likelihood function (3.5) has a unique stationary point, namely the global

maximizer. Which concludes that the MM algorithm converges to the unique

global optimal solution irrespective of its starting point.

Theorem 3.5 (Liapounov’s theorem). Suppose M : Ω → Ω is continuous

and LRB : Ω → R is differentiable and for all θ ∈ Ω we have LRB(M(θ)) ≥
LRB(θ), with equality only if θ is a stationary point of LRB(·). Then, for

arbitrary θ(1) ∈ Ω, any limit point of the sequence {θ(t+1) = M(θ(t))}t≥1 is a

stationary point of LRB(θ).

Let Ω = {θ ∈ Rd|∑i∈[d] θi = 0} be the parameter space Ωb defined in

(3.2) with b = ∞. Taking M to be the map implicitly defined by one it-

eration of the MM algorithm, we have LRB(M(θ)) ≥ LRB(θ) from (3.6).

LRB(M(θ)) = LRB(θ) implies that θ is a stationary point follows from the fact

that the differentiable minorizing function Q is a tangent to the log-likelihood

LRB(θ) at the current iterate θ(t). Therefore, limt→∞ θ
(t), defined by the MM

algorithm in (3.7) converges to the stationary point of the pseudo-likelihood

objective (3.5). It remains to prove that LRB(θ) has a unique stationary

point, the global maximizer.

Remark 3.6. Under Assumption 3.4 LRB(θ) has a unique stationary point.

Proof. First, we show that LRB(θ) is an upper compact function under the

Assumption 3.4. LRB(θ) is defined to be upper compact if, for any constant

c, the set {θ ∈ Ω : LRB(θ) ≥ c} is a compact set of the parameter space Ω.

Second, we show that LRB(θ) is strictly concave. Since upper compactness

implies the existence of at least one limit point and strict concavity implies

the existence of at most one stationary point, we conclude that LRB(θ) has

a unique stationary point.

We prove upper compactness following the idea of [92]. Consider what

happens to LRB(θ) when θ approaches the boundary of Ω. If θ̃ lies on the

boundary of Ω, then θ̃i = −∞ and θ̃j = ∞ for some items i and j. If items

are nodes of a directed graph in which edge (i, i′) represent that there is

at least one user who prefers i over i′, then Assumption 3.4 implies that a

directed path exists from i to j. Therefore, there must be some item a with

θ̃a = −∞ which is preferred over item b with θ̃b > C, for some constant C.
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That is there exists an hyper edge e with a ∈ T (e) and b ∈ B(e). Which

means that for θ ∈ Ω, taking limits in

LRB(θ) ≤ lnPθ(e)

= ln

 ∑
σ∈ΛT (e)

exp
(∑|T (e)|

c=1 θσ(c)

)
∏|T (e)|

u=1

(∑|T (e)|
c′=u exp

(
θσ(c′)

)
+
∑

i∈B(e) exp (θi)
)


gives limθ→θ̃ LRB(θ) = −∞. Thus, for any given constant c, the set {θ ∈ Ω :

LRB(θ) ≥ c} is a closed and bounded set, and hence a compact set.

To prove strict concavity, we use Lemma 3.2. Define Ω̃ = {θ ∈ Rd|θ1 = 0},
a reparameterization of the set Ω = {θ ∈ Rd|∑i∈[d] θi = 0}. To apply

Lemma 3.2 to prove strict concavity of log-likelihood of an hyper edge e,

take gij(θ, Y ) = (θi + Yi)− (θj + Yj), for all i ∈ T (e) and j ∈ B(e). Consider

θ, θ̃ ∈ Ω̃. H(θ) = H(θ̃) implies that θi − θj = θ̃i − θ̃j, for all i ∈ T (e)

and j ∈ B(e). This follows from the fact that for a fixed parameter θ, the

hyper planes {gij(θ, Y ) ≥ 0}ij are linearly independent. Thus, Assumption

3.4 combined with the fact that θ1 = θ̃1 means that θ = θ̃. Since the Gumbel

distribution has strictly logarithmic concave density function, we conclude

that LRB(θ) is strictly concave. 2

3.3.4 Consistency of pseudo-MLE of rank-breaking graph

In order to discuss consistency of the proposed approach, we need to specify

how we sample the set of items to be offered Sj and also which partial ordering

over Sj is to be observed. Here, we consider a simple but canonical scenario

for sampling ordered relations, and show the proposed method is consistent

for all non-degenerate cases. However, we study a more general sampling

scenario, when we analyze the order-M estimator in the finite sample regime

in Section 7.4.

Following is the canonical sampling scenario. There is a set of ` inte-

gers (m1, . . . ,m`) whose sum is strictly less than d. A new arriving user is

presented with all d items and is asked to provide her top m1 items as an

unordered set, and then the next m2 items, and so on. This is sampling

from the PL model and observing an ordered partition with (` + 1) subsets

of sizes ma’s, and the last subset includes all remaining items. We apply
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the generalized rank-breaking to get rank-breaking graphs {Gj} with ` edges

each, and order-M estimate is computed. We show that this is consistent,

i.e. asymptotically unbiased in the limit of the number of users n.

Remark 3.7. Under the PL model and the above sampling scenario, the

order-M rank-breaking estimate θ̂ in (7.12) is consistent for all choices of

M ≥ mina∈`ma.

Proof. It is sufficient to show that (a) the estimate θ̂, (3.5) is unique under

the above sampling scenario, and (b) expectation of the gradient of LRB(θ∗)

is zero, i.e, Eθ∗ [∇LRB(θ∗)] = 0, [12]. For the above sampling scenario in the

limit of the number of users n, Assumption 3.4 is satisfied. Therefore, from

Remark 3.6, the estimate θ̂, (3.5) is unique. In Lemma 3.10, we show that

Eθ∗ [∇LRB(θ∗)] = 0.

2

3.3.5 Algorithm to estimate θ̂ given DAG Gj’s
Summarizing the rank-breaking approach explained in the previous sections,

we give Algorithm 3, an algorithm to compute θ̂, (3.5), an estimate of θ∗.

Algorithm 3 takes as input DAG Gj’s generated under PL model with pa-

rameter θ∗, rank-breaking order M ∈ Z+, a desired error threshold ε, and

returns θ̂.

3.4 Main Results

We first summarize the notations defined so far and introduce some new no-

tations that are used in our theoretical results. We define a comparison graph

that captures the topology of the offer sets Sj. Our upper and lower bounds

both depend on the spectral properties of the comparison graph. Then, we

present main theoretical analyses and numerical simulations confirming the

theoretical results.

Notations. Following is a summary of all the notations defined above. Also,

we introduce some new notations that are used in our theoretical results.

We use n to denote the number of users providing partial rankings, indexed
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Algorithm 3 Estimate θ∗ given DAG Gj’s.
Require: DAG {Gj}1≤j≤n generated under PL model with parameter θ∗,

rank-breaking order M , error threshold ε
Ensure: θ̂ - an estimate of θ∗

1: find maximal ordered partitions {Pj}1≤j≤n consistent with {Gj}1≤j≤n [Al-
gorithm 1]

2: construct rank breaking graph {Gj(Sj, Ej)}1≤j≤n from {Pj}1≤j≤n [Algo-
rithm 2]

3: θ̂ ← 0d×1

4: repeat
5: θ̃ ← θ̂
6: for i = 1 to d do
7: θ̂i ← from minorizing maximizing Equation (3.7) using θ̃,

{Gj(Sj, Ej)}1≤j≤n, M
8: end for
9: until ‖θ̂ − θ̃‖∞ ≤ ε

10: return θ̂

by j ∈ [n] where [n] = {1, 2, . . . , n}. We use d to denote the number of

items, indexed by i ∈ [d]. Given rank-breaking graphs {Gj(Sj, Ej)}j∈[n]

extracted from the DAGs {Gj}, we first define the order M rank-breaking

graphs {G(M)
j (Sj, E

(M)
j )}, where E

(M)
j is a subset of Ej that includes only

those edges ej ∈ Ej with |T (ej)| ≤ M . This represents those edges that are

included in the estimation for a choice of M . For finite sample analysis, the

following quantities capture how the error depends on the topology of the

data collected. Let κj ≡ |Sj| and `j ≡ |E(M)
j |. We index each edge ej in E

(M)
j

by a ∈ [`j] and define mj,a ≡ |T (ej,a)|, size of top-set, for the a-th hyper edge

of the j-th rank-breaking graph, and rj,a ≡ |T (ej,a)|+ |B(ej,a)|, sum of size of

the top-set and the bottom-set. We let pj ≡
∑

a∈[`j ]
mj,a denote the effective
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sample size for the observation G
(M)
j .

mj,a ≡ |T (ej,a)| ,
size of top-set for the ej,a hyper edge of rank-breaking graph G

(M)
j .

(3.8)

rj,a ≡ |T (ej,a)|+ |B(ej,a)| ,
sum of size of the top-set and the bottom-set for the Ej,a. (3.9)

pj ≡
∑
a∈[`j ]

mj,a ,

sum of size of all top-sets of G
(M)
j (which are smaller than M). (3.10)

Notice that although we do not explicitly write the dependence on M , all

of the above quantities implicitly depend on the choice of M . For ease of

notations, we remove the superscript M from G
(M)
j in the following.

For a ranking σ over S, i.e., σ is a mapping from [|S|] to S, let σ−1 denote

the inverse mapping. For a vector x, let ‖x‖2 denote the standard l2 norm.

Let 1 denote the all-ones vector and 0 denote the all-zeros vector with the

appropriate dimension. Let Sd denote the set of d × d symmetric matrices

with real-valued entries. For X ∈ Sd, let λ1(X) ≤ λ2(X) ≤ · · · ≤ λd(X)

denote its eigenvalues sorted in increasing order. Let Tr(X) =
∑d

i=1 λi(X)

denote its trace and ‖X‖ = max{|λ1(X)|, |λd(X)|} denote its spectral norm.

For two matrices X, Y ∈ Sd, we write X � Y if X − Y is positive semi-

definite, i.e., λ1(X−Y ) ≥ 0. Let ei denote a unit vector in Rd along the i-th

direction.

3.4.1 Comparison graph

We define a comparison graph H([d], E) as a weighted undirected graph with

weights

Aii′ =
∑

j∈[n]:i,i′∈Sj

pj
κj(κj − 1)

.

That is we put an edge (i, i′) if there exists a user j whose offerings is a set

Sj such that i, i′ ∈ Sj. Define a diagonal matrix D = diag(A1), and the
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corresponding graph Laplacian L = D − A such that

L ≡
n∑
j=1

pj
κj(κj − 1)

∑
i<i′∈Sj

(ei − ei′)(ei − ei′)> . (3.11)

It is immediate that λ1(L) = 0 with 1 as the eigenvector. There are remaining

d− 1 eigenvalues that sum to Tr(L) =
∑

j pj. The rescaled λ2(L) and λd(L)

capture the dependency on the topology:

α ≡ λ2(L)(d− 1)

Tr(L)
, β ≡ Tr(L)

λd(L)(d− 1)
. (3.12)

In an ideal case where the graph is well connected, then the spectral gap of

the Laplacian is large. The chosen rescaling ensures that if all the non-zero

eigenvalues are of the same order then there exists constants 0 ≤ c1, c2 ≤ 1

such that c1 ≤ α ≤ 1 and c2 < β ≤ 1. If the graph is connected then c1

is strictly greater than zero. If λ2(L) = · · · = λd(L) then α = β = 1. We

will show that the performance of our estimator depends upon topology of

the comparison graph through these two parameters. The larger the rescaled

spectral gap α the smaller error we get with the same effective sample size.

The rescaled largest eigenvalue β along with α determine how many samples

are required for the analysis to hold. In general, α and β depend upon

both the topology of the offer sets Sj and the topology of the rank-breaking

graphs Gj, through the edge weights Aii′ . However, if topology of all the

rank-breaking graphs Gj’s is same then the comparison graph H and α, β

depend only upon the topology of the offer sets Sj. For such a comparison

graph, [114] provides a detailed discussion on the spectral gap for various

canonical graphs following the setup given in [182].

The concavity of LRB(θ) also depends on the following quantities.

γ1 ≡ min
j,a

{(
rj,a −mj,a

κj

)2e2b−2}
, γ2 ≡ min

j,a

{(
rj,a −mj,a

rj,a

)2}
.(3.13)

γ1 incorporates asymmetry in probabilities of items being ranked at different

positions depending upon their weight θ∗i . Recall that b is the upper bound on

‖θ∗‖∞, Equation 3.2. γ1 is 1 for b = 0 that is when all the items have the same

weight θ∗i , and it decreases exponentially with increase in b. The exponential

decrease is tight and reflects the fact that under PL model probability of
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the highest weight item being ranked last is exponentially smaller than its

probability of being ranked first.

When the rank-breaking graphs Gj’s are determined such that size of the

offered subsets κj’s are increasing with d but all the top-set sizes are much

smaller than the corresponding bottom set sizes, such that κj = ω(d), mj,a =

o(rj,a) and rj,a = Θ(κj), then for b = O(1) γ1 can be made arbitrarily close

to one, for large enough problem size d. On the other hand, when either rj,a

is much smaller than κj or if rj,a = Θ(κj) but mj,a = O(rj,a) then accuracy

can degrade significantly as stronger alternatives will have small chance of

showing up in the bottom set. The value of γ1 is quite sensitive to b.

γ2 controls the range of the size of the top-set with respect to the size of the

bottom-set for which the error decays with the rate of 1/(size of the top-set).

If size of top sets mj,a = o(rj, a) then γ2 would be close to one. The depen-

dence of accuracy on γ1, γ2 is demonstrated in simulations as well, Figure

3.5.

We define the following additional quantities that control our upper bound.

The dependence in γ3 and ν are due to weakness in the analysis, and ensures

that the Hessian matrix is strictly negative definite.

γ3 ≡ 1−max
j,a

{
4e16b

γ1

m2
j,ar

2
j,aκ

2
j

(rj,a −mj,a)5

}
, ν ≡ max

j,a

{
mj,aκ

2
j

(rj,a −mj,a)2

}
.

(3.14)

For our analysis to hold we need γ3 > 0 which in addition to the conditions

needed for γ1 being close to one require that mj,a = O(
√
rj,a). We believe

this is a limitation on our analysis and the results should hold for any values

of mj,a = o(rj,a). For the special case when mj,a ≤ 3 for all j, a, we provide

a tighter result that does not depend upon γ3. However, in general getting

rid of γ3 is challenging. ν shows up in the number of samples required for

our analysis to hold. Note that the quantities defined in this section implic-

itly depend on the choice of M , which controls the necessary computational

power, via the definition of the rank-breaking graphs {G(M)
j }j∈[n].
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3.4.2 Upper bound on the achievable error

We provide an upper bound on the error for the order-M rank-breaking

Algorithm 3, showing the explicit dependence on the topology of the offered

sets {Sj}j∈[n]. Recall from the sampling assumptions in Section 3.3 that we

assume the topology of the observed DAG Gj’s, and the rank-breaking order

M is fixed apriori. The randomness that we observe is in the position of Sj

items in the DAG Gj. For an hyper edge e ∈ Ej, the randomness is in which

items of the set Sj appear in the bottom |B(e)| positions and the bottom

|T (e)|+ |B(e)| positions in the preference order of the user j. This precisely

captures the randomness due to the PL model in the observed DAG Gj. The

following theorem provides an upper bound on the achieved error, and a

proof is provided in Section 4.6.

Theorem 3.8. Suppose there are n users, d items parametrized by θ∗ ∈ Ωb,

and each user j ∈ [n] is presented with a set of offerings Sj ⊆ [d] and the user

provides a partial ordering under the PL model consistent with the topology

of the apriori fixed DAG Gj. For a choice of M ∈ Z+, if γ3 > 0 and the

effective sample size
∑n

j=1 pj is large enough such that

n∑
j=1

pj ≥
214e20bν2

(αγ1γ2γ3)2β

pmax

κmin

d log d , (3.15)

where b ≡ maxi |θ∗i | is the dynamic range, pmax = maxj∈[n] pj, κmin = minj∈[n] κj,

α is the (rescaled) spectral gap, β is the (rescaled) spectral radius in (3.12),

and γ1, γ2, γ3, and ν are defined in (3.13) and (3.14), then the generalized

rank-breaking estimator in (7.12) achieves

1√
d
‖θ̂ − θ∗‖2 ≤

40e7b

αγ1γ
3/2
2 γ3

√
d log d∑n
j=1 pj

, (3.16)

with probability at least 1 − 3e3d−3. Moreover, for M ≤ 3 the above bound

holds with γ3 replaced by one, giving a tighter result.

Note that the dependence on the choice of M is not explicit in the bound,

but rather is implicit in the construction of the comparison graph and the

number of effective samples.

In an ideal case, b = O(1) and mj,a = O((rj,a)
1/3), rj,a = Θ(κj), κj = ω(d),

for all (j, a). There exist positive constants c1, c2 such that if mj,a < c1(rj,a)
1/3
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and rj,a > c2κj for all {j, a}, then the condition γ3 > 0 is met, for large

enough problem size d. Moreover, in this ideal case there exists constants

0 < c3, c4 ≤ 1 such that c3 ≤ γ1 < 1, c4 ≤ γ2 < 1. If the comparison

graph H is well connected then there exists a constant 0 < c5 ≤ 1 such

that the rescaled spectral gap c5 ≤ α ≤ 1. Further, in this ideal case, the

condition on the effective sample size is met with
∑

j pj = O(d log d), (3.15).

Therefore the effective sample size
∑n

j=1 pj = Ω(d log d) is sufficient to ensure

‖θ̂− θ∗‖2 = o(
√
d) which is only a logarithmic factor larger than the number

of parameters. We need mj,a = O((rj,a)
1/3) to satisfy (ν2pmax)/κmin = O(1),

otherwise mj,a = O((rj,a)
1/2) is sufficient to ensure γ3 > 0. We believe that

dependence in γ3 is weakness of our analysis and there is no dependence as

long as mj,a < rj,a. For, rank-breaking order M ≤ 3, we are able to give

tighter results where there is no dependence on γ3.

As explained above, in the ideal case, for large enough problem size d,

there exists a positive constant C such that ‖θ̂− θ∗‖2
2 ≤ Cd2 log d/(

∑n
j=1 pj).

Recall from the construction of the likelihood objective function, LRB(θ) =∑
j∈[n]

∑
e∈Ej :|T (e)|≤M lnPθ(e). If we fix all the problem parameters including

topology of the DAG Gj’s and increase M then pj =
∑

a∈[`j ]
mj,a increases.

Therefore, by increasing M we can get the same number of effective samples∑n
j=1 pj with smaller number of rankings n. However, increasing M increases

computational complexity as M !. Therefore, to achieve a fixed target accu-

racy ‖θ̂−θ∗‖2, an analyst can trade-off the required number of rankings with

the budgeted computational complexity.

If the DAG Gj’s are complete graph that is each user provides a full ranking

over the offered subset Sj, we get mj,a = 1, `j = κj−1, and the total effective

sample size
∑

j pj =
∑

j∈[n](κj − 1). Therefore, from the above theorem,∑
j∈[n](κj − 1) = Ω(d log d) is sufficient to ensure ‖θ̂ − θ∗‖2 = o(

√
d). It

matches with the results for full rankings given in [84, 114].

Unordered vs. ordered top-m ranking. In the ideal case, a perhaps sur-

prising observation is that, for a ranking j, sizes of the top-sets {mj,a}a∈[`j ]

impacts estimation accuracy only via pj =
∑

a∈[`j ]
mj,a, when mj,a’s are suffi-

ciently small in comparison to rj,a’s, sum of the top-set size and the bottom-

set size. In particular, for estimation accuracy it does not matter whether

users reveal their top-m choices in the ordered way {i1} � {i2} � · · · �
{im} � {im+1, · · · , ik} or the unorderd way {i1, i2, · · · , im} � {im+1, · · · ik},
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when m is sufficiently small in comparison to k. Numerical results in Figure

3.5 confirm this.

Proof idea. The analysis of the optimization in (7.12) shows that, with high

probability, LRB(θ) is strictly concave with λ2(H(θ)) ≤ −Cbγ1γ2γ3λ2(L) <

0 for all θ ∈ Ωb (Lemma 3.12), and the gradient is also bounded with

‖∇LRB(θ∗)‖ ≤ C ′bγ
−1/2
2 (

∑
j pj log d)1/2 (Lemma 3.11). This leads to The-

orem 4.5:

‖θ̂ − θ∗‖2 ≤
2‖∇LRB(θ∗)‖
−λ2(H(θ))

≤ C ′′b

√∑
j pj log d

γ1γ
3/2
2 γ3λ2(L)

,

where Cb, C
′
b, and C ′′b are constants that only depend on b, and λ2(H(θ)) is

the second largest eigenvalue of a negative semidefinite Hessian matrix H(θ)

of LRB(θ). Recall that θ>1 = 0 since we restrict our search in Ωb. Hence, the

error depends on λ2(H(θ)) instead of λ1(H(θ)) whose corresponding eigen-

vector is the all-ones vector.

3.4.3 Lower bound on computationally unbounded estimators

Suppose M = d. We prove a fundamental lower bound on the achievable

error rate that holds for any unbiased estimator with no restrictions on the

computational complexity. For each (j, a), define ηj,a as

ηj,a ≡
mj,a−1∑
u=0

( 1

rj,a − u
+

u(mj,a − u)

mj,a(rj,a − u)2

)
+

∑
u<u′∈[mj,a−1]

2u

mj,a(rj,a − u)

mj,a − u′
rj,a − u′

(3.17)

<

mj,a−1∑
u=0

( 1

mj,a − u
+

u

mj,a(mj,a − u)

)
+

∑
u<u′∈[mj,a−1]

2u

mj,a(mj,a − u)
(3.18)

=

mj,a−1∑
u=0

( 1

mj,a − u
+

u

mj,a(mj,a − u)
+

2u(mj,a − 1− u)

mj,a(mj,a − u)

)
= mj,a ,
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where (3.18) follows from the fact that (3.17) is monotonically strictly de-

creasing in rj,a for rj,a ≥ mj,a. Since by definition rj,a > mj,a, we substitute

rj,a = mj,a to get a strict upper bound.

Theorem 3.9. Let U denote the set of all unbiased estimators of θ∗ that are

centered such that θ̂1 = 0, and let µ = maxj∈[n],a∈[`j ]{mj,a − ηj,a}. For all

b > 0,

inf
θ̂∈U

sup
θ∗∈Ωb

E[‖θ̂ − θ∗‖2] ≥ max

{
(d− 1)2∑n

j=1

∑`j
a=1(mj,a − ηj,a)

,
1

µ

d∑
i=2

1

λi(L)

}
.

(3.19)

The proof relies on the Cramer-Rao bound and is provided in Section

3.6.6. Since 0 < ηj,a < mj,a, the mean squared error is lower bounded

by (d − 1)2/(
∑n

j=1

∑`j
a=1mj,a) = (d − 1)2/(

∑n
j=1 pj), where

∑n
j=1 pj is the

effective sample size. Comparing it to the upper bound in (5.9), this is tight

up to a logarithmic factor when (a) the topology of the data is well-behaved

such that all the quantities γ1, γ2, γ3, α, β are greater than a positive constant

c ≤ 1; and (b) there is no limit on the computational power and M can be

made as large as we need. For full-rankings, this bound reduces to the one

given in [84, 114]. For full rankings,
∑`j

a=1(mj,a − ηj,a) = (κj − 1)2/κj.

The bound in Eq. (3.19) further gives a tighter lower bound, capturing

the dependency in ηj,a’s and λi(L)’s. The second term in (3.19) implies

we get a tighter bound when λ2(L) is smaller. If the comparison graph

H is disconnected that is λ2(L) = 0, the bound shows that θ∗ can not be

estimated.

To understand the impact of ηj,a on MSE, we plot (mj,a − ηj,a)/rj,a as a

function of mj,a/rj,a for different values of rj,a in Figure 3.3. Recall that

mj,a is the size of the top-set, (3.8) and rj,a is the sum of size of the top-

set and the bottom-set, (3.9). We vary mj,a from 1 to rj,a − 1, for rj,a in

{2, 4, 8, 16, 32, 256, 1024}. From the Theorem 3.9, contribution of an hyper

edge ej,a to the effective samples is (mj,a − ηj,a). Since ηj,a increases with

mj,a, a natural question is what is the optimal value of mj,a that gives the

smallest MSE, for a fixed rj,a. Figure 3.3 shows that (mj,a−ηj,a)/rj,a achieves

its maximum value at m/r ≈ 0.8 when r is sufficiently large. It also shows

that (mj,a − ηj,a) ≥ cmj,a, for mj,a/rj,a ≤ c1(≈ 0.8), for positive constants

c, c1 < 1, when rj,a is large. That is the contribution of an hyper edge ej,a to
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the effective sample size is at least cmj,a for mj,a/rj,a ≤ c1. Comparing this

with the lower bound for top-mj,a ranking given in [114], it can be concluded

that the (unobserved) relative ordering among the items in the top-set of the

hyper edge ej,a has limited impact on the MSE. [114] show in the their lower

bound that the contribution of top-m ranking on the effective sample size is

m.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1

 = 2
 = 4
 = 8

 = 16
 = 32

 = 256
 = 1024

m/r

(m− η)/r

r

Figure 3.3: It shows how η varies as a function of m, size of the top-set, for
a fixed value of r, sum of top-set and the bottom-set sizes, Equation (3.17).

Note that the lower bound is derived for the easiest case, b = 0, when

all the items i ∈ [d] have the same weight θ∗i = θ∗0. Therefore, the above

conclusion that the relative ordering among the items in the top-set of the

hyper edge ej,a has limited impact on the accuracy can be made only for this

case when all the items have the same PL weight. However, the upper bound

shows that this conclusion holds true in general. The ‘unordered vs. ordered

top-m ranking’ paragraph in the previous section explains that for the ideal

case when mj,a is sufficiently small in comparison to rj,a, the relative ordering

has limited impact.

Recall that in the upper bound, γ1 and γ2 capture the impact of mj,a/rj,a

on the effective number of samples. However, for b = 0, γ1 = 1, and for

b > 0 it captures asymmetry in the probability of the highest weight item

appearing in bottom set. γ2 = minj,a
{( rj,a−mj,a

rj,a

)2}
captures the role played

by ηj,a in the lower bound.
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3.4.4 Numerical results

In the following, we give numerical results confirming our theoretical re-

sults. Our numerical experiments show that the dependence of MSE on

n, d, κj, rj,a,mj,a, `j given in Theorem 4.5, Equation (5.9) hold true, even

when the conditions for the theorem to hold are not met. For the theorem

to hold, it is required that the number of items d, the set sizes κj and the

hyper edge sizes rj,a are sufficiently large such that γ3 > 0 and the number of

effective samples satisfies (3.15). However, in all our experiments the number

of items d <= 512 and b = 2, therefore from (3.14) γ3 < 0, and the condition

in (3.15) is not met.

Impact of the number of independent rankings n and the number

of rank-breaking hyper edges `j on accuracy. Figure 4.1 (first panel)
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Figure 3.4: Smaller error is achieved when using more computational
resources with larger M and using all paired comparisons results in an
inconsistent Pairwise Rank-Breaking (PRB) whose error does not vanish
with sample size (first panel). Generalized Rank-Breaking (GRB) utilizes
all the observations achieving the oracle lower bound (third panel). The PL
weights are chosen uniformly spaced over [−2, 2]. On the first panel, we fix
d = 256, κ = 32, ` = 4, ma = a for a ∈ {1, 2, 3, 4}, and sample posets from
the canonical scenario explained in Section 3.3.4. On the third panel, we let
n = 105, d = 512, κ = 64, ma = 3 for all a ∈ [`] and vary ` ∈ {1, 2, 4, 8, 16}.
The second and the fourth panel show the computation time for the first
and the third panel respectively.

shows the accuracy-sample tradeoff for increasing computation M on the

same data. As predicted by the anlaysis, generalized rank-breaking (GRB) is

consistent (Remark 3.7) and the mean square error (MSE) decays at the rate

(1/n), and decreases with increase in M , order of rank-breaking (Theorem

4.5). For comparison, we also plot the MSE achieved by pairwise rank-

breaking (PRB) approach where we include all paired relations derived from
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data, which we call inconsistent PRB. As predicted by [13], this results in an

inconsistent estimate, whose MSE does not vanish as we increase the sample

size. Notice that including all paired comparisons increases bias, but also

decreases variance of the estimate. Hence, when sample size is limited and

variance is dominating the bias, it is actually beneficial to include those biased

paired relations to gain in variance at the cost of increased bias. Theoretical

analysis of such a bias-variance tradeoff is outside the scope of this paper,

but proposes an interesting research direction.

In the third panel, the GRB with M = 3 achieves decreasing MSE, whereas

for PRB the increased bias dominates the MSE. For comparisons, we pro-

vide the error achieved by an oracle estimator who knows the exact ordering

among those items belonging to the top-sets and runs MLE. For example,

if ` = 2, the GRB observes an ordering ({i1, i2, i4, i5, . . .} ≺ {i17, i3, i6} ≺
{i9, i2, i11}) whereas the oracle estimator has extra information on the order-

ing among those top sets, i.e. ({i1, i2, i4, i5, . . .} ≺ i17 ≺ i3 ≺ i6 ≺ i9 ≺ i2 ≺
i11}). Perhaps surprisingly, GRB is able to achieve a similar performance

without this significant extra information, unless ` is large. The performance

degradation in large ` regime stems from the fact that the ratio of ma and ra

approaches 1 for a close to ` when ` is large. Therefore the parameters γ1 and

γ2 become small, and the upper bound MSE increases consequentially. The

normalization constant C is 1/d2 for the first panel and nm/d2 for the third

panel. All the numerical results in this paper are averaged over 10 instances.

Standard error is very small in all the results, therefore we do not give error

bars, except in the first panel in Figure 4.1.

Impact of the top-set size m and the set-size κ on accuracy. In

Figure 3.5 first and third panel, we compare performance of our algorithm

with pairwise breaking, Cramer Rao lower bound and oracle MLE lower

bound. Oracle MLE knows relative ordering of items in the top-sets T (e)

and hence is strictly better than the GRB. For the settings chosen, Oracle

MLE gets the ordered ranking of top-m items whereas GRB gets unordered

top-m items. As predicted by our analysis, GRB matches with the oracle

MLE which means relative ordering of top-m items among themselves is

statistically insignificant when m is sufficiently small in comparison to r = κ.

For r = κ = 32 in the first panel, MSE decays as m increases from 1 to 5.

However, when r = κ = 16 in the third panel, for the same increase of m
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from 1 to 5 MSE starts increasing when m grows beyond 4. The reason is

that the quantities γ1 and γ2 get smaller as m increases, and the upper bound

increases consequently. The normalization constant C is n/d2 for these two

panels.
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Figure 3.5: PRB: pairwise rank-breaking, GRB: generalized rank-breaking.
MSE decreases as m increases when r, sum of the size of the top-set and the
bottom-set is sufficiently large (first panel). When r is small, with increase
in m MSE initially decreases but as m grows large MSE starts increasing
(third panel). θ∗ is chosen uniformly spaced over [−2, 2] and d = 512,
n = 105 and number of hyperedges ` = 1. The second and the fourth panel
show the computation time for the first and the third panel respectively.

Impact of the dynamic range b on accuracy. In Figure 3.6, we show

the impact of b and r = κ on the accuracy for fixed m = 4. When κ is small,

γ2 is small, and hence error is large; when b is large γ1 is exponentially small,

and hence error is significantly large. This is different from learning Mallows

models in [4] where peaked distributions are easier to learn, and is related to

the fact that we are not only interested in recovering the (ordinal) ranking

but also the (cardinal) weight. The normalization constant C is nm/d2.

3.4.5 Real-world datasets

On sushi preferences [104] and jester dataset [78], we improve over pairwise

breaking and achieve same performance as the oracle MLE.

Sushi dataset. There are d = 100 types of sushi. Full rankings over

subsets Sj of size κ = 10 are provided by n = 5000 individuals. The offering

subsets Sj are chosen uniformly at random from the entire set d. We set the

ground truth θ∗ to be the MLE of the PL weights over the entire data. In the

left panel, for each m ∈ {3, 4, 5, 6}, we remove the known ordering among
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Figure 3.6: MSE increases as the dynamic range b gets large. d = 512,
n = 105 and θ∗ is chosen uniformly spaced over [−2, 2]. Number of hyper
edges ` = 1 with r = κ and m = 4.

the top-m and bottom-(10 − m) sushi in each set, and run our estimator

with one rank-breaking hyper edge between top-m and bottom-(10 − m)

items. We compare our algorithm with inconsistent pairwise breaking (using

optimal choice of parameters from [114]) and the oracle MLE. For m ≤ 6, the

proposed rank-breaking performs as good as the oracle who knows the relative

ordering among the top m items. In other words, an individual providing

a set of ordered top-6 sushi or a set of unordered top-6 sushi statistically

reveals the same information, for the purpose of estimating the ground truth

parameters. As predicted by our theory, error decreases with increase in

top-set size m.
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Figure 3.7: Generalized rank-breaking improves over pairwise RB and
performs as good as oracle MLE on sushi dataset. The sushi dataset has
d = 100, n = 5000, and κ = 10. The right panel shows computation time.
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Jester dataset. It consists of continuous ratings between −10 to +10

of 100 jokes on sets of size κ, 36 ≤ κ ≤ 100, by 24, 983 users. We convert

cardinal ratings into ordinal full rankings. The ground truth θ∗ is set to

be the MLE of the PL weights over the entire data. For m ∈ {2, 3, 4, 5}, we

convert each full ranking into a poset that has ` = bκ/mc partitions of size m,

by removing known relative ordering from each partition. The leads to total

number of effective samples
∑

j pj =
∑

j

∑
a∈[`j ]

mj,a =
∑

j(κj −m), which

is approximately equal for each m ∈ {2, 3, 4, 5}. However, with increasing

m, the quantities γ1, γ2, γ3 become smaller and hence the error increases

(third panel in Figure 3.8). Figure 3.8 compares the three algorithms for

two different settings. In the first panel, we fix m = 4 and vary the number

of samples n. Mean square error decreases with increase in the number

of samples. In the third panel, we use n = 5000 samples, and vary m ∈
{2, 3, 4, 5}.
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Figure 3.8: Generalized rank-breaking improves over pairwise RB and
performs as good as oracle MLE on jester dataset. The jester dataset which
has d = 100, n = 24, 983, and 36 ≤ κj ≤ 100. The second and the fourth
panel show the computation time for the first and the third panel
respectively.

3.5 Computational and statistical tradeoff

For estimators with limited computational power, however, the lower bound

Theorem 3.9 fails to capture the dependency on the allowed computational

power. Understanding such fundamental trade-offs is a challenging prob-

lem, which has been studied only in a few special cases, e.g. planted clique

problem [52, 151]. This is outside the scope of this paper, and we instead

investigate the trade-off achieved by the proposed rank-breaking approach.
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When we are limited on computational power, Theorem 4.5 implicitly cap-

tures this dependence when order-M rank-breaking is used. The dependence

is captured indirectly via the resulting rank-breaking {Gj,a}j∈[n],a∈[`j ] and the

topology of it. We make this trade-off explicit by considering a simple but

canonical example. Suppose θ∗ ∈ Ωb with b = O(1). Each user gives an i.i.d.

partial ranking, where all items are offered and the partial ranking is based

on an ordered partition with `j = b
√

2cd1/3c subsets for a constant c. The

top subset has size mj,1 = 1, and the a-th subset has size mj,a = a, up to

a < `j. The choice of `j with a sufficiently small constant c ensures that all

the conditions of the ideal case explained in the previous section for holding

the Theorem 4.5 are satisfied.

Computation. For a choice of M such that M ≤ `j − 1, we consider

the computational complexity in computing θ(t), (3.7) in one iteration of the

minorization-maximization algorithm, which scales as T (M,n) = O(M ! ×
dn). A detailed analysis of the convergence rate of the MM algorithm is

outside the scope of this paper.

Accuracy. Under the canonical setting, for M ≤ `j−1, Laplacian matrix

L of the comparison graph H is L = nM(M + 1)/(2d(d − 1))
(
d I − 11>

)
.

All the non-zero eigenvalues of this complete graph are equal, λ2(L) = · · · =
λd(L) = Tr(L)/(d − 1). Therefore, the resclaed spectral gap α = 1, and

the rescaled largest eigenvalue β = 1. Since the effective sample size is∑
j,amj,aI{mj,a ≤ M} = nM(M + 1)/2, it follows from Theorem 4.5 that

the (rescaled) root mean squared error is O(
√

(d log d)/(nM2)). In order to

achieve a smaller target error rate of ε for a fixed problem size d, an analyst

can increase the rank-breaking order M and/or increase n that is collect

more i.i.d. rankings. Fixing the rank-breaking order M , we need to collect

n = Ω((d log d)/(ε2M2)) i.i.d. rankings. The resulting trade-off between

run-time and root mean squared error ε is T (ε) ∝ (M !(d2 log d)/(ε2M2).

The computational complexity is quadratic in the target error ε, when we can

collect more rankings. On the other hand, fixing the number of rankings n, we

need to choose M = Ω((1/ε)
√

(d log d)/n). The resulting trade-off between

run-time and root mean squared error ε is T (ε) ∝ (d(1/ε)
√

(d log d)/ne)!dn.

The computational complexity is super exponential in the target error ε,

for a fixed problem size d and the number of rankings n. Super exponential

complexity is unavoidable as computing likelihood is super exponential in M .

However, our approach provides flexibility to the analyst to choose between
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collecting more rankings n or increasing the rank-breaking order M to achieve

the desired target error. We show numerical experiment under this canonical

setting in Figure 4.1 (left) with d = 256 and M ∈ {1, 2, 3, 4, 5}, illustrating

the trade-off in practice.

3.6 Proofs

We provide the proofs of the main results.

3.6.1 Proof of Lemma 3.3

In the following, we show that Q(e, θ; θ(t)) minorizes ln(Pθ(e)) at θ(t). Using

Jensen’s inequality ln(E[X]) ≥ E[ln(X)], for any given parameter θ(t) ∈ Rd,
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we have,

ln(Pθ(e))

= ln
(
Pθ
(
B(e) ≺ T (e)

))
= ln

 ∑
σ∈ΛT (e)

exp
(∑|T (e)|

c=1 θσ(c)

)
∏|T (e)|

u=1

(∑|T (e)|
c′=u exp

(
θσ(c′)

)
+
∑

i∈B(e) exp (θi)
)


≥
∑

σ∈ΛT (e)

Pθ(t)(e, σ)

Pθ(t)(e)

ln

 exp
(∑|T (e)|

c=1 θσ(c)

)
∏|T (e)|

u=1

(∑|T (e)|
c′=u exp

(
θσ(c′)

)
+
∑

i∈B(e) exp (θi)
) Pθ(t)(e)

Pθ(t)(e, σ)

 (3.20)

=
∑

σ∈ΛT (e)

Pθ(t)(e, σ)

Pθ(t)(e)

|T (e)|∑
u=1

θσ(u) − ln

|T (e)|∑
c′=u

exp
(
θσ(c′)

)
+
∑
i∈B(e)

exp (θi)


+
∑

σ∈ΛT (e)

Pθ(t)(e, σ)

Pθ(t)(e)
ln

(
Pθ(t)(e)

Pθ(t)(e, σ)

)

≥
∑

σ∈ΛT (e)

Pθ(t)(e, σ)

Pθ(t)(e)

|T (e)|∑
u=1

θσ(u) −
∑|T (e)|

c′=u exp
(
θσ(c′)

)
+
∑

i∈B(e) exp (θi)∑|T (e)|
c′=u exp

(
θ

(t)
σ(c′)

)
+
∑

i∈B(e) exp
(
θ

(t)
i

)


+f(e, θ(t))

≡ Q(e, θ; θ(t)) .

Note that inequality in (3.20) is tight if θt = θ. The last inequality follows

from the fact that for any positive x and y, we have

− lnx ≥ 1− ln y − (x/y) with equality if and only if x = y.

Therefore, Q(e, θ; θ(t)) minorizes ln(Pθ(e)) and is equal to ln(Pθ(e)) if and

only if θ(t) = θ.
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3.6.2 Proof of Theorem 4.5

We define few additional notations. p ≡ (1/n)
∑n

j=1 pj. V (ej,a) ≡ T (ej,a) ∪
B(ej,a) for all j ∈ [n] and a ∈ [`j]. Note that by definition of rank-breaking

edge ej,a, V (ej,a) is a random set of items that are ranked in bottom rj,a

positions in a set of Sj items by the user j.

The proof sketch is inspired from [114]. The main difference and technical

challenge is in showing the strict concavity of LRB(θ) when restricted to

Ωb. We want to prove an upper bound on ∆ = θ̂ − θ∗, where θ̂ is the

sample dependent solution of the optimization (7.12) and θ∗ is the true utility

parameter from which the samples are drawn. Since θ̂, θ∗ ∈ Ωb, it follows that

∆1 = 0. Since θ̂ is the maximizer of LRB(θ), we have the following inequality,

LRB(θ̂)− LRB(θ∗)− 〈∇LRB(θ∗),∆〉 ≥ −〈∇LRB(θ∗),∆〉
≥ −‖∇LRB(θ∗)‖2‖∆‖2, (3.21)

where the last inequality uses the Cauchy-Schwartz inequality. By the mean

value theorem, there exists a θ = cθ̂ + (1− c)θ∗ for some c ∈ [0, 1] such that

θ ∈ Ωb and

LRB(θ̂)− LRB(θ∗)− 〈∇LRB(θ∗),∆〉 =
1

2
∆>H(θ)∆

≤ −1

2
λ2(−H(θ))‖∆‖2

2,

(3.22)

where λ2(−H(θ)) is the second smallest eigen value of −H(θ). We will show

in Lemma 3.12 that −H(θ) is positive semi definite with one eigenvalue at

zero with a corresponding eigen vector 1 = [1, . . . , 1]>. The last inequality

follows since ∆>1 = 0. Combining Equations (7.24) and (3.22),

‖∆‖2 ≤
2‖∇LRB(θ∗)‖2

λ2(−H(θ))
,

where we used the fact that λ2(−H(θ)) > 0 from Lemma 3.12. The following

technical lemmas prove that the norm of the gradient is upper bounded by

γ
−1/2
2 eb

√
6np log d with high probability and the second smallest eigen value

of negative of the Hessian is lower bounded by (1/8) e−6bαγ1γ2γ3(np/(d−1)).

This finishes the proof of Theorem 4.5.
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The (random) gradient of the log likelihood in (7.12) can be written as the

following, where the randomness is in which items ended up in the top set

T (ej,a) and the bottom set B(ej,a):

∇iLRB(θ) =
n∑
j=1

`j∑
a=1

∑
C⊆Sj ,

|C|=rj,a−1

I
{
V (ej,a) = {C, i}

}∂ logPθ(ej,a)
∂θi

.

Note that we are intentionally decomposing each summand as a summation

over all C of size rj,a − 1, such that we can separate the analysis of the

expectation in the following lemma. The random variable I{{C, i} = V (ej,a)}
indicates that we only include one term for any given instance of the sample.

Note that the event I{{C, i} = V (ej,a)} is equivalent to the event that the

{C, i} items are ranked in bottom rj,a positions in the set Sj, that is V (ej,a)

items are ranked in bottom rj,a positions in the set Sj.

Lemma 3.10. If the j-th poset is drawn from the PL model with weights θ∗

then for any given C ′ ⊆ Sj with |C ′| = rj,a,

E
[
I
{
C ′ = V (ej,a)

}∂ logPθ∗(ej,a)
∂θ∗i

∣∣∣∣{ej,a′}a′<a] = 0 .

First, this lemma implies that E
[
I
{
C ′ = V (ej,a)

}∂ log Pθ∗ (ej,a)

∂θ∗i

]
= 0. Sec-

ondly, the above lemma allows us to construct a vector-valued martingale

and apply a generalization of Azuma-Hoeffding’s tail bound on the norm to

prove the following concentration of measure. This proves the desired bound

on the gradient.

Lemma 3.11. If n posets are independently drawn over d items from the PL

model with weights θ∗ then with probability at least 1− 2e3d−3,

‖∇LRB(θ∗)‖ ≤ γ
−1/2
2 eb

√
6np log d ,

where γ2 depend on the choice of the rank-breaking and are defined in Section

3.4.1.

We will prove in (3.26) that the Hessian matrix H(θ) ∈ Sd with Hii′(θ) =
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∂2LRB(θ)
∂θi∂θi′

can be expressed as

−H(θ)

=
n∑
j=1

`j∑
a=1

∑
i<i′∈Sj

I{(i, i′) ⊆ V (ej,a)}
(
∂2 logPθ(ej,a)

∂θi∂θi′
(ei − ei′)(ei − ei′)>

)
.

It is easy to see that H(θ)1 = 0. The following lemma proves a lower bound

on the second smallest eigenvalue λ2(−H(θ)) in terms of re-scaled spectral

gap α of the comparison graph H defined in Section 3.4.1.

Lemma 3.12. Under the hypothesis of Theorem 4.5, if the assumptions in

Equation (3.15) are satisfied then with probability at least 1 − d−3, the fol-

lowing holds for any θ ∈ Ωb:

λ2(−H(θ)) ≥ e−6bαγ1γ2γ3

8

np

(d− 1)
,

and λ1(−H(θ)) = 0 with corresponding eigenvector 1.

This finishes the proof of the desired claim.

3.6.3 Proof of Lemma 3.10

Recall that ej,a is a random event where randomness is in which items

ended up in the top-set T (ej,a) and the bottom-set B(ej,a), and Pθ∗(ej,a) =

Pθ∗ [B(ej,a) ≺ T (ej,a)] that is the probability of observing B(ej,a) ≺ T (ej,a)

when the offer set is B(ej,a) ∪ T (ej,a) as defined in (3.4). Define,

Pθ∗,Sj [ej,a|V (ej,a) = C ′]

to be the conditional probability of observing B(ej,a) ≺ T (ej,a), when the

offer set is Sj, conditioned on the event that V (ej,a) = C ′. Note that we

have put subscript Sj in Pθ∗ to specify that the offer set is Sj. Observe that

for any set C ′ ⊆ Sj, the event {C ′ = V (ej,a)} is equivalent to C ′ items being

ranked in bottom rj,a positions when the offer set is Sj. In other words, it is

conditioned on the event that the subset V (ej,a) items are ranked in bottom

rj,a positions when the offer set is Sj. In Equation (3.23), we show that under
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PL model

Pθ∗,Sj [ej,a|V (ej,a) = C ′] = Pθ∗ [ej,a] .

Also, by conditioning on any outcome of {ej,a′}a′<a it can be checked that

Pθ∗,Sj [ej,a|V (ej,a) = C ′, {ej,a′}a′<a] = Pθ∗,Sj [ej,a|V (ej,a) = C ′].

Therefore, we have

E
[
∂ logPθ∗

[
ej,a
]

∂θ∗i

∣∣∣∣V (ej,a) = C ′, {ej,a′}a′<a
]

= E
[
∂ logPθ∗,Sj

[
ej,a|V (ej,a) = C ′, {ej,a′}a′<a

]
∂θ∗i

∣∣∣∣V (ej,a) = C ′, {ej,a′}a′<a
]

=
∑

ej,a:V (ej,a)=C′
{ej,a′}a′<a

Pθ∗,Sj
[
ej,a
∣∣V (ej,a) = C ′, {ej,a′}a′<a

]
∂

∂θ∗i
logPθ∗,Sj

[
ej,a
∣∣V (ej,a) = C ′, {ej,a′}a′<a

]
=

∂

∂θ∗i

∑
ej,a:V (ej,a)=C′

Pθ∗,Sj
[
ej,a
∣∣V (ej,a) = C ′

]
=

∂

∂θ∗i
1 = 0 ,

where we used {ej,a : V (ej,a) = C ′} = {ej,a : V (ej,a) = C ′, {ej,a′}a′<a} which

follows from the definition of rank-breaking edges ej,a. This proves the desired

claim. It remains to show that

Pθ∗,Sj [ej,a|V (ej,a) = C ′] = Pθ∗ [ej,a] .

This follows from the fact that under PL model for any disjoint set of items

{Ci}i∈[`] such that ∪`i=1Ci = S,

P
(
C` ≺ C`−1 ≺ · · · ≺ C1

)
= P

(
C` ≺ C`−1

)
P
(
{C`, C`−1} ≺ C`−2

)
· · ·P

(
{C`, C`−1, · · · , C2} ≺ C1

)
, (3.23)

where P(Ci1 ≺ Ci2) is the probability that Ci2 items are ranked higher than

Ci1 items when the offer set is {Ci1 ∪ Ci2}.
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3.6.4 Proof of Lemma 3.11

We view ∇LRB(θ∗) as the final value of a discrete time vector-valued mar-

tingale with values in Rd. Define ∇L(ej,a)
RB ∈ Rd as the gradient vector arising

out of each rank-breaking edge {ej,a}j∈[n],a∈[`j ] as

∇iL(ej,a)
RB (θ∗) ≡

∑
C⊆Sj

I
{
V (ej,a) = {C, i}

}
∇i logPθ∗(ej,a) ,

such that ∇LRB(θ∗) =
∑

j∈[n]

∑
a∈[`j ]

∇L(ej,a)
RB . We take ∇L(ej,a)

RB as the incre-

mental random vector in a martingale of
∑n

j=1 `j time steps. Let Hj,a denote

(the sigma algebra of) the history up to ej,a and define a sequence of random

vectors in Rd:

Zj,a ≡ E[∇L(ej,a)
RB (θ∗)|Hj,a] ,

with the convention that Z1,1 = E[∇L(ej,a)
RB (θ∗)] = 0 as proved in Lemma 3.10.

It also follows from Lemma 3.10 that E[Zj,a+1|Zj,a] = Zj,a for a < `j. Also,

from the independence of samples, it follows that E[Zj+1,1|Zj,`j ] = Zj,`j . Ap-

plying a generalized version of the vector Azuma-Hoeffding inequality which

readily follows from [Theorem 1.8, [90]], we have

P
[
‖∇LRB(θ∗)‖ ≥ δ

]
≤ 2e3 exp

(
− δ2∑n

j=1

∑`j
a=1mj,a2γ

−1
2 e2b

)
,

where we used ‖∇L(ej,a)
RB ‖2 ≤ mj,a2γ

−1
2 e2b. Choosing δ = γ−1

2 eb
√

6np log d

gives the desired bound.

Now we are left to show that ‖∇L(ej,a)
RB ‖2 ≤ 2mj,aγ

−1
2 e2b for any θ ∈ Ωb.

Recall that σ ∈ ΛT (ej,a) is the set of all full rankings over T (ej,a) items. In

rest of the proof, with a slight abuse of notations, we extend each of these

ranking σ over T (ej,a)∪B(ej,a) items in the following way. Consider any full

ranking σ̃ over B(ej,a) items. Then for each σ ∈ ΛT (ej,a), the extension is such

that σ(|T (ej,a)| + c) = σ̃(c) for 1 ≤ c ≤ |B(ej,a)|. The choice of ranking σ̃

will have no impact on any of the following mathematical expressions. From
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the definition of Pθ(ej,a) (3.4), we have, for any i ∈ V (ej,a),

∂Pθ(ej,a)
∂θi

= I{i ∈ T (ej,a)}Pθ(ej,a)

−
∑

σ∈ΛT (ej,a)

exp
(∑mj,a

c=1 θσ(c)

)∏mj,a
u=1

(∑rj,a
c′=u exp

(
θσ(c′)

))︸ ︷︷ ︸
≡Aσ

(
mj,a∑
u′=1

I{σ−1(i) ≥ u′} exp(θi)∑rj,a
c′=u′ exp

(
θσ(c′)

) )
︸ ︷︷ ︸

≡Bσ,i︸ ︷︷ ︸
≡Ei

.

(3.24)

Note that Aσ, Bσ,i and Ei depend on ej,a. Observe that for any 1 ≤ u′ ≤
mj,a and any σ ∈ ΛT (ej,a),

∑
i∈V (ej,a)

I{σ−1(i) ≥ u′} exp(θi) =

rj,a∑
c′=u′

exp
(
θσ(c′)

)
.

Therefore,
∑

i∈V (ej,a) Bσ,i = mj,a. It follows that

∑
i∈V (ej,a)

Ei =
∑

σ∈ΛT (ej,a)

Aσ

( ∑
i∈V (ej,a)

Bσ,i

)
= mj,a

∑
σ∈ΛT (ej,a)

Aσ = mj,aPθ(ej,a) , (3.25)

where the last equality follows from the definition of Pθ(ej,a) (7.12). Also,

since for any i, i′, e(θi−θi′ ) ≤ e2b; for any i, Bσ,i ≤ e2b
∑rj,a

k=rj,a−mj,a+1(1/k) ≤
e2b(1 + log(rj,a/(rj,a −mj,a + 1))) ≤ γ−1

2 e2b, where the last inequality follows

from the definition of γ2 (3.13) and the fact that x ≤ √1 + log x for all

x ≥ 1. Therefore, Ei ≤ γ−1
2 e2b

∑
σ∈ΛT (ej,a)

Aσ = γ−1
2 e2bPθ(ej,a). We have

∂ logPθ(ej,a)/∂θi = (1/Pθ(ej,a))∂Pθ(ej,a)/∂θi = I{i ∈ T (ej,a)} − Ei/Pθ(ej,a).
Since |T (ej,a)| = mj,a,

‖∇L(ej,a)
RB ‖2 ≤ mj,a +

∑
i∈V (ej,a)

(Ei/Pθ(ej,a))2 ≤ 2mj,aγ
−1
2 e2b,

where we used (3.25) and the fact that γ−1
2 ≥ 1.
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Proof of Lemma 3.12

First, we prove (3.23). For brevity, remove {j, a} from Pθ(ej,a). From Equa-

tions (3.24) and (3.25), and |T (ej,a)| = mj,a, we have
∑

i∈V (ej,a)
∂
∂θi

Pθ(e) =

mj,aPθ(e)−mj,aPθ(e) = 0. It follows that

∑
i∈V (ej,a)

(
∂2 logPθ(e)
∂θi′∂θi

)
=

1

Pθ(e)
∂

∂θi′

( ∑
i∈V (ej,a)

(
∂Pθ(e)
∂θi

))
− 1

(Pθ(e))2

∂Pθ(e)
∂θi′

( ∑
i∈V (ej,a)

(
∂Pθ(e)
∂θi

))
= 0 .

(3.26)

Since by definition LRB(θ) =
∑n

j=1

∑`j
a=1 logPθ(ej,a), and Hii′(θ) = ∂2LRB(θ)

∂θi∂θi′

which is a symmetric matrix, Equation (3.26) implies that it can be expressed

as given in Equation (3.23). It follows that all-ones is an eigenvector ofH(−θ)
with the corresponding eigenvalue being zero.

To get a lower bound on λ2(−H(θ)), we apply Weyl’s inequality

λ2(−H(θ)) ≥ λ2(E[−H(θ)])− ‖H(θ)− E[H(θ)]‖ .

We will show in (3.27) that λ2(E[−H(θ)]) ≥ e−6bαγ1γ2γ3(np/(4(d− 1))) and

in (3.38) that ‖H(θ) − E[H(θ)]‖ ≤ 16e4bν
√

pmax

κmin

np
β(d−1)

log d. Putting these

together,

λ2(−H(θ)) ≥ e−6bαγ1γ2γ3
np

4(d− 1)
− 16e4bν

√
pmax

κmin

np

β(d− 1)
log d

≥ e−6bαγ1γ2γ3

8

np

(d− 1)
,

where the last inequality follows from the assumption on nκmin given in

(3.15).

To prove a lower bound on λ2(E[−H(θ)]), we claim that for θ ∈ Ωb,

E
[
−H(θ)

]
� e−6bγ1γ2γ3

n∑
j=1

pj
4κj(κj − 1)

∑
i<i′∈Sj

(ei − ei′)(ei − ei′)>

(3.27)

=
e−6bγ1γ2γ3

4
L ,
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where L ∈ Sd is defined in (3.11). Using λ2(L) = npα/(d − 1) from (3.12),

we have λ2(−H(θ)) ≥ e−6bαγ1γ2γ3(np/(4(d − 1))). To prove (3.27), notice

that

E[−H(θ)ii′ ] = E
[∑
j∈[n]

∑
a∈[`j ]

I
{

(i, i′) ⊆ V (ej,a)
} ∂2 logPθ(ej,a)

∂θi∂θi′

]
,(3.28)

when i 6= i′. We will show that for any i 6= i′ ∈ V (ej,a),

∂2 logPθ(ej,a)
∂θi∂θi′

≥


e−2bmj,a
r2
j,a

if i, i′ ∈ B(ej,a)

− e4bm2
j,a

(rj,a−mj,a+1)2 otherwise .

(3.29)

We need to bound the probability of two items appearing in the bottom-set

B(ej,a) and in the top-set T (ej,a).

Lemma 3.13. Consider a ranking σ over a set S ⊆ [d] such that |S| = κ.

For any two items i, i′ ∈ S, θ ∈ Ωb, and 1 ≤ `, `1, `2 ≤ κ− 1,

Pθ
[
σ−1(i), σ−1(i′) > `

]
≥ e−4b(κ− `)(κ− `− 1)

κ(κ− 1)

(
1− `

κ

)2e2b−2

(3.30)

Pθ
[
σ−1(i) = `

]
≤ e6b

κ− ` , (3.31)

Pθ
[
σ−1(i) = `1, σ

−1(i′) = `2

]
≤ e10b

(κ− `1 − 1)(κ− `2)
. (3.32)

where the probability Pθ is with respect to the sampled ranking resulting from

PL weights θ ∈ Ωb.

Substituting ` = κj − rj,a +mj,a in (3.30), and `, `1, `2 ≤ κj − rj,a +mj,a in
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(3.31) and (3.32), we have,

Pθ
[
(i, i′) ⊆ B(ej,a)

]
≥ e−4b(rj,a −mj,a)

2

4κj(κj − 1)

(rj,a −mj,a

κj

)2e2b−2

, (3.33)

Pθ
[
i ∈ T (ej,a), i

′ ∈ B(ej,a)
]

≤ mj,a max
`∈[κj−rj,a+mj,a]

P(σ−1(i) = `)

≤ e6bmj,a

rj,a −mj,a

, (3.34)

Pθ
[
(i, i′) ⊆ T (ej,a)

]
≤ m2

j,a max
`1,`2∈[κj−rj,a+mj,a]

P(σ−1(i) = `1, σ
−1(i′) = `2)

≤ e10bm2
j,a

2 (rj,a −mj,a − 1)(rj,a −mj,a)
, (3.35)

where (3.33) uses rj,a−mj,a−1 ≥ (rj,a−mj,a)/4, (3.34) uses Pθ[i ∈ T (ej,a), i
′ ∈

B(ej,a)] ≤ Pθ[i ∈ T (ej,a)], and (3.34)-(3.35) uses counting on the possible

choices. The bound in (3.35) is smaller than the one in (3.34) as per our

assumption that γ3 > 0.

Using Equations (3.28)-(3.29) and (3.33)-(3.35), and the definitions of

γ1, γ2, γ3 from Section 3.4.1, we get

E[−H(θ)ii′ ] ≥∑
j∈[n]

∑
a∈[`j ]

{(rj,a −mj,a

κj

)2e2b−2

︸ ︷︷ ︸
≥γ1

(rj,a −mj,a

rj,a

)2

︸ ︷︷ ︸
≥γ2

e−6bmj,a

4κj(κj − 1)
− e6bmj,a

rj,a −mj,a

e4bm2
j,a

(rj,a −mj,a + 1)2

}
≥
∑
j,a

γ1γ2e
−6bmj,a

4κj(κj − 1)

(
1 − 4e16b

γ1

m2
j,ar

2
j,aκ

2
j

(rj,a −mj,a)5

)
︸ ︷︷ ︸

≥γ3

.

This combined with (3.23) proves the desired claim (3.27). Further, in Ap-

pendix 3.6.7, we show that if mj,a ≤ 3 for all {j, a} then
∂2 log Pθ(ej,a)

∂θi∂θi′
is non-

negative even for i 6= i′ ∈ T (ej,a), and i ∈ T (ej,a), i
′ ∈ B(ej,a) as opposed

to a negative lower-bound given in (3.29). Therefore, bound on E[−H(θ)] in

(3.27) can be tightened by a factor of γ3.
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To prove claim (3.29), define the following for σ ∈ ΛT (ej,a),

Aσ ≡
exp

(∑mj,a
c=1 θσ(c)

)∏mj,a
u=1

(∑rj,a
c′=u exp

(
θσ(c′)

)) , Bσ ≡
mj,a∑
u′=1

1∑rj,a
c′=u′ exp

(
θσ(c′)

) ,
Bσ,i ≡

mj,a∑
u′=1

I{σ−1(i) ≥ u′}∑rj,a
c′=u′ exp

(
θσ(c′)

) , Cσ ≡ mj,a∑
u′=1

1(∑rj,a
c′=u′ exp

(
θσ(c′)

))2 ,

Cσ,i ≡
mj,a∑
u′=1

I{σ−1(i) ≥ u′}(∑rj,a
c′=u′ exp

(
θσ(c′)

))2 , Cσ,i,i′ ≡
mj,a∑
u′=1

I{σ−1(i), σ−1(i′) ≥ u′}(∑rj,a
c′=u′ exp

(
θσ(c′)

))2 .

(3.36)

First, a few observations about the expression of Aσ. For any σ ∈ ΛT (ej,a) and

any i ∈ V (ej,a), θi is in the numerator if and only if i ∈ T (ej,a), since in all

the rankings that are consistent with the observation ej,a, T (ej,a) items are

ranked in top mj,a positions. For any σ ∈ ΛT (ej,a) and any i ∈ B(ej,a), θi is in

all the product terms
∏mj,a

u=1 (·) of the denominator, since in all the consistent

rankings these items are ranked below mj,a position. For any i ∈ T (ej,a),

θi appears in product term corresponding to index u if and only if item i is

ranked at position u or lower than u in the ranking σ ∈ ΛT (ej,a). Now, observe

that Bσ is defined such that the partial derivative of Aσ with respect to any

i ∈ B(ej,a) is −AσBσe
θi , and Bσ,i is defined such that the partial derivative

of Aσ with respect to any i ∈ T (ej,a) is Aσ −AσBσe
θi . Further, observe that

−Cσeθi is the partial derivative of Bσ with respect to i ∈ B(ej,a), −Cσ,ieθi
is the partial derivative of Bσ,i with respect to i ∈ T (ej,a), and −Cσ,ieθi′ is

the partial derivative of Bσ,i with respect to i′ ∈ B(ej,a). −Cσ,i,i′eθi′ is the

partial derivative of Bσ,i with respect to i′ 6= i ∈ T (ej,a).

For ease of notation, we omit subscript (j, a) whenever it is clear from the

context. Also, we use
∑

σ to denote
∑

σ∈ΛT (ej,a)
. With the above defined

notations, from (7.12), we have, Pθ(e) =
∑

σ Aσ. With the above given

observations for the notations in (3.36), first partial derivative of Pθ(e) can

be expressed as following:

∂Pθ(e)
∂θi

=


∑

σ

(
Aσ − AσBσ,ie

θi
)

if i ∈ T (ej,a)∑
σ

(
− AσBσe

θi
)

if i ∈ B(ej,a) .
(3.37)

126



It follows that for i 6= i′ ∈ V (ej,a),

∂2Pθ(e)
∂θi∂θi′

=



∑
σ

(
(Aσ(Bσ)2 + AσCσ)e(θi+θi′ )

)
if i, i′ ∈ B(ej,a)∑

σ

(
Aσ − AσBσ,i′e

θi′ + (AσBσ,iBσ,i′ + AσCσ,i,i′)e
(θi+θi′ ) − AσBσ,ie

θi
)

if i, i′ ∈ T (ej,a)∑
σ

(
(AσBσBσ,i + AσCσ,i)e

(θi+θi′ ) − AσBσe
θi′
)

otherwise .

Using ∂2 log Pθ(e)
∂θi∂θi′

= 1
Pθ(e)

∂2Pθ(e)
∂θi∂θi′

− 1
(Pθ(e))2

∂Pθ(e)
∂θi

∂Pθ(e)
∂θi′

, with above derived first

and second derivatives, and after following some algebra, we have

(Pθ(e))2

e(θi+θi′ )

∂2 logPθ(e)
∂θi∂θi′

=



(
∑

σ Aσ)(
∑

σ Aσ(Bσ)2)− (
∑

σ AσBσ)2 + (
∑

σ Aσ)(
∑

σ AσCσ)

if i, i′ ∈ B(ej,a)

(
∑

σ Aσ)(
∑

σ AσBσ,iBσ,i′ + AσCσ,i,i′)− (
∑

σ AσBσ,i)(
∑

σ AσBσ,i′)

if i, i′ ∈ T (ej,a)

(
∑

σ Aσ)(
∑

σ AσBσBσ,i + AσCσ,i)− (
∑

σ AσBσ)(
∑

σ AσBσ,i)

otherwise

Observe that from Cauchy-Schwartz inequality

(
∑
σ

Aσ)(
∑
σ

Aσ(Bσ)2)− (
∑
σ

AσBσ)2 ≥ 0 .

Also, we have e(θi+θi′ )Cσ ≥ e−2b(m/r2) and eθiBσ,i ≤ eθiBσ ≤ e2b(m/(r−m+

1)) for any i ∈ V (ej,a). This proves the desired claim (3.29).

Next we need to upper bound deviation of −H(θ) from its expectation.

From above equations, we have,
∣∣∂2 log Pθ(ej,a)

∂θi∂θi′

∣∣ ≤ 3e4bm2
j,a/(rj,a −mj,a + 1)2 ≤

3e4bνmj,a/(κj(κj − 1)), where the last inequality follows from the definition
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of ν (3.14). Therefore,

−H(θ)

� 3e4bν
n∑
j=1

`j∑
a=1

∑
i<i′∈Sj

I{(i, i′) ⊆ V (ej,a)}
mj,a

κj(κj − 1)
(ei − ei′)(ei − ei′)>

� 3e4bν

n∑
j=1

∑
i<i′∈Sj

∑`j
a=1mj,a

κj(κj − 1)
(ei − ei′)(ei − ei′)> ≡

n∑
j=1

yjLj ,

where yj = (3e4bνpj)/(κj(κj − 1)) and Lj =
∑

i<i′∈Sj(ei − ei′)(ei − ei′)> =

κjdiag(eSj)−eSje>Sj for eSj =
∑

i∈Sj ei. Observe that ‖yjLj‖ ≤ (3e4bνpmax)/κmin.

Moreover, L2
j � κjLj, and it follows that

n∑
j=1

y2
jL

2
j � 9e8bν2

n∑
j=1

p2
j

κ2
j(κj − 1)2

κjLj �
9e8bν2pmax

κmin

L ,

where we used the fact that L = (pj/(κj(κj − 1)))
∑n

j=1 Lj, for L defined in

(3.11). Using λd(L) = np/(β(d− 1)) from (3.12), it follows that

‖
n∑
j=1

Eθ[y2
jY

2
j ]‖ ≤ 9e8bν2pmax

κmin

np

β(d− 1)
.

By the matrix Bernstien inequality, with probability at least 1− d−3,

‖H(θ)− E[H(θ)]‖ ≤ 12e4bν

√
pmax

κmin

np

β(d− 1)
log d+

8e4bνpmax log d

κmin

≤ 16e4bν

√
pmax

κmin

np

β(d− 1)
log d , (3.38)

where the last inequality follows from the assumption on nκmin given in

(3.15).

3.6.5 Proof of Lemma 3.13

Claim (3.30): Since providing a lower bound on Pθ
[
σ−1(i), σ−1(i′) > `

]
for

arbitrary θ is challenging, we construct a new set of parameters {θ̃j}j∈[d]

from the original θ. These new parameters are constructed such that it is

both easy to compute the probability and also provides a lower bound on the
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original distribution. Define α̃i,i′,`,θ as

α̃i,i′,`,θ ≡ max
`′∈[`]

max
Ω⊆S\{i,i′}
:|Ω|=κ−`′

{
exp(θi) + exp(θi′)(∑

j∈Ω exp(θj)
)
/|Ω|

}
, (3.39)

and αi,i′,`,θ = dα̃i,i′,`,θe. For ease of notation we remove the subscript from α

and α̃. We denote the sum of the weights by W ≡∑j∈S exp(θj). We define

a new set of parameters {θ̃j}j∈S:

θ̃j =

{
log(α̃/2) for j = i or i′ ,

0 otherwise .

Similarly define W̃ ≡∑j∈S exp(θ̃j) = κ− 2 + α̃. We have,

Pθ
[
σ−1(i), σ−1(i′) > `

]
=

∑
j1∈S
j1 6=i,i′

(
exp(θj1)

W

∑
j2∈S

j2 6=i,i′,j1

(
exp(θj2)

W − exp(θj1)
· · ·

( ∑
j`∈S
j` 6=i,i′,
j1,··· ,j`−1

exp(θj`)

W −∑j`−1

k=j1
exp(θk)

)
· · ·
))

=
∑
j1∈S
j1 6=i,i′

(
exp(θj1)

W − exp(θj1)
· · ·

∑
j`−1∈S
j`−1 6=i,i′,
j1,··· ,j`−2

(
exp(θj`−1

)

W −∑j`−1

k=j1
exp(θk)

∑
j`∈S
j` 6=i,i′,
j1,··· ,j`−1

(
exp(θj`)

W

)
· · ·
))

(3.40)

Consider the second-last summation term in the above equation and let Ω` =

S \ {i, i′, j1, . . . , j`−2}. Observe that, |Ω`| = κ− ` and from equation (3.39),
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exp(θi)+exp(θi′ )∑
j∈Ω`

exp(θj)
≤ α̃

κ−` . We have,

∑
j`−1∈Ω`

exp(θj`−1
)

W −∑j`−1

k=j1
exp(θk)

=
∑

j`−1∈Ω`

exp(θj`−1
)

W −∑j`−2

k=j1
exp(θk)− exp(θj`−1

)

≥
∑

j`−1∈Ω`
exp(θj`−1

)

W −∑j`−2

k=j1
exp(θk)−

(∑
j`−1∈Ω`

exp(θj`−1
)
)
/|Ω`|

(3.41)

=

∑
j`−1∈Ω`

exp(θj`−1
)

exp(θi) + exp(θi′) +
∑

j`−1∈Ω`
exp(θj`−1

)−
(∑

j`−1∈Ω`
exp(θj`−1

)
)
/|Ω`|

=

(
exp(θi) + exp(θi′)∑
j`−1∈Ω`

exp(θj`−1
)

+ 1− 1

κ− `

)−1

≥
(

α̃

κ− ` + 1− 1

κ− `

)−1

(3.42)

=
κ− `

α̃ + κ− `− 1
=

∑
j`−1∈Ω`

exp(θ̃j`−1
)

W̃ −∑j`−1

k=j1
exp(θ̃k)

, (3.43)

where (3.41) follows from the Jensen’s inequality and the fact that for any

c > 0, 0 < x < c, x
c−x is convex in x. Equation (3.42) follows from the

definition of α̃i,i′,`,θ, (3.39), and the fact that |Ω`| = κ − `. Equation (3.43)

uses the definition of {θ̃j}j∈S.

Consider {Ω˜̀}2≤˜̀≤`−1, |Ω˜̀| = κ− ˜̀, corresponding to the subsequent sum-

mation terms in (3.40). Observe that
exp(θi)+exp(θi′ )∑

j∈Ω˜̀ exp(θj)
≤ α/|Ω˜̀|. Therefore,

each summation term in equation (3.40) can be lower bounded by the corre-
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sponding term where {θj}j∈S is replaced by {θ̃j}j∈S. Hence, we have

Pθ
[
σ−1(i), σ−1(i′) > `

]
≥

∑
j1∈S
j1 6=i,i′

(
exp(θ̃j1)

W̃ − exp(θ̃j1)
· · ·

∑
j`−1∈S
j`−1 6=i,i′,
j1,··· ,j`−2

(
exp(θ̃j`−1

)

W̃ −∑j`−1

k=j1
exp(θ̃k)

∑
j`∈S
j` 6=i,i′,
j1,··· ,j`−1

(
exp(θj`)

W

)
· · ·
))

≥ e−4b
∑
j1∈S
j1 6=i,i′

(
exp(θ̃j1)

W̃ − exp(θ̃j1)
· · ·

∑
j`−1∈S
j`−1 6=i,i′,
j1,··· ,j`−2

(
exp(θ̃j`−1

)

W̃ −∑j`−1

k=j1
exp(θ̃k)

∑
j`∈S
j` 6=i,i′,
j1,··· ,j`−1

(
exp(θ̃j`)

W̃

)
· · ·
))

=
(
e−4b

)
Pθ̃
[
σ−1(i), σ−1(i′) > `

]
. (3.44)

The second inequality uses exp(θi)
W
≥ e−2b/κ and exp(θ̃i)

W̃
≤ e2b/κ. Observe that

exp(θ̃j) = 1 for all j 6= i, i′ and exp(θ̃i) + exp(θ̃i′) = α̃ ≤ dα̃e = α ≥ 1.

Therefore, we have

Pθ̃
[
σ−1(i), σ−1(i′) > `

]
=

(
κ− 2

`

)
` !

(κ− 2 + α̃)(κ− 2 + α̃− 1) · · · (κ− 2 + α̃− (`− 1))

≥ (κ− 2)!

(κ− `− 2)!

1

(κ+ α− 2)(κ+ α− 3) · · · (κ+ α− (`+ 1))

≥ (κ− `+ α− 2)(κ− `+ α− 3) · · · (κ− `− 1)

(κ+ α− 2)(κ+ α− 3) · · · (κ− 1)

≥ (κ− `)(κ− `− 1)

κ(κ− 1)

(
1− `

κ+ 1

)α−2

. (3.45)

Claim (3.30) follows by combining Equations (3.44) and (3.45) and using the

fact that α ≤ 2e2b.
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Claim (3.31): Define,

α̃`,θ ≡ min
i∈S

min
`′∈[`]

min
Ω∈S\{i}

:|Ω|=κ−`′+1

{
exp(θi)(∑

j∈Ω exp(θj)
)
/|Ω|

}
. (3.46)

Also, define α`,θ ≡ bα̃`,θc. Note that α`,θ ≥ 0 and α̃`,θ ≤ e2b. We denote the

sum of the weights by W ≡ ∑j∈S exp(θj). Analogous to the proof of claim

(3.30), we define the new set of parameters {θ̃j}j∈S:

θ̃j =

{
log(α̃`,θ) for j = i ,

0 otherwise .

Similarly define W̃ ≡ ∑j∈S exp(θ̃j) = κ − 1 + α̃`,θ. Using the techniques

similar to the ones used in proof of claim (3.30), we have,

Pθ
[
σ−1(i) = `

]
≤ e4bPθ̃

[
σ−1(i) = `

]
. (3.47)

Observe that exp(θ̃j) = 1 for all j 6= i and exp(θ̃i) = α̃`,θ ≥ bα̃`,θc = α`,θ ≥ 0.

Therefore, we have

Pθ̃
[
σ−1(i) = `

]
=

(
κ− 1

`− 1

)
α̃`,θ(`− 1)!

(κ− 1 + α̃`,θ)(κ− 2 + α̃`,θ) · · · (κ− `+ α̃`,θ)

≤ (κ− 1)!

(κ− `)!
e2b

(κ− 1 + α`,θ)(κ− 2 + α`,θ) · · · (κ− `+ α`,θ)

≤ e2b

κ

(
1− `

κ+ α`,θ

)α`,θ−1

≤ e2b

κ− ` . (3.48)

Claim 3.31 follows by combining Equations (3.47) and (3.48).

Claim (3.32): Again, we construct a new set of parameters {θ̃j}j∈[d] from

the original θ using α̃`,θ defined in (3.46):

θ̃j =

{
log(α̃`,θ) for j ∈ {i, i′} ,

0 otherwise .

Similarly define W̃ ≡ ∑j∈S exp(θ̃j) = κ − 2 + 2α̃`,θ. Using the techniques

similar to the ones used in proof of claim (3.30), we have,

Pθ
[
σ−1(i) = `1, σ

−1(i′) = `2

]
≤ e8bPθ̃

[
σ−1(i) = `1, σ

−1(i′) = `2

]
(3.49)
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Observe that exp(θ̃j) = 1 for all j 6= i, i′ and exp(θ̃i) = exp(θ̃i′) = α̃`,θ ≥
bα̃c`,θ = α`,θ ≥ 0. Therefore, we have

= Pθ̃
[
σ−1(i) = `1, σ

−1(i′) = `2

]
=

( (
κ−2
`2−2

)
α̃2
`,θ(`2 − 2)!

(κ− 2 + 2α̃`,θ)(κ− 1 + 2α̃`,θ) · · · (κ− 2 + 2α̃`,θ − (`1 − 1))

1

(κ− 2 + α̃`,θ − (`1 − 1)) · · · (κ− 2 + α̃`,θ − (`2 − 2))

)

≤ (κ− 2)!

(κ− `2)!

e4b

(κ− 2)(κ− 1) · · · (κ− `1 − 1)(κ− `1 − 1) · · · (κ− `2)

≤ e4b

(κ− `1 − 1)(κ− `2)
. (3.50)

Claim 3.32 follows by combining Equations (3.49) and (3.50).

3.6.6 Proof of Theorem 3.9

Let H(θ) ∈ Sd be Hessian matrix such that Hii′(θ) = ∂2LRB(θ)
∂θi∂θi′

. The Fisher

information matrix is defined as I(θ) = −Eθ[H(θ)]. From lemma 3.1, LRB(θ)

is concave. This implies that I(θ) is positive-semidefinite and from (3.23) its

smallest eigenvalue is zero with all-ones being the corresponding eigenvector.

Fix any unbiased estimator θ̂ of θ ∈ Ωb. Since, θ̂ ∈ U , θ̂−θ is orthogonal to 1.

The Cramer-Rao lower bound then implies that E[‖θ̂− θ∗‖2] ≥∑d
i=2

1
λi(I(θ))

.

Taking supremum over both sides gives

sup
θ

E[‖θ̂ − θ∗‖2] ≥ sup
θ

d∑
i=2

1

λi(I(θ))
≥

d∑
i=2

1

λi(I(0))
.

In the following, we will show that

I(0) = −Eθ[H(0)] �
n∑
j=1

`j∑
a=1

mj,a − ηj,a
κj(κj − 1)

∑
i<i′∈Sj

(ei − ei′)(ei − ei′)>

� max
j,a

{
mj,a − ηj,a

}
L . (3.51)

Using Jensen’s inequality, we have
∑d

i=2
1

λi(I(0))
≥ (d−1)2∑d

i=2 λi(I(0))
= (d−1)2

Tr(I(0))
.

From (6.28), we have Tr(I(0)) ≤ ∑j,a(mj,a − ηj,a). From (6.54), we have
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∑d
i=2 1/λi(I(0)) ≥ (1/max{mj,a − ηj,a})

∑d
i=1 1/λi(L) . This proves the

desired claim.

Now we are left to show claim (6.28). Consider a rank-breaking edge ej,a.

Using notations defined in lemma 3.12, in particular Equation (3.36), and

omitting subscript {j, a} whenever it is clear from the context, we have, for

any i ∈ V (ej,a),

∂2Pθ(ej,a)
∂2θi

=



∑
σ

(
− AσBσe

θi + Aσ(Bσ)2e2θi + AσCσe
θi
)

if i ∈ B(ej,a)∑
σ

(
Aσ − 3AσBσ,ie

θi + AσCσ,i)e
2θi + Aσ(Bσ,i)

2e2θi
)

if i ∈ T (ej,a) ,

and using (3.37), we have

∂2 logPθ(ej,a)
∂2θi

∣∣∣
θ=0

=



(
(Cσ −Bσ)

)
θ=0

if i ∈ B(ej,a)(
1

mj,a!

∑
σ

(
Cσ,i −Bσ,i + (Bσ,i)

2
)
−
(∑

σ
Bσ,i
mj,a!

)2)
θ=0

if i ∈ T (ej,a) ,

where σ ∈ ΛT (ej,a) and the subscript θ = 0 indicates the the respective

quantities are evaluated at θ = 0. From the definitions given in (3.36),

for θ = 0, we have Bσ − Cσ =
∑m−1

u=0
(r−u−1)
(r−u)2 and,

∑
σ(Bσ,i − Cσ,i)/(m!) =

1
m

∑m−1
u=0

(m−u)(r−u−1)
(r−u)2 . Also,

∑
σ Bσ,i/(m!) = 1

m

∑m−1
u=0

m−u
r−u and

∑
σ(Bσ,i)

2/(m!) =
1
m

∑m−1
u=0

(∑u
u′=0

1
r−u′

)2
. Combining all these and, using Pθ=0[i ∈ T (ej,a)] =

m/κ and Pθ=0[i ∈ B(ej,a)] = (r − m)/κ, and after following some algebra,

we have for any i ∈ Sj,

−E
[
∂2 logPθ(ej,a)

∂2θi

∣∣∣
θ=0

]
=

1

κ

(
m−

m−1∑
u=0

1

r − u −
1

m

m−1∑
u=0

u(m− u)

(r − u)2
− 1

m

m−2∑
u=0

2u

r − u

( m−1∑
u′>u

m− u′
r − u′

))
=

mj,a − ηj,a
κj

, (3.52)

where ηj,a is defined in (3.17). Since row-sums of H(θ) are zeroes, (3.23),
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and for θ = 0, all the items are exchangeable, we have for any i 6= i′ ∈ Sj,

E
[
∂2 logPθ(ej,a)

∂θi∂θi′

∣∣∣
θ=0

]
=

mj,a − ηj,a
κj(κj − 1)

,

The claim (6.28) follows from the expression of H(θ), Equation (3.23).

To verify (6.53), observe that (r − m)(Bσ − Cσ) + m(
∑

σ Bσ,i/(m!)) =

m−∑m−1
u=0

1
r−u . And,

1

m

(m−1∑
u=0

m− u
r − u

)2

−
m−1∑
u=0

( u∑
u′=0

1

r − u′
)2

=
m−1∑
u=0

(
(m− u)2

m(r − u)2
− m− u

(r − u)2

)
+

∑
0≤u<u′≤m−1

(
2(m− u)(m− u′)
m(r − u)(r − u′) −

2(m− u′)
(r − u)(r − u′)

)

=
m−1∑
u=0

−u(m− u)

m(r − u)2
+

∑
0≤u<u′≤m−1

−2u(m− u′)
m(r − u)(r − u′) .

3.6.7 Tightening of Lemma 3.12

Recall that Pθ(ej,a) is same as probability of Pθ[T (ej,a) � B(ej,a)] that is the

probability that an agent ranks T (ej,a) items above B(ej,a) items when pro-

vided with a set comprising V (ej,a) items. As earlier, for brevity of notations,

we omit subscript {j, a} whenever it is clear from the context. For m = 1

or 2, it is easy to check that all off-diagonal elements in hessian matrix of

logPθ(e) are non-negative. However, since number of terms in summation in

Pθ(e) grows as m!, for m ≥ 3 the straight-forward approach becomes too com-

plex. Below, we derive expressions for cross-derivatives in hessian, for general

m, using alternate definition (sorting of independent exponential r.v.’s in in-

creasing order) of PL model, where the number of terms grow only as 2m.

However, we are unable to analytically prove that the cross-derivatives are

non-negative for m > 2. Feeding these expressions in MATLAB and using

symbolic computation, for m = 3, we can simplify these expressions and it

turns out that they are sum of only positive numbers. For m = 4, with lim-

ited computational power it becomes intractable. We believe that it should

hold for any value of m < r. Using (3.29), we need to check only for cross-
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derivatives for the case when i 6= i′ ∈ T (ej,a) or i ∈ T (ej,a), i
′ ∈ B(ej,a). Since,

minimum of exponential random variables is an exponential random variable,

we can assume that |B(ej,a)| = 1 that is r = m + 1. Define λi ≡ eθi . With-

out loss of generality, assume T (ej,a) = {2, · · · ,m + 1} and B(ej,a) = {1}.
Define Cx =

∏m+1
i=3 (1 − e−λix). Then, using the alternate definition of the

PL model, we have, Pθ(e) =
∫∞

0
Cx(1 − e−λ2x)λ1e

−λ1xdx. Following some

algebra, ∂2 log Pθ(e)
∂θ1∂θ2

≥ 0 is equivalent to A1 ≥ 0, where A1 ≡(∫
Cx
(
xe−λ1x − xe−λx

)
dx

)(∫
Cxxe

−λxdx

)
−
(∫

Cx(e
λ1x − e−λx)dx

)(∫
Cxx

2e−λxdx

)
,

where all integrals are from 0 to ∞ and, λ ≡ λ1 + λ2. Consider A1 as a

function of λ1. Since A1(λ1) = 0 for λ1 = λ, showing ∂A1/∂λ1 ≤ 0 for

0 ≤ λ1 ≤ λ would suffice. Following some algebra, and using λ1 ≤ λ,

∂A1/∂λ1 ≤ 0 is equivalent to A2(λ1) ≡
( ∫∞

0
Cxxe

−λ1x
)
/
( ∫∞

0
Cxx

2e−λ1x
)

being monotonically non-decreasing in λ1. To further simplify the condition,

define f (0)(y) = 1/y2, g(0)(y) = 1/y3 and, f (1)(y) = f (0)(y) − f (0)(y + λ3),

and recursively f (m−1)(y) = f (m−2)(y) − f (m−2)(y + λm+1). Similarly define

g(0), · · · , g(m−1). Using these recursively defined functions,

2A2(λ1) =
f (m−1)(λ1)

g(m−1)(λ1)
,

for m = 3, 2A2(λ1) =
λ−2

1 − (λ1 + λ3)−2 − (λ1 + λ4)−2 + (λ1 + λ3 + λ4)−2

λ−3
1 − (λ1 + λ3)−3 − (λ1 + λ4)−3 + (λ1 + λ3 + λ4)−3

.

Therefore, we need to show that A2(λ1) is monotonically non-decreasing in

λ1 ≥ 0 for any non-negative λ3, · · · , λm, and that would suffice to prove that

the cross-derivatives arising from i ∈ T (ej,a), i
′ ∈ B(ej,a) are non-negative.

For cross-derivatives arising from i 6= i′ ∈ T (ej,a), define Bx =
∏m+1

i=4 (1 −
eλix)e−λ1x. ∂2 log Pθ(e)

∂θ2∂θ3
≥ 0 is equivalent to A3 ≥ 0, where A3 ≡(∫

Bx(1− e−λ2x)(1− e−λ3x)dx

)(∫
Bxx

2e−(λ2+λ3)xdx

)
−
(∫

Bx(1− e−λ2x)xe−λ3xdx

)(∫
Bx(1− e−λ3x)xe−λ2xdx

)
,

where all integrals are from 0 to ∞. For m = 3, using MATLAB one can

136



check that the above stated conditions hold true. Therefore both types of

cross-derivatives are non-negative.
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CHAPTER 4

ACHIEVING BUDGET-OPTIMALITY
WITH ADAPTIVE SCHEMES IN

CROWDSOURCING

The generalized Dawid-Skene model studied in this paper allows the tasks

to be heterogeneous (having different difficulties) and the workers to be het-

erogeneous (having different reliabilities). The original Dawid-Skene (DS)

model introduced in [46] and analyzed in [107] is a special case, when only

workers are allowed to be heterogeneous. All tasks have the same difficulty

with λi = 0 for all i ∈ [m] and qi can be either zero or one depending on

the true label. Most of the existing work on the DS model assumes that

tasks are randomly assigned and focuses only on the inference problem of

finding the true labels. Several inference algorithms have been proposed

[46, 193, 100, 190, 77, 105, 134, 221, 126, 215, 43, 106, 162, 22, 23, 141].

A most relevant work is by [107]. It is shown that in order to achieve a

probability of error less than a small positive constant ε > 0, it is necessary to

have an expected budget scaling as Γ = O((m/σ2) log(1/ε)), even for the best

possible inference algorithm together with the best possible task assignment

scheme, including all possible adaptive task assignment schemes. Further, a

simple randomized non-adaptive task assignment is proven to achieve this op-

timal trade-off with a novel spectral inference algorithm. Namely, an efficient

task assignment and an inference algorithm are proposed that together guar-

antees to achieve perror ≤ ε with budget scaling as Γ = O((m/σ2) log(1/ε)).

It is expected that this necessary and sufficient budget constraint scales lin-

early in m, the number of tasks to be labelled. The technical innovation of

[107] is in (i) designing a new spectral algorithm that achieves a logarithmic

dependence in the target error rate ε; and (ii) identifying σ2 defined in (4.3)

as the fundamental statistics of P that captures the collective quality of the

crowd. The budget-accuracy trade-off mainly depends on the prior distri-

bution of the crowd P via a single parameter σ2. When we have a reliable

crowd with many workers having pj’s close to one, the collective quality σ2 is

close to one and the required budget Γ is small. When we have an unreliable
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crowd with many workers having pj’s close to a half, then the collective qual-

ity is close to zero and the required budget is large. However, perhaps one

of the most surprising result of [107] is that the optimal trade-off is matched

by a non-adaptive task assignment scheme. In other words, there is only a

marginal gain in using adaptive task assignment schemes.

This negative result relies crucially on the fact that, under the standard

DS model, all tasks are inherently equally difficult. As all tasks have qi’s

either zero or one, the individual difficulty of a task is λi ≡ (2qi − 1)2 = 1,

and a worker’s probability of making an error on one task is the same as

any other tasks. Hence, adaptively assigning more workers to relatively more

ambiguous tasks has only a marginal gain. However, simple adaptive schemes

are widely used in practice, where significant gains are achieved. In real-

world systems, tasks are widely heterogeneous. Some images are much more

difficult to classify (and find the true label) compared to other images. To

capture such varying difficulties in the tasks, generalizations of the DS model

were proposed in [207, 204, 220, 185] and significant improvements have been

reported on real datasets.

The generalized DS model serves as the missing piece in bridging the gap

between practical gains of adaptivity and theoretical limitations of adaptivity

(under the standard DS model). We investigate the fundamental question

of “do adaptive task assignments improve accuracy?” under this generalized

Dawid-Skene model of Eq. (7.51).

On the theoretical understanding of the original DS model, the dense

regime has been studied first, where all workers are assigned all tasks. A

spectral method for finding the true labels was first analyzed in [77] and an

EM approach followed by spectral initial step is analyzed in [215] to achieve

a near-optimal performance. The minimax error rate of this problem was

identified in [76] by analyzing the MAP estimator, which is computationally

intractable. In this paper, we are interested in the sparse regime where each

task is assigned only a small number of workers of O(logm).

One of the main weaknesses of the DS model is that it does not capture

how some tasks are more difficult than the others. To capture such hetero-

geneity in the tasks, several practical models have been proposed recently

[100, 207, 204, 220, 91]. Although such models with more parameters can

potentially better describe real-world datasets, there is no analysis on their

performance under adaptive or non-adaptive task assignments. We do not
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have the analytical tools to understand the fundamental trade-offs involved

in those models yet. In this work, we close this gap by providing a theoretical

analysis of one of the generalizations of the DS model, namely the one pro-

posed in [220]. It captures the heterogeneous difficulties in the tasks, while

remaining simple enough for theoretical analyses.

4.1 Model and problem formulation

In this work, we assume that the requester has m binary classification tasks

to be labelled by querying a crowdsourcing platform multiple times. For

example, those might be image classification tasks, where the requester wants

to classify m images as either suitable for children (+1) or not (−1). The

requester has a budget Γ on how many responses she can collect on the

crowdsourcing platform, assuming one unit of payment is made for each

response collected. We use Γ interchangeably to refer to both a target budget

and also the budget used by a particular task assignment scheme (as defined

in (4.1)), and it should be clear from the context which one we mean. We

want to find the true label by querying noisy workers who are arriving in an

online fashion, one at a time.

Task assignment and inference. Typical crowdsourcing systems are mod-

eled as a discrete time systems where at each time we have a new arriving

worker. At time j, the requester chooses an action Tj ⊆ [m], which is a subset

of tasks to be assigned to the j-th arriving worker. Then, the j-th arriving

worker provides her answer Aij ∈ {+1,−1} for each task i ∈ Tj. We use

the index j to denote both the j-th time step in this discrete time system as

well as the j-th arriving worker. At this point (at the end of j-th time step),

all previous responses are stored in a sparse matrix A ∈ {0,+1,−1}m×j,
and this data matrix is increasing by one column at each time. We let

Aij = 0 if task i is not assigned to worker j, i.e. i /∈ Tj, and otherwise we

let Aij ∈ {+1,−1} be the previous worker j’s response on task i. At the

next time j + 1, the next task assignment Tj+1 is chosen, and this process is

repeated. At time j, the action (or the task assignment) can depend on all

previously collected responses up to the current time step stored in a sparse

(growing) matrix A ∈ {0,+1,−1}m×(j−1). This process is repeated until the
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task assignment scheme decides to stop, typically when the total number

of collected responses (the number of nonzero entires in A) meet a certain

budget constraint or when a certain target accuracy is estimated to be met.

We consider both a non-adaptive scenario and an adaptive scenario. In

a non-adaptive scenario, a fixed number n of workers to be recruited are

pre-determined (and hence the termination time is set to be n) and also

fixed task assignments Tj’s for all j ∈ [n] are pre-determined, before any

response is collected. In an adaptive scenario, the requester chooses Tj’s in

an online fashion based on all the previous answers collected thus far. For

both adaptive and non-adaptive scenarios, when we have determined that we

have collected all the data we need, an inference algorithm is applied on the

collected data A ∈ {0,+1,−1}m×n to output an estimate t̂i ∈ {+1,−1} for

the ground truth label ti ∈ {+1,−1} for the i-th task for each i ∈ [m]. Note

that we use n to denote the total number of workers recruited, which is a

random variable under the adaptive scenario. Also, note that the estimated

labels for all the tasks do not have to be simultaneously output in the end, and

we can choose to output estimated labels on some of the tasks in the middle

of the process before termination. The average accuracy of our estimates is

measured by the average probability of error Perror = (1/m)
∑m

i=1 P[ti 6= t̂i]

under a probabilistic model to be defined later in this section in Eq. (7.51).

Budget. The total budget used in one instance of such a process is measured

by the total number of responses collected, which is equal to the number of

non-zero entries in A. This inherently assumes that there is a prefixed fee of

one unit for each response that is agreed upon, and the requester pays this

constant fee for every label that is collected. The expected budget used by

a particular task assignment scheme will be denoted by

Γ ≡ E
[ n∑
j=1

|Tj|
]
, (4.1)

where the expectation is over all the randomness in the model (the prob-

lem parameters representing the quality of the tasks and the quality of the

workers, and the noisy responses from workers) and any randomness used in

the task assignment. We are interested in designing task assignment schemes

and inference algorithms that achieve the best accuracy within a target ex-

pected budget, under the following canonical model of how workers respond
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to tasks.

Worker responses. We assume that when a task is assigned to a worker,

the response follows a probabilistic model introduced by [220], which is a

recent generalization of the Dawid-Skene model originally introduced by [46].

Precisely, each new arriving worker is parametrized by a latent worker quality

parameter pj ∈ [0, 1] (for the j-th arriving worker). Each task is parametrized

by a latent task quality parameter qi ∈ [0, 1] (for the i-th task). When a

worker j is assigned a task i, the generalized Dawid-Skene model assumes

that the response Aij ∈ {+1,−1} is a random variable distributed as

Aij =

{
+1, w.p. qipj + q̄ip̄j ,

−1, w.p. qip̄j + q̄ipj ,
, (4.2)

conditioned on the parameters qi and pj, where q̄i = 1− qi and p̄j = 1− pj.
The classical Dawid and Skene model assumes that task quality parameter qi

is one for each task. The task parameter qi represents the probability that a

task is perceived as a positive task to a worker, and the worker parameter pj

represents the probability the worker makes a mistake in labelling the task.

Concretely, when a task i is presented to any worker, the task is perceived as a

positive task with a probability qi or a negative task otherwise, independent

of any other events. Let t̃ij denote this perceived label of task i as seen

by worker j. Conditioned on this perceived label of the task, a worker j

with parameter pj makes a mistake with probability 1 − pj. She provides

a ‘correct’ label t̃ij as she perceives it with probability pj, or provides an

‘incorrect’ label −t̃ij with probability p̄j. Hence, the response Aij follows

the distribution in (7.51). The response Aij is, for example, a positive label

if the task is perceived as a positive task and the worker does not make a

mistake (which happens with a probability qipj), or if the task is perceived

as a negative task and the worker does not make a mistake (which happens

with a probability q̄ip̄j). Alternately, the task parameter qi represents the

probability that a task is labeled as a positive task by a perfect worker, a

worker with parameter pj = 1. That is qi represents inherent ambiguity of

the task being labeled positive. The strengths and weaknesses of this model

are discussed in comparisons to related work in Section 3.2.

Prior distribution on worker reliability. We assume that worker param-
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eters pj’s are i.i.d. according to some prior distribution P . For example, each

arriving worker might be sampled with replacement from a pool of workers,

and P denotes the discrete distribution of the quality parameters of the pool.

The individual reliabilities pj’s are hidden from us, and the prior distribu-

tion P is also unknown. We assume we only know some statistics of the prior

distribution P , namely

µ ≡ EP [2pj − 1] , and σ2 ≡ EP [(2pj − 1)2] , (4.3)

where pj is a random variable distributed as P , and µ ∈ [−1, 1] is the (shifted

and scaled) average reliability of the crowd and σ2 ∈ [0, 1] is the key quantity

of P capturing the collective quality of the crowd as a whole. Intuitively,

when all workers are truthful and have pj close to a one, then the collective

reliability σ2 will be close to its maximum value of one. On the other hand, if

most of the workers are giving completely random answers with pj’s close to

a half, then σ2 will be close to its minimum value of a zero. The fundamental

trade-off between the accuracy and the budget will primarily depend on the

distribution of the crowd P via σ2. We do not impose any conditions on the

distribution P .

Prior distribution on task quality. We assume that the task parameters

qi’s are drawn i.i.d. according to some prior distribution Q. The individual

difficulty of a task with a quality parameter qi is naturally captured by

λi ≡ (2qi − 1)2 , (4.4)

as tasks with qi close to a half are confusing and ambiguous tasks and hence

difficult to correctly label (λi close to zero), whereas tasks with qi close to

zero or one are unambiguous tasks and easy to correctly label (λi close to

one). Note that the larger the λi the easier is the task but with a slight

abuse of notation we call it task difficulty. The average difficulty and the

collective difficulty of tasks drawn from a prior distribution Q are captured

by the quantities ρ ∈ [0, 1] and λ ∈ [0, 1], defined as

ρ ≡ EQ
[
(2qi − 1)2

]
, λ ≡

(
EQ
[

1

(2qi − 1)2

])−1

, (4.5)

where qi is distributed as Q. The fundamental budget-accuracy trade-off

143



depends on Q primarily via this λ. Another quantities that will show up

in our main results is the worst-case difficulty in the given set of m tasks

(conditioned on all the qi’s) defined as

λmin ≡ min
i∈[m]

(2qi − 1)2 , and λmax ≡ max
i∈[m]

(2qi − 1)2 . (4.6)

When we refer to a similar quantities from the population distributed as

Q, we abuse the notation and denote λmin = minqi∈supp(Q)(2qi − 1)2 and

λmax = maxqi∈supp(Q)(2qi−1)2. The individual task parameters qi’s are hidden

from us. We do not have access to the prior distribution Q on the task

qualities qi’s, but we assume we know the statistics ρ, λ, λmin, and λmax, and

we assume we also know a quantized version of the prior distribution on the

task difficulties λi’s, which we explain below.

Quantized prior distribution on task difficulty. Given a distribution

Q on qi’s, let Q̃ be the induced distribution on λi’s. For example, if Q(qi) =

(1/10)I(qi=0.9)+(3/10)I(qi=0.1)+(1/10)I(qi=0.8)+(3/10)I(qi=0.2)+(2/10)I(qi=0.6),

then the induced distribution on λi is Q̃(λi) = (4/10)I(λi=0.64)+(4/10)I(λi=0.36)+

(2/10)I(λi=0.04). Our approach requires only the knowledge of a quantized

version of the distribution Q̃, namely Q̂. This quantized distribution has

support at T̃ discrete values {λmax, λmax/2, . . . , λmax/2
(T̃−1)}, where

T̃ ≡ 1 +
⌈

log2

(λmax

λmin

)⌉
, (4.7)

such that λmax2−(T̃−1) ≤ λmin ≤ λmax2−(T̃−2). We denote these values by

{λ̃a}a∈[T̃ ] such that λ̃a = λmax2−(a−1) for each a ∈ [T̃ ]. Then the quantized

distribution is
∑T̃

a=1 δ̃aI(λi=λ̃a), where the probability mass δ̃a for the a-th

partition is

δ̃a = Q̃( (λmax/2
a, λmax/2

(a−1)] ) , for a ∈ [T̃ ] ,

which is the fraction of tasks whose difficulty λi is in (λ̃a+1, λ̃a]. We use

the closed interval [(1/2)λ̃T̃ , λ̃T̃ ] for the last partition. In the above exam-

ple, we have T̃ = 5, {λ̃a}a∈T̃ = {0.64, 0.32, 0.16, 0.08, 0.04}, and {δ̃a}a∈T̃ =

{0.8, 0, 0, 0, 0.2}. For notational convenience, we eliminate those partitions

with zero probability mass, and re-index the quantization {λ̃a, δ̃a}a∈[T̃ ] to get

{λa, δa}a∈[T ], for T ≤ T̃ , such that δa 6= 0 for all a ∈ T . We define Q̂ to be
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the re-indexed quantized distribution {λa, δa}a∈[T ]. In the above example, we

finally have Q̂(λi) = 0.8I(λi=0.64) + 0.2I(λi=0.04).

We denote the maximum and minimum probability mass in Q̂ as

δmax ≡ max
a∈[T ]

δa , and δmin ≡ min
a∈[T ]

δa . (4.8)

Similar to the collective quality λ defined for the distribution Q in (6.27), we

define λ̂, collective quality for the quantized distribution Q̂, which is used in

our algorithm. λ̂ ≡ (
∑

a∈[T ](δa/λa))
−1.

Ground truth. The ground truth label ti of a task is naturally defined

as what the majority of the crowd would agree on if we ask all the workers

to label that task, i.e. ti ≡ sign(E[Aij|qi]) = sign(2qi − 1)sign(µ), where

the expectation is with respect to the prior distribution of pj ∼ P and the

randomness in the response as per the generalized Dawid-Skene model in

(7.51). Without loss of generality, we assume that the average reliability of

the worker is positive, i.e. sign(µ) = +1 and take sign(2qi− 1) as the ground

truth label ti of task i conditioned on its difficulty parameter qi:

ti = sign(2qi − 1) . (4.9)

The latent parameters {qi}i∈[m], {pj}j∈[n], and {ti}i∈[m] are unknown, and we

want to infer the true labels ti’s from only Aij’s.

Performance measure. The accuracy of the final estimate is measured by

the average probability of error:

Perror =
1

m

m∑
i=1

P[ti 6= t̂i] . (4.10)

We investigate the fundamental trade-off between budget and error rate by

identifying the sufficient and necessary conditions on the expected budget

Γ for achieving a desired level of accuracy Perror ≤ ε. Note that we are

interested in achieving the best trade-off, which in turn can give the best

approach for both scenarios: when we have a fixed budget constraint and

want to minimize the error rate, and when we have a target error rate and

want to minimize the cost.
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4.1.1 Contributions

To investigate the gain of adaptivity, we first characterize the fundamen-

tal lower bound on the budget required to achieve a target accuracy. To

match this fundamental limit, we introduce a novel adaptive task assignment

scheme. The proposed adaptive task assignment is simple to apply in prac-

tice, and numerical simulations confirm the superiority compared to state-

of-the-art non-adaptive schemes. Under certain assumptions on the choice of

parameters in the algorithm, which requires a moderate access to an oracle,

we can prove that the performance of the proposed adaptive scheme matches

that of the fundamental limit up to a constant factor. Finally, we quantify

the gain of adaptivity by proving a strictly larger lower bound on the budget

required for any non-adaptive schemes to achieve a desired error rate of ε for

some small positive ε.

Precisely, we show that the minimax rate on the budget required to achieve

a target average error rate of ε scales as Θ((m/λσ2) log(1/ε)). The depen-

dence on the prior P andQ are solely captured in σ2 (the quality of the crowd

as a whole) and λ (the quality of the tasks as a whole). We show that the

fundamental trade-off for non-adaptive schemes is Θ((m/λminσ
2) log(1/ε)),

requiring a factor of λ/λmin larger budget for non-adaptive schemes. This

factor of λ/λmin is always at least one and quantifies precisely how much we

gain by adaptivity.

4.1.2 Outline and notations

We present a list of notations and their definitions in Table 4.1. In Sec-

tion 7.4, we present the fundamental lower bound on the necessary budget

to achieve a target average error rate of ε. We present a novel adaptive

approach which achieves the fundamental lower bound up to a constant.

In comparison, we provide the fundamental lower bound on the necessary

budget for non-adaptive approaches in Section 4.3, and we present a non-

adaptive approach that achieves this fundamental limit. In Section 4.4, we

give a spectral interpretation of our approach justifying the proposed infer-

ence algorithm, leading to a parameter estimation algorithm that serves as

a building block in the main approach of Algorithm 4. As our proposed

sub-routine using Algorithm 5 suffers when the budget is critically limited
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(known as spectral barrier in Section 4.4), we present another algorithm that

can substitute Algorithm 5 in Section 4.5 and compare their performances.

The proofs of the main results are provided in Section 4.6. We present a

conclusion with future research directions in Section 6.5.

notation data type definition

m Z+ the number of tasks
n Z+ total number of workers recruited

A = [Aij] {0,+1,−1}m×n labels collected from the workers

Γ R+
budget used in collecting A

is the number of nonzero entries in A
` Z+ average budget per task : Γ/m

Γε R+ the budget required to achieve error at most ε

TΓ
set of task assignment schemes using

at most Γ queries in expectation
i [m] index for tasks
j [n] index for workers
Wi subset of [n] a set of workers assigned to task i
Tj subset of [m] a set of tasks assigned to worker j
qi [0, 1] quality parameter of task i
ti {−1,+1} ground truths label of task i

t̂i {−1,+1} estimated label of task i
pj [0, 1] quality parameter of worker j
P [0, 1]→ R prior distribution of pj
Q [0, 1]→ R prior distribution of qi
Q̃ [0, 1]→ R prior distribution of λi induced from Q
Q̂ [0, 1]→ R quantized version of the distribution Q̃

Table 4.1: Notations

4.2 Main Results under the Adaptive Scenario

In this section, we present our main results under the adaptive task assign-

ment scenario.

147



4.2.1 Fundamental limit under the adaptive scenario

With a slight abuse of notations, we let t̂(A) be a mapping from A ∈
{0,+1,−1}m×n to t̂(A) ∈ {+1,−1}m representing an inference algorithm

outputting the estimates of the true labels. We drop A and write only t̂

whenever it is clear from the context. We let Pσ2 be the set of all the prior

distributions on pj such that the collective worker quality is σ2, i.e.

Pσ2 ≡
{
P |EP [(2pj − 1)2] = σ2

}
. (4.11)

We letQλ be the set of all the prior distributions on qi such that the collective

task difficulty is λ, i.e.

Qλ ≡
{
Q
∣∣∣ (EQ [ 1

(2qi − 1)2

])−1

= λ

}
. (4.12)

We consider all task assignment schemes in TΓ, the set of all task assignment

schemes that make at most Γ queries to the crowd in expectation. We prove

a lower bound on the standard minimax error rate: the error that is achieved

by the best inference algorithm t̂ using the best adaptive task assignment

scheme τ ∈ TΓ under a worst-case worker parameter distribution P ∈ Pσ2

and the worst-case task parameter distribution Q ∈ Qλ. A proof of this

theorem is provided in Section 4.6.1.

Theorem 4.1. For σ2 < 1, there exists a positive constant C ′ such that the

average probability of error is lower bounded by black

min
τ∈TΓ,t̂

max
Q∈Qλ,P∈Pσ2

1

m

m∑
i=1

P[ti 6= t̂i] ≥ 1

2
e
−C′

(
Γλσ2

m
+1
)
, (4.13)

where m is the number of tasks, Γ is the expected budget allowed in TΓ, λ

is the collective difficulty of the tasks from a prior distribution Q defined in

(6.27), and σ2 is the collective reliability of the crowd from a prior distribution

P defined in (4.3).

In the proof, we provide a proof of a slightly stronger statement in Lemma

4.7, where a similar lower bound holds for not only the worst-case Q but for

all discrete Q ∈ Qλ. One caveat is that there is now an extra additive term

in the error exponent in the RHS of the lower bound that depends on Q,

which is reflected in the constant term (1/2) for the worst-case Q in the RHS
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of (4.13). To get the lower bound, we assume that the best task assignment

scheme has access to an oracle that knows difficulty of each task qi. It assigns

the appropriate number of workers to each task depending on its difficulty

such that the probability of error in each task is approximately same. It

assigns more workers to difficult tasks and fewer workers to easy tasks. This

motivates us to design an adaptive algorithm that aims to assign workers to

tasks according to the task difficulties.

We are assigning Γ/m queries per task on average, and it is intuitive that

the error decays exponentially in Γ/m. The novelty in the above analysis

is that it characterizes how the error exponent depends on the P , which

determines the quality of the crowd you have in your crowdsourcing platform,

and Q, which determines the quality of the tasks you have in your hand. If

we have easier tasks and reliable workers, the error rate should be smaller.

Eq. (4.13) shows that this is captured by the error exponent scaling linearly

in λσ2. This gives a lower bound (i.e. a necessary condition) on the budget

required to achieve error at most ε; there exists a constant C ′′ such that if

the total budget is

Γε ≤ C ′′
m

λσ2
log

(
1

ε

)
, (4.14)

then no task assignment scheme (adaptive or not) with any inference algo-

rithm can achieve error less than ε. This recovers the known fundamental

limit for standard DS model where all tasks have λi = 1 and hence λ = 1 in

[107]. For this standard DS model, it is known that there exists a constant

C ′′′ such that if the total budget is less than

Γε ≤ C ′′′
m

σ2
log

(
1

ε

)
,

then no task assignment with any inference algorithm can achieve error rate

less than ε. For example, consider two types of prior distributions where in

one we have the original DS tasks with Q(qi = 0) = Q(qi = 1) = 1/2 and

in the other we have Q′(qi = 0) = Q′(qi = 1) = Q′(qi = 3/4) = Q′(qi =

1/4) = 1/4. We have λ = 1 under Q and λ′ = 2/5 under Q′. Our analysis,

together with the matching upper bound in the following section, shows that

one needs 5/2 times more budget to achieve the same accuracy under the

tasks from Q′.
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4.2.2 Why do we need an adaptive algorithm?

Should we put the lower bound under the non-adaptive scheme here in this

section before we explain our adaptive algorithm? It will show that no non-

adaptive algorithm can achieve the above lower bound. Therefore, we present

an adaptive algorithm.

4.2.3 Adaptive algorithm when workers are perfect

To explain the main idea of our adaptive algorithm, we first consider a simple

scenario when all the workers are perfect, pj = 1, for j ∈ [n], σ2 = E[(2pj −
1)2] = 1. In this case, the optimal inference algorithm is the majority voting.

First get a simplified theorem and its proof!

Second build up the algorithm by explaining why one needs to design such

an algorithm.

Theorem 4.2. Suppose Algorithm 8 returns the exact value of

ρ2
t,u = (1/|M |)

∑
i∈M

λi .

With the choice of Cδ = (4 + dlog(2δmax/δmin)e)−1, for any given quantized

prior distribution of task difficulty {λa, δa}a∈[T ] such that δmax/δmin = O(1)

and λmax/λmin = O(1), and the budget Γ = Θ(m logm), the expected number

of queries made by Algorithm 4 is asymptotically bounded by

lim
m→∞

∑
t∈[T ],u∈[st]

`t E[mt,u] ≤ Γ ,

where mt,u is the number of tasks remaining unclassified in the (t, u) sub-

round, and `t is the pre-determined number of workers assigned to each of

these tasks in that round. Further, Algorithm 4 returns estimates {t̂i}i∈[m]

that asymptotically achieve,

lim
m→∞

1

m

m∑
i=1

P[ti 6= t̂i] ≤ C1e
−(Cδ/4)(Γ/m)λσ2

, (4.15)
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if (Γ/m)λσ2 = Θ(1), where C1 = log2(2δmax/δmin) log2(2λmax/λmin), and

lim
m→∞

1

m

m∑
i=1

P[ti 6= t̂i] = 0 , (4.16)

if (Γ/m)λσ2 = ω(1).

A proof of this theorem is provided in Section 4.2.4.

4.2.4 Proof of Theorem 4.2

First we show that the messages returned by Algorithm 5 are normally dis-

tributed and identify their conditional means and conditional variances in the

following lemma. Assume in a sub-round (t, u), t ∈ [T ], u ∈ [st], the number

of tasks remaining unclassified are mt,u and the task assignment is performed

according to an (`t, rt)-regular random graph. To simplify the notation, let
ˆ̀
t ≡ `t − 1, r̂t ≡ rt − 1, and recall µ = E[2pj − 1], σ2 = EP [(2pj − 1)2]. Note

that µ, σ2 remain same in each round. Let ρ2
t,u = (1/|M |)∑i∈[M ] λi be the

exact value of average task difficulty of the tasks present in the (t, u) sub-

round. When `t and rt are increasing with the problem size, the messages

converge to a Gaussian distribution due to the central limit theorem. We

provide a proof of this lemma in Section 4.6.5.

Lemma 4.3. Suppose for `t = Θ(logmt,u) and rt = Θ(logmt,u), tasks are

assigned according to (`t, rt)-regular random graphs. In the limit mt,u →∞,

if µ > 0, then after k = Θ(
√

logmt,u) number of iterations in Algorithm 5,

the conditional mean µ
(k)
q and the conditional variance

(
ρ

(k)
q

)2
conditioned on

the task difficulty q of the message xi corresponding to the task i returned by

the Algorithm 5 are

µ(k)
q = (2q − 1)µ`t(ˆ̀

tr̂tρ
2
t,uσ

2)(k−1) ,(
ρ(k)
q

)2

= µ2`t(ˆ̀
tr̂tρ

2
t,uσ

2)2(k−1)

(
ρ2
t,u − (2q − 1)2

+
ρ2
t,u

ˆ̀
t(1− ρ2

t,uσ
2)(1 + r̂tρ

2
t,uσ

2)
(
1− (ˆ̀

tr̂tρ
4
t,uσ

4)−(k−1)
)

ˆ̀
tr̂tρ4

t,uσ
4 − 1

)
+`t(2− µ2ρ2

t,u)(
ˆ̀
tr̂t)

k−1 . (4.17)
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We will show in (4.56) that the probability of misclassification for any

task in sub-round (t, u) in Algorithm 4 is upper bounded by e−(Cδ/4)(Γ/m)λσ2
.

Since, there are at most C1 = smaxT ≤ log2(2δmax/δmin) log2(2λmax/λmin)

rounds, using union bound we get the desired probability of error. In (4.60),

we show that the expected total number of worker assignments across all

rounds is at most Γ.

Let’s consider any task i ∈ [m] having difficulty λi. Without loss of

generality assume that ti = 1 that is qi > 1/2. Let us assume that the

task i gets classified in the (t, u) sub-round, t ∈ [T ], u ∈ [st]. That is the

number of workers assigned to the task i when it gets classified is `t =

Cδ(Γ/m)(λ̂/λt) and the threshold Xt,u set in that round for classification is

Xt,u =
√
λtµ`t

(
(`t − 1)(rt − 1)ρ2

t,uσ
2
)kt−1

. From Lemma 4.10 the message xi

returned by Algorithm 5 is Gaussian with conditional mean and conditional

variance as given in (4.51). Therefore in the limit of m, the probability of

error in task i is

lim
m→∞

P
[
t̂i 6= ti|qi

]
= lim

m→∞
P
[
xi < −Xt,u|qi

]
= lim

m→∞
Q
(µ(k)

qi + Xt,u
ρ

(k)
qi

)
(4.18)

≤ lim
m→∞

exp
(−(µ

(k)
qi + Xt,u)2

2(ρ
(k)
qi )2

)
(4.19)

= exp
(−((2qi − 1) +

√
λt)

2`tσ
2

2(1− (2qi − 1)2σ2)

)
(4.20)

≤ exp
(−λt`tσ2

2

)
= exp

(−Cδ(Γ/m)λ̂σ2

2

)
(4.21)

≤ exp
(−Cδ(Γ/m)λσ2

4

)
, (4.22)

where Q(·) in (4.52) is the tail probability of a standard Gaussian dis-

tribution, and (4.53) uses the Chernoff bound. (4.54) follows from sub-

stituting conditional mean and conditional variance from Equation (4.51),

and using `t = Θ(logmt,u), k = Θ(
√

logmt,u) where m grows to infin-

ity. (4.55) uses `t = Cδ(Γ/m)(λ̂/λt), our choice of `t in Algorithm 4 line

4. (4.56) uses the fact that for the quantized distribution {λa, δa}a∈[T ],

λ̂ =
(∑

a∈[T ](δa/λa)
)−1 ≥ λ/2. We have established that our approach
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guarantees the desired level of accuracy. We are left to show that we use at

most Γ assignments in expectation.

We upper bound the expected total number of workers used for tasks of

quantized difficulty level λa’s for each 1 ≤ a ≤ T . Recall that our adaptive

algorithm runs in T rounds indexed by t, where each round t further runs st

sub-rounds. The total expected number of workers assigned to δa fraction of

tasks of quantized difficulty λa in t = 1 to t = a−1 rounds is upper bounded

by mδa
∑a−1

t=1 st`t. The upper bound assumes the worst-case (in terms of the

budget) that these tasks do not get classified in any of these rounds as the

threshold X set in these rounds is more than absolute value of the conditional

mean message x of these tasks.

Next, in st=a sub-rounds the threshold X is set less than or equal to the ab-

solute value of the conditional mean message x of these tasks, i.e. X ≤ |µ(k)
qa |

for (2qa − 1)2 = λa. Therefore, in each of these sa sub-rounds, probability of

classification of these tasks is at least 1/2. That is the expected total num-

ber of workers assigned to these tasks in sa sub-rounds is upper bounded by

2mδa`a. Further, sa is chosen such that the fraction of these tasks remaining

un-classified at the end of sa sub-rounds is at most same as the fraction of the

tasks having difficulty λa+1. That is to get the upper bound, we can assume

that the fraction of λa+1 difficulty tasks at the start of sa+1 sub-rounds is

2δa+1, and the fraction of λa difficulty tasks at the start of sa+1 sub-rounds is

zero. Further, recall that we have set sT = 1 as in this round our threshold

X is equal to zero. Therefore, we have the following upper bound on the

expected total number of worker assignments.

m∑
i=1

E[|Wi|] ≤ 2mδ1`1 +
T−1∑
a=2

4mδa`a + 2mδT `T +
T∑
a=2

(
mδa

a−1∑
b=1

sb`b

)
≤

T∑
a=1

4mδa`a + smax

T∑
a=1

mδa`a (4.23)

≤ (4 + dlog(2δmax/δmin)e)
T∑
a=1

mδa`a (4.24)

≤ (4 + dlog(2δmax/δmin)e)ΓCδ (4.25)

= Γ , (4.26)

Equation (4.57) uses the fact that `t = (Cδ(Γ/m)(λ̂/λt) where λt’s are sepa-
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rated apart by at least a ratio of 2 (recall the quantized distribution), there-

fore
∑a−1

t=1 `t ≤ `a. Equation (4.58) follows from the choice of st’s in the

algorithm. Equation (4.59) follows from using `t = (Cδ(Γ/m)(λ̂/λt) and λ =

(
∑

a∈[T ](δa/λa))
−1, and Equation (4.60) uses Cδ = (4 + dlog(2δmax/δmin)e)−1.

4.2.5 Upper bound on the achievable error rate

We present an adaptive task assignment scheme and an iterative inference al-

gorithm that asymptotically achieve an error rate of C1e
−(Cδ/4)(Γ/m)λσ2

, when

the number of tasks m grows large and the expected budget is increasing as

Γ = Θ(m logm) where

C1 = log2(2δmax/δmin) log2(2λmax/λmin)

and Cδ is a constant that only depends on {δa}a∈[T ]. This matches the lower

bound in (4.13) when C1 and Cδ are O(1). Comparing it to a fundamental

lower bound in Theorem 4.1 establishes the near-optimality of our approach,

and the sufficient condition to achieve average error ε is for the average total

budget to be larger than,

Γε ≥
4

Cδ

m

λσ2
log
(C1

ε

)
. (4.27)

Our proposed adaptive approach in Algorithm 4 takes as input the number

of tasks m, a target budget Γ, hyper parameter Cδ to be determined by our

theoretical analyses in Theorem 4.4, the quantized prior distribution Q̂, the

statistics µ and σ2 on the worker prior P . The proposed scheme makes at

most Γ queries in expectation to the crowd and outputs the estimated labels

t̂i’s for all the tasks i ∈ [m].

The proposed adaptive approach: overview.

At a high level, our approach works in T rounds indexed by t ∈ [T ], the

support size of the quantized distribution Q̂, and st sub-rounds at each round

t, where st is chosen by the algorithm in line 5. In each sub-round, we perform

both task assignment and inference, sequentially. Guided by the inference

algorithm, we permanently label a subset of the tasks and carry over the
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Algorithm 4 Adaptive Task Assignment and Inference Algorithm

Require: number of tasks m, allowed budget Γ, hyper parameter Cδ, quan-
tized prior distribution {λa, δa}a∈[T ], collective quality of the workers σ2,
average reliability µ

Ensure: Estimated labels {t̂i}i∈[m]

1: M ← {1, 2, · · · ,m}
2: λ̂←

(∑
a∈[T ](δa/λa)

)−1

3: for all t = 1, 2, · · · , T do
4: `t ← (Cδλ̂ Γ)/(mλt) , rt ← `t

5: st ← max
{

0,
⌈
log
(

2δt
δt+1

)⌉}
I{t < T}+ 1 I{t = T}

6: for all u = 1, 2, · · · , st do
7: if M 6= ∅ then
8: n← |M | , k ←

√
log |M |

9: Draw E ∈ {0, 1}|M |×n ∼ (`t, rt)-regular random graph
10: Collect answers {Ai,j ∈ {1,−1}}(i,j)∈E
11: {xi}i∈M ← Algorithm 5

[
E, {Ai,j}(i,j)∈E, k

]
12: ρ2

t,u ← Algorithm 8 [E, {Ai,j}(i,j)∈E, `t, rt]

13: Xt,u ←
√
λtµ`t

(
(`t − 1)(rt − 1)ρ2

t,uσ
2
)k−1I{t < T}+ 0 I{t = T}

14: for i ∈M do
15: if xi > Xt,u then
16: t̂i ← +1
17: else if xi < −Xt,u then
18: t̂i ← −1
19: end if
20: end for
21: M ← {i ∈M : |xi| ≤ Xt,u}
22: end if
23: end for
24: end for

remaining ones to subsequent sub-rounds. Inference is done in line 11 to get

a confidence score xi’s on the tasks i ∈M , where M ⊆ [m] is the set of tasks

that are remaining to be labelled at the current sub-round. The adaptive

task assignment of our approach is entirely managed by the choice of this set

M in line 21, as only those tasks in M will be assigned new workers in the

next sub-round in lines 9 and 10.

At each round, we choose how many responses to collect for each task

present in that round as prescribed by our theoretical analysis. Given this

choice of `t, the number of responses collected for each task at round t,

we repeat the key inner-loop in line 9-21 of Algorithm 4. In round t the
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sub-round is repeated st times to ensure that sufficient number of ‘easy’

tasks are classified. Given a set M of remaining tasks to be labelled, the

sub-round collects `t response per task on those tasks in M and runs an

inference algorithm (Algorithm 5) to give confidence scores xi’s to all i ∈M .

Our theoretical analysis prescribes a choice of a threshold Xt,u to be used

in round t ∈ [T ] sub-round u ∈ [st]. All tasks in M with confidence score

larger than Xt,u are permanently labelled as positive tasks, and those with

confidence score less than −Xt,u are permanently labelled as negative tasks.

Those permanently labelled tasks are referred to as ‘classified’ and removed

from the set M . The remaining tasks with confidence scores between Xt,u
and −Xt,u are carried over to the next sub-round. The confidence scores are

designed such that the sign of xi provides the estimated true label, and we

are more confident about this estimated label if the absolute value of the

score xi is larger. The art is in choosing the appropriate number of responses

to be collected for each task `t and the threshold Xt,u, and our theoretical

analyses, together with the provided statistics of the prior distribution P , and

the prior quantized distribution Q̂ allow us to choose the ones that achieve

a near optimal performance.

Note that we are mixing inference steps and task assignment steps. Within

each sub-round, we are performing both task assignment and inference. Fur-

ther, the inner-loop within itself uses a non-adaptive task assignment, and

hence our approach is a series of non-adaptive task assignments with infer-

ence in each sub-round. However, Algorithm 4 is an adaptive scheme, where

the adaptivity is fully controlled by the set of remaining unclassified tasks

M . We are adaptively choosing which tasks to carry over in the set M based

on all the responses we have collected thus far, and we are assigning more

workers to only those tasks in M .

Since difficulty levels are varying across the tasks, it is intuitive to assign

fewer workers to easy tasks and more workers to hard tasks. Supposing that

we know the difficulty levels λi’s, we could choose to assign the ideal number

of workers to each task according to λi’s. However, the difficulty levels are

not known. The proposed approach starts with a smaller budget in the first

round classifying easier tasks, and carries over the more difficult tasks to the

later rounds where more budget per task will be assigned.
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The proposed adaptive approach: precise.

More precisely, given a budget Γ and the statistics of P , and the known

quantized distribution Q̂ we know what target probability of error to aim for,

say ε, from Theorem 4.4. The main idea behind our approach is to allocate

the given budget Γ over multiple rounds appropriately, and at each round get

an estimate of the labels of the remaining tasks in M and also the confidence

scores, such that with an appropriate choice of the threshold Xt,u those tasks

we choose to classify in the current round achieve the desired target error

rate of P[ti 6= t̂i
∣∣ |xi| > Xt,u] ≤ ε. As long as this guarantee holds at each

round for all classified tasks, then the average error rate will also be bounded

by (1/m)
∑m

i=1 P[ti 6= t̂i] ≤ ε when the process terminates eventually. The

only remaining issue is how many queries are made in total when this process

terminates. We guarantee that in expectation at most Γ queries are made

under our proposed choices of `t’s and Xt,u’s in the algorithm.

At round zero, we initially put all the tasks in M = [m]. A fraction of tasks

are permanently labelled in each round and the un-labelled ones are taken to

the next round. At round t ∈ {1, . . . , T}, our goal is to classify a sufficient

fraction of those tasks in the t-th difficulty group {i ∈M |λi ∈ [(1/2)λt, λt]}
with the desired level of accuracy. The art is in choosing the right number

of responses to be collected per task `t for that round and also the right

threshold Xt,u on the confidence score, to be used in the inner-loop in line

9-21 of Algorithm 4. If `t is too low and/or threshold Xt,u too small, then

misclassification rate will be too large. If `t is too large and/or Xt,u is too

large, we are wasting our budget and achieving unnecessarily high accuracy

on those tasks classified in the current round, and not enough tasks will

be classified in that round. We choose `t and Xt,u appropriately to ensure

that the misclassification probability is at most C1e
−(Cδ/4)(Γ/m)λσ2

based on

our analysis (see (4.56)) of the inner-loop. We run the identical sub-rounds

st = max{0, dlog2(2δt/δt+1)e} times to ensure that enough fraction of tasks

with difficulty λi ∈ [(1/2)λt, λt] are classified. Precisely, the choice of st

insures that the expected number of tasks with difficulty λi ∈ [(1/2)λt, λt]

remaining unclassified after t-th round is at most equal to the number of

tasks in the next group, i.e., difficulty level λi ∈ [(1/2)λt+1, λt+1].

Note that statistically, the fraction of the t-th group (i.e. tasks with dif-

ficulty [λt+1, λt]) that get classified before the t-th round is very small as
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the threshold set in these rounds is more than their absolute mean message.

Most tasks in the t-th group will get classified in round t. Further, the pro-

posed pre-processing step of binning the tasks ensures that `t+1 ≥ 2`t. This

ensures that the total extraneous budget spent on the t-th group of tasks is

not more than a constant times the allocated budget on those tasks.

The main algorithmic component is the inner-loop in line 9-21 of Algorithm

4. For a choice of the (per task) budget `t, we collect responses according

to a (`t, rt = `t)-regular random graph on |M | tasks and |M | workers. The

leading eigen-vector of the non-backtracking operator on this bipartite graph,

weighted by the ±1 responses reveals a noisy observation of the true class

and the difficulty levels of the tasks. The non-backtracking matrix B of a

directed graph G is indexed by its directed edges such that for any k ≥ 1, Bk
ef

counts the number of non-backtracking walks of k + 1 edges on G starting

with the directed edge e and ending with f . Let x ∈ R|M | denote this top left

eigenvector, computed as per the message-passing algorithm of Algorithm

5. Then the i-th entry xi asymptotically converges in the large number of

tasks m limit to a Gaussian random variable with mean proportional to

the difficulty level (2qi − 1), with mean and variance specified in Lemma

4.10. This non-backtracking operator approach to crowdsourcing was first

introduced in [105] for the standard DS model. We generalize their analysis

to this generalized DS model in Theorem 4.5 for finite sample regime, and

further give a sharper characterization based on central limit theorem in the

asymptotic regime (Lemma 4.10). For a detailed explanation of Algorithm 5

and its analyses, we refer to Section 4.3.

Justification of the choice of `t and Xt,u.

The main idea behind our approach is to allocate a target budget to each

i-th task according to its quantized difficulty λt where t is such that λi ∈
[(1/2)λt, λt]. Given a total budget Γ and the quantized distribution Q̂ which

gives the collective difficulty of tasks λ (line 2, Algorithm 4), we target to

assign (λ̂/λt)(Γ/m) workers to a task of quantized difficulty λt. This choice

of the target budget is motivated from the proof of the lower bound Theorem

4.1. If we had identified the tasks with respect to their difficulty then the

near-optimal choice of the budget that achieves the lower bound is given in

(4.49). Our target budget is a simplified form of the near-optimal choice and
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Figure 4.1: Algorithm 4 improves significantly over its non-adaptive version
and majority voting with an adaptive task assignment for tasks with
λ = 1/7 (left) and λ = 4/13 (right).

ignores the constant part that does not depend upon the total budget. This

choice of the budget would give the equal probability of misclassification for

the tasks of varying difficulties. We refer to this error rate as the desired

probability of misclassification. As we do not know which tasks belong to

which quantized difficulty group λt, a factor of 1/Cδ is needed to compensate

for the extra budget needed to infer those difficulty levels. This justifies our

choice of budget in line 4 of the Algorithm 4.

From our theoretical analysis of the inner loop, we know the probability of

misclassification for a task that belongs to difficulty group λt as a function of

the classification threshold X and the budget that is assigned to it. There-

fore, in each round we set the classification threshold Xt,u such that even the

possibly most difficult task achieves the desired probability of misclassifica-

tion. This choice of Xt,u is provided in line 13 of Algorithm 4.

Numerical experiments.

In Figure 4.1, we compare the performance of our algorithm with majority

voting and also a non-adaptive version of our Algorithm 4, where we assign

to each task ` = Γ/m number of workers in one round and set classification

threshold X1,1 = 0 so as to classify all the tasks (choosing T = 1 and s1 = 1).

Since this performs the non-adaptive inner-loop once, this is a non-adaptive

algorithm, and has been introduced for the standard DS model in [107].

For numerical experiments, we make a slight modification to our proposed
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Algorithm 4. In the final round, when the classification threshold is set

to zero, we include all the responses collected thus far when running the

message passing Algorithm 5, and not just the fresh samples collected in

that round. This creates dependencies between rounds, which makes the

analysis challenging. However, in practice we see improved performance and

it allows us to use the given fixed budget efficiently.

We run synthetic experiments with m = 1800 and fix n = 1800 for the

non-adaptive version. The crowds are generated from the spammer-hammer

model where a worker is a hammer (pj = 1) with probability 0.3 and a

spammer (pj = 1/2) otherwise. In the left panel, we take difficulty level λa

to be uniformly distributed over {1, 1/4, 1/16}, that gives λ = 1/7. In the

right panel, we take λa = 1 with probability 3/4, otherwise we take it to

be 1/4 or 1/16 with equal probability, that gives λ = 4/13. Our adaptive

algorithm improves significantly over its non-adaptive version, and our main

results in Theorems 4.4 and 4.5 predicts such gain of adaptivity. In particular,

for the left panel, the non-adaptive algorithm’s error scaling depends on

smallest λmin that is 1/16 while for the adaptive algorithm it scales with

λ = 1/7. In the left figure, it can be seen that the adaptive algorithm

requires approximately a factor of λmin/λ = 7/16 more queries to achieve

the same error as achieved by the non-adaptive scheme. For example, non-

adaptive version of Algorithm 4 requires Γ/m = 360 to achieve error rate

0.002, whereas the adaptive approach only requires 180 ' 360×7/16 = 157.5.

Quantifying such a gap is one of our main results in Theorems 4.4 and 4.5.

This gap widens in the right panel to approximately λmin/λ = 13/64 as

predicted. For a fair comparison with the non-adaptive version, we fix the

total budget to be Γ and assign workers in each round until the budget is

exhausted, such that we are strictly using budget at most Γ deterministically.

Performance Guarantee

Algorithm 4 is designed in such a way that we are not wasting any budget

on any of the tasks; we are not getting unnecessarily high accuracy on easier

tasks, which is the root cause of inefficiency for non-adaptive schemes. In

order to achieve this goal, the internal parameter ρ2
t,u computed in line 12

of Algorithm 4 has to satisfy ρ2
t,u = (1/|M |)∑i∈[M ] λi, which is the average

difficulty of the remaining tasks. Such a choice is important in choosing the
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right threshold Xt,u.
As the set M of remaining tasks is changing over the course of the al-

gorithm, we need to estimate this value in each sub-routine. We provide

an estimator of ρ2
t,u in Algorithm 8 that only uses the sampled responses

that are already collected. All numerical results are based on this estima-

tor. However, analyzing the sensitivity of the performance with respect to

the estimation error in ρ2
t,u is quite challenging, and for a theoretical analy-

sis, we assume we have access to an oracle that provides the exact value of

ρ2
t,u = (1/|M |)∑i∈[M ] λi, replacing Algorithm 8.

Theorem 4.4. Suppose Algorithm 8 returns the exact value of

ρ2
t,u = (1/|M |)

∑
i∈M

λi .

With the choice of Cδ = (4 + dlog(2δmax/δmin)e)−1, for any given quantized

prior distribution of task difficulty {λa, δa}a∈[T ] such that δmax/δmin = O(1)

and λmax/λmin = O(1), and the budget Γ = Θ(m logm), the expected number

of queries made by Algorithm 4 is asymptotically bounded by

lim
m→∞

∑
t∈[T ],u∈[st]

`t E[mt,u] ≤ Γ ,

where mt,u is the number of tasks remaining unclassified in the (t, u) sub-

round, and `t is the pre-determined number of workers assigned to each of

these tasks in that round. Further, Algorithm 4 returns estimates {t̂i}i∈[m]

that asymptotically achieve,

lim
m→∞

1

m

m∑
i=1

P[ti 6= t̂i] ≤ C1e
−(Cδ/4)(Γ/m)λσ2

, (4.28)

if (Γ/m)λσ2 = Θ(1), where C1 = log2(2δmax/δmin) log2(2λmax/λmin), and

lim
m→∞

1

m

m∑
i=1

P[ti 6= t̂i] = 0 , (4.29)

if (Γ/m)λσ2 = ω(1).

A proof of this theorem is provided in Section 4.6.4. In this theoretical

analysis, we are considering a family of problem parameters (m,Q,P ,Γ) in an
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increasing number of tasks m. All the problem parameters Q, P , and Γ can

vary as functions of m. For example, consider a family of Q(qi) = (1/2)I(qi =

0) + (1/2)I(qi = 1) independent of m and P(pj) = (1− 1/
√
m)I(pj = 0.5) +

(1/
√
m)I(pj = 1). As m grows, most of the workers are spammers giving

completely random answers. In this setting, we can ask how should the

budget grow with m, in order to achieve a target accuracy of, say, e−5?

We have λ = 1 and σ2 = 1/
√
m, indicating that the collective difficulty is

constant but collective quality of the workers are decreasing in m. It is a

simple calculation to show that C1 = 1 and Cδ = 1/5 in this case, and the

above theorem proves that Γ = 100m3/2 is sufficient to achieve the desired

error rate. Further such dependence of the budget in m is also necessary, as

follows from our lower bound in Theorem 4.1.

Consider now a scenario where we have tasks with increasing difficulties

in m. For example, Q(qi) = (1/4)I(qi = 1/2 + 1/ logm) + (1/4)I(qi =

1/2 − 1/ logm) + (1/4)I(qi = 1/2 + 2/ logm) + (1/4)I(qi = 1/2 − 2/ logm)

and P(pj) = I(pj = 3/4). We have λ = 32/(5(logm)2) and σ2 = 1/4.

It follows from simple calculations that C1 = 2 and Cδ = 1/5. It follows

that it is sufficient and necessary to have budget scaling in this case as Γ =

Θ(m(logm)2).

For families of problem parameters for increasing m, we give asymptotic

performance guarantees. Finite regime of m is challenging as our analysis

relies on a version of central limit theorem and the resulting asymptotic

distribution of the score value xi’s. However, the numerical simulations in

Figure 4.1 suggests that the improvement of the proposed adaptive approach

is significant for moderate values of m as well.

Our main result in Eq. (4.28) gives the sufficient condition of our approach

in (4.27). Compared to the fundamental lower bound in Theorem 4.1, this

proves the near-optimality of our adaptive approach. Under the regime con-

sidered in Theorem 4.4, it is necessary and sufficient to have budget scaling

as Γ = Θ((m/(λσ2)) log(1/ε)).
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4.3 Analysis of the inner-loop and the minimax error

rate under the non-adaptive scenario

In this section, we provide the analysis of the non-adaptive task assignment

and inference algorithm in the sub-routine in line 9-21 of Algorithm 4. To

simplify the notations, we consider the very first instance of the sub-round

where we have a set M = [m] of tasks to be labelled, and all the subsequent

subroutines will follow similarly up to a change of notations. Perhaps surpris-

ingly, we show that this inner-loop itself achieves near optimal performance

for non-adaptive schemes. We show that Γ = O((m/(λminσ
2)) log(1/ε)) is

sufficient to achieve a target probability of error ε > 0 in Theorem 4.5. We

show this is close to optimal by comparing it to a necessary condition that

scales in the same way in Theorem 4.6. First, here is the detailed explanation

of the inner-loop.

Task assignment (line 9 of Algorithm 4). Suppose we are given a budget

of Γ = m`, so that each task can be assigned to ` workers on average. Further

assume that each worker is assigned r tasks. We are analyzing a slightly more

general setting than Algorithm 4 where r = ` for all instances. We follow

the recipe of [107] and use a random regular graph for a non-adaptive task

assignment. Namely, we know that we need to recruit n = m`/r workers in

total. Before any responses are collected, we make all the task assignments

for all n workers in advance and store it in a bipartite graph G([m], [n], E)

where [m] are the task nodes, [n] are the worker nodes, and E ⊆ [m] × [n]

is the collection of edges indicating that task i is assigned to worker j if

(i, j) ∈ E. This graph E is drawn from a random regular graph with task

degree ` and worker degree r. Such random graphs can be drawn efficiently,

for example, using the configuration model [174].

Inference algorithm (line 11 of Algorithm 4). The message passing

algorithm of Algorithm 5, is a state-of-the-art spectral method based on

non-backtracking operators, first introduced for inference in [105]. A similar

approach has been later applied to other inference problems, e.g. [122, 24].

This is a message passing algorithm that operates on two sets of messages: the

task messages {xi→j}(i,j)∈E capturing how likely the task is to be a positive

task and the worker messages {yj→i}(i,j)∈E capturing how reliable the worker

is. Consider a data collected on m tasks and n workers such that A ∈
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{0,+1,−1}m×n under the non-adaptive scenario with task assigned according

to a random regular graph E of task degree ` and worker degree r. In each

round, all messages are updated as

xi→j =
∑

j′∈Wi\j

Aij′yj′→i , and (4.30)

yj→i =
∑
i′∈Tj\i

Ai′jxi′→j , (4.31)

where Wi ⊆ [n] is the set of workers assigned to task i, and Tj ⊆ [m] is the

set of workers assigned to worker j. The first is taking the weighted majority

according to how reliable each worker is, and the second is updating the

reliability according to how many times the worker agreed with what we

believe. After a prefixed kmax iterations, we provide a confidence score by

aggregating the messages at each task node i ∈ [m]:

xi =
∑
j′∈Wi

Aij′yj′→i . (4.32)

The precise description is given in Algorithm 5. Perhaps surprisingly, this

algorithm together with the random regular task assignment achieve the

minimax optimal error rate among all non-adaptive schemes. This will be

made precise in the upper bound in Theorem 4.5 and a fundamental lower

bound in Theorem 4.6. An intuitive explanation of why this algorithm works

is provided in Section 4.4 via spectral interpretation of this approach.

4.3.1 Performance guarantee

For this non-adaptive scenario, we provide a sharper upper bound on the

achieved error, that holds for all (non-asymptotic) regimes of m. Define σ2
k

as

σ2
k ≡

2σ2

µ2
(
ˆ̀̂r(ρ2σ2)2

)k−1
+ 3

(
1 +

1

r̂ρ2σ2

)
1− 1/

(
ˆ̀̂r(ρ2σ2)2

)k−1

1− 1/
(
ˆ̀̂r(ρ2σ2)2

) ,(4.33)

where ˆ̀ = ` − 1, r̂ = r − 1, µ = EP [2pj − 1], σ2 = EP [(2pj − 1)2], and

ρ2 = EQ[(2qi− 1)2]. This captures the effective variance in the sub-Gaussian

tail of the messages xi’s after k iterations of Algorithm 5, as shown in the
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Algorithm 5 Message-Passing Algorithm

Require: E ∈ {0, 1}|M |×n, {Aij ∈ {1,−1}}(i,j)∈E, kmax

Ensure: {xi ∈ R}i∈[|M |]
1: for all (i, j) ∈ E do

2: Initialize y
(0)
j→i with a Gaussian random variable Zj→i ∼ N (1, 1)

3: end for
4: for all k = 1, 2, · · · , kmax do
5: for all (i, j) ∈ E do

6: x
(k)
i→j ←

∑
j′∈Wi\j Aij′y

(k−1)
j′→i

7: end for
8: for all (i, j) ∈ E do

9: y
(k)
j→i ←

∑
i′∈Tj\iAi′jx

(k)
i′→j

10: end for
11: end for
12: for all i ∈ [m] do

13: x
(kmax)
i ←∑

j∈Wi
Aijy

(kmax−1)
j→i

14: end for

proof of the following theorem in Section 4.6.6.

Theorem 4.5. For any ` > 1 and r > 1, suppose m tasks are assigned ac-

cording to a random (`, r)-regular graph drawn from the configuration model.

If µ > 0, ˆ̀̂rρ4σ4 > 1, and r̂ρ2 > 1, then for any t ∈ {±1}m, the estimate

t̂
(k)
i = sign(x

(k)
i ) after k iterations of Algorithm 5 achieves

P
[
ti 6= t̂

(k)
i

∣∣λi] ≤ e−`σ
2λi/(2σ

2
k) +

3`r

m
(ˆ̀̂r)2k−2. (4.34)

Therefore, the average error rate is bounded by

1

m

m∑
i=1

P[ti 6= t̂
(k)
i ] ≤ EQ

[
e
−`σ2λi

2σ2
k

]
+

3`r

m
(ˆ̀̂r)2k−2. (4.35)

The second term, which is the probability that the resulting (`, r)-regular

random graph is not locally tree-like, can be made small for large m as long

as k = O(
√

logm) (which is the choice we make in Algorithm 4). Hence, the

dominant term in the error bound is the first term. Further, when we run

our algorithm for large enough numbers of iterations, σ2
k converges linearly
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to a finite limit σ2
∞ ≡ limk→∞ σ

2
k such that

σ2
∞ = 3

(
1 +

1

r̂ρ2σ2

) (ˆ̀̂rρ2σ2)2

(ˆ̀̂rρ2σ2)2 − 1
, (4.36)

which is upper bounded by a constant for large enough r̂ρ2σ2 and ˆ̀, for

example r̂ρ2σ2 ≥ 1 and ˆ̀≥ 2. Hence, for a wide range of parameters, the

average error in (4.35) is dominated by EQ
[
e−`σ

2λi/2σ
2
k

]
. When the fraction of

tasks with worst-case difficulty λmin is strictly positive, the error is dominated

by them as illustrated in Figure 4.2. Hence, it is sufficient to have budget

Γε ≥
C ′′m

λminσ2
log(1/ε) , (4.37)

to achieve an average error of ε > 0. Such a scaling is also necessary as we

show in the next section.

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30

q = 1.0
q = 0.8
q = 0.6

Mean Error

probability of error

number of queries per task `

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 0  0.1  0.2  0.3  0.4

q = 1.0
q = 0.8
q = 0.6

Mean Error

probability of error

crowd quality σ2

Figure 4.2: Non-adaptive schemes suffer as average error is dominated by
difficult tasks. Dotted lines are error achieved by those tasks with the same
quality qi’s, and the overall average error in solid line eventually has the
same slope as the most difficult tasks with qi = 0.6.

This is further illustrated in Figure 4.2. The error decays exponentially in

` and σ2 as predicted, but the rate of decay crucially hinges on the individual

difficulty level of the task being estimated. We run synthetic experiments

with m = n = 1000 and the crowds are generated from the spammer-hammer

model where pj = 1 with probability σ2 and pj = 1/2 with probability 1−σ2,

where the choice of this probability is chosen to match the collective difficulty

σ2 = E[(2pj − 1)2]. We fix σ2 = 0.3 and vary ` in the left figure and fix

` = 30 and vary σ2 in the right figure. We let qi’s take values in {0.6, 0.8, 1}
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with equal probability such that ρ2 = 1.4/3. The error rate of each task

grouped by their difficulty is plotted in the dashed lines, matching predicted

e−Ω(`σ2(2qi−1)2). The average error rates in solid lines are dominated by those

of the difficult tasks, which is a universal drawback for all non-adaptive

schemes.

4.3.2 Fundamental limit under the non-adaptive scenario

Theorem 4.5 implies that it suffices to assign ` ≥ (c/(σ2λi)) log(1/ε) workers

to achieve an error smaller than ε for a task i. We show in the following

theorem that this scaling is also necessary when we consider all non-adaptive

schemes. Even the best non-adaptive task assignment with the best inference

algorithm still required budget scaling in the same way. Hence, applying one

round of Algorithm 4 (which is a non-adaptive scheme) is near-optimal in the

non-adaptive scenario compared to a minimax rate where the nature chooses

the worst distribution of worker pj’s among the set of distributions with the

same σ2. We provide a proof of the theorem in Section 4.6.8.

Theorem 4.6. There exists a positive constant C ′ and a distribution P of

workers with average reliability E[(2pj − 1)2] = σ2 s.t. when λi < 1, if the

number of workers assigned to task i by any non-adaptive task assignment

scheme is less than (C ′/(σ2λi)) log(1/ε), then no algorithm can achieve con-

ditional probability of error on task i less than ε for any m and r.

For formal comparisons with the upper bound, consider a case where the

induced distribution on task difficulties λi’s, Q̃, is same as its quantized

version Q̂ such that Q̃(λi) =
∑T

a=1 δaI(λi=λa). Since in this non-adaptive

scheme, task assignments are done a priori, there are on average ` workers

assigned to any task, regardless of their difficulty. In particular, if the total

budget is less than

Γε ≤ C ′
m

λminσ2
log

δmin

ε
, (4.38)

then there will a a proportion of at least δmin tasks with error larger than

ε/δmin, resulting in overall average error to be larger than ε even if the rest

of the tasks are error-free. Compared to the adaptive case in (4.14) (nearly

167



achieved up to a constant factor in (4.27)), the gain of adaptivity is a fac-

tor of λ/λmin. When δmin < ε, the above necessary condition is trivial as

the RHS is negative. In such a case, the necessary condition can be tight-

ened to C ′(m/λaσ
2) log(

∑a
b=1 δb/ε) where a is the smallest integer such that∑a

b=1 δb > ε.

4.4 Spectral interpretation of Algorithm 5 and

parameter estimation

In this section, we give a spectral analysis of Algorithm 5, which leads to a

spectral algorithm for estimating ρ2 (Algorithm 8), to be used in the inner-

loop of Algorithm 4. This spectral interpretation provides a natural explana-

tion of how Algorithm 5 is extracting information and estimating the labels.

Precisely, we are computing the top eigenvector of a matrix known as a

weighted non-backtracking operator, via standard power method. Note that

the above mapping is a linear mapping from the messages to the messages.

This mapping, if formed into a 2|E| × 2|E| dimensional matrix B is known

as the non-backtracking operator. Precisely, for (i, j), (i′, j′) ∈ E,

B(i→j),(j′→i′) =


Ai′j′ if j = j′ and i 6= i′ ,

Ai′j′ if j 6= j′ and i = i′ ,

0 otherwise ,

and the message update of Equations (4.30) and (4.31) are simply[
x

y

]
= B

[
x

y

]
,

where x and y denote vectorizations of xi→j’s and yi→j’s. This is exactly

the standard power method to compute the singular vector of the matrix

B ∈ R2|E|×2|E|.

The spectrum, which is the set of eigenvalues of this square but non-

symmetric matrix B illustrates when and why spectral method might work.
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First consider decomposing the data matrix as

A = E[A]︸︷︷︸
true signal

+ (A− E[A])︸ ︷︷ ︸
random noise

.

Simple analysis shows that E[A|q, p], where the expectation is taken with

respect to the randomness in the graph and also in the responses, is a rank

one matrix with spectral norm ‖E[A|q, p]‖ =
√
`rρ̂2σ̂2, where

ρ̂2 ≡ 1

m

m∑
i=1

(2qi − 1)2 , and σ̂2 ≡ 1

n

n∑
j=1

(2pj − 1)2 .

This is easy to see as E[Aij|q, p] = (`/n)(2qi − 1)(2pj − 1). It follows that

the expected matrix is E[A|q, p] =
√
` r/(mn)

√
ρ̂2σ̂2mnuvT , where u and

v are norm-one vectors with ui = (1/
√∑

i′∈[m](2qi′ − 1)2)(2qi − 1) and vj =

(1/
√∑

j′∈[n](2pj′ − 1)2)(2pj − 1).

Also, typical random matrix analyses, such as those in [113, 106], show

that the spectral norm (the largest singular value) of the noise matrix (A−
E[A|q, p]) is bounded by C(`r)1/4 with some constant C. Hence, when the

spectral norm of the signal is larger then that of the noise, i.e. ‖E[A|q, p]‖ >
‖(A − E[A|q, p])‖, the top eigenvector of this matrix A corresponds to the

true underlying signal, and we can hope to estimate the true labels from

this top eigenvector. On the other hand, if ‖E[A|q, p]‖ < ‖(A − E[A|q, p])‖,
one cannot hope to recover any signal from the top eigenvector of A. This

phenomenon is known as the spectral barrier.

This phenomenon is more prominent in the non-backtracking operator ma-

trix B. Note that B is not symmetric and hence the eigen values are com-

plex valued. Similar spectral analysis can be applied to show that when

we are above the spectral barrier, the top eigenvalue is real-valued and con-

centrated around the mean Λ1(B) '
√

(`− 1)(r − 1)ρ̂2σ̂2 and the mode of

the rest of the complex valued eigenvalues are bounded within a circle of

radius: |Λi(B)| ≤ ((` − 1)(r − 1))1/4. Hence, the spectral barrier is exactly

when Λ1(B) = |Λi(B)| which happens at (` − 1)(r − 1)ρ̂4σ̂4 = 1, and this

plays a crucial role in the performance guarantee in Theorem 4.5. Note that

because of the bipartite nature of the graph we are considering, we always

have a pair of dominant eigenvalue as Λ1(B) =
√

(`− 1)(r − 1)ρ̂2σ̂2 and
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Λ2(B) = −
√

(`− 1)(r − 1)ρ̂2σ̂2.
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Figure 4.3: Scatter plot of the complex-valued eigenvalues of two
realizations of non-backtracking matrix B of the model with m = n = 300,
σ2 = 0.3, ρ2 = 1.4/3. On left for ` = 15 and right for ` = 5 which are above
and below spectral barrier, respectively. We can clearly see the two top
eigen values at (5,0) and (-5,0)

Figure 4.3 illustrates two sides of the spectral barrier. The one on the left

shows the scatter plot of the complex valued eigen values of B. Notice a

pair of top eigen values at
√

0.3× (1.4/3)× 14× 14 ' 5.24 and −5.24 as

predicted by the analysis. They always appear in pairs, due to the bipartite

nature of the graph involved. The rest of the spurious eigenvalues are con-

strained within a circle of radius (14× 14)1/4 ' 3.74 as predicted. The figure

on the right is when we are below the spectral barrier, since the eigenvalue

corresponding to the signal is
√

0.3× (1.4/3)× 4× 4 ' 1.5 which is smaller

than (4 × 4)1/4 = 2. The relevant eigenvalue is buried under other spurious

eigenvalues and does not show.

Parameter estimation algorithm (line 12 of Algorithm 4). Among

other things, this spectral interpretation gives an estimator for the problem

parameter ρ2, to be used in the inner-loop of Algorithm 4. Consider the

data matrix Ã defined below. Again, a simple analysis shows that E[Ã|q, p]
is a rank one matrix with ‖E[Ã|q, p]‖ =

√
`rρ̂2σ̂2. Since the spectral norm

of the noise matrix ‖Ã − E[Ã|q, p]‖ is upper bounded by C(`r)1/4 for some

constant C, we have ‖Ã‖/
√
`rσ2 =

√
ρ̂2σ̂2/σ2 + O((`rρ̂4σ̂4)−1/4). We know

` and r, and assuming we know σ, this provides a natural estimator for ρ̂2.

Note that σ̂2 = σ2 + O(log(n)/
√
n) with high probability. The performance
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of this estimator is empirically evaluated, as we use this in all our numerical

simulations to implement our adaptive scheme in Algorithm 4.

Algorithm 6 Parameter Estimation Algorithm

Require: assignment graph adjacency matrix E ∈ {0, 1}|M |×n, binary re-
sponses from the crowd {Aij}(i,j)∈E, task degree `, worker degree r,
worker collective quality parameter σ2

Ensure: estimate ρ2 of (1/|M |)∑i∈M λi
1: Construct matrix Ã ∈ {0,±1}|M |×n such that

Ãi,j =

{
Ai,j , if (i, j) ∈ E

0 , otherwise

for all i ∈ [|M |], j ∈ [n].

2: Set σ1(Ã) to be the top singular value of matrix Ã

3: ρ2 ←
(
σ1(Ã)/

√
`rσ2

)2

4.5 Alternative inference algorithm for the generalized

DS model

Our main contribution is a general framework for adaptive crowdsourcing:

starting with a small-budget, classify tasks with high-confidence, and then

gradually increase the budget per round, classifying remaining tasks. If we

have other inference algorithms with which we can get reliable confidence

levels in the estimated task labels, we can replace Algorithm 5. In this

section, we propose such a potential candidate and discuss the computational

challenges involved.

Under the original DS model, various standard methods such as Expec-

tation Maximization (EM) and Belief Propagation (BP) provide efficient

inference algorithms that also work well in practice [134]. However, un-

der the generalized DS model, both approaches fail to give computationally

tractable inference algorithms. The reason is that both tasks and workers

are parametrized by continuous variables, making EM and BP computation-

ally infeasible. In this section, we propose an alternative inference algorithm

based on alternating minimization. This approach enjoys the benefits of EM

and BP, such as seamlessly extending to k-ary alphabet labels, while remain-

ing computationally manageable. Figure 4.4 illustrates how this alternating
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minimization performs at least as well as the iterative algorithm (Algorithm

5), and improves significantly when the budget is critically small, i.e. only a

few workers are assigned to each task.

We propose to maximize the posterior distribution,

P[q, p|A] ∝
∏
i∈[m]

PQ[qi]
∏
j∈[n]

(
PP [pj]

∏
i′∈Wj

P[Ai′j|pi′ , qj]
)
. (4.39)

Although this function is not concave, maximizing over q (or p) fixing p

(or q) is simple due to the bipartite nature of the graph. Define a function

g : {±1} × [0, 1]× [0, 1]→ [−∞, 0] such that

g(Aij, qi, pj) =

log(qipj + q̄ip̄j) if Aij = 1

log(q̄ipj + qj p̄i) if Aij = −1
(4.40)

The logarithm of the joint posterior distribution (4.39) is

L(q, p|A) =
∑
i∈[m]

∑
j∈Wi

g(Aij, qi, pj) +
∑
i∈[m]

log(PQ[qi]) +
∑
j∈[n]

log(PP [pj]) .

(4.41)

With properly chosen prior distributions Q and P , in particular Beta priors,

it is easy to see that the log likelihood is a concave function of p for fixed q.

The same is true when fixing p and considering a function over q. Further,

each coordinate pj (and qi) can be maximized separately. We start with

qi = |W+
i |/(|W+

i | + |W−
i |) and perform alternating minimization on (4.41)

with respect to q and p iteratively until convergence, where W+
i = {j ∈ Wi :

Aij = 1}, W−
i = {j ∈ Wi : Aij = −1}, and Wi is the set of workers assigned

to task i.

In Figure 4.4, we compare our algorithm with alternating minimization

and majority voting on simulated data and real data. The first plot is gener-

ated under the same settings as the first plot of Figure 4.2 except that here

we use n = m = 300 and σ2 = 0.2. It shows that Algorithm 5 and alternat-

ing minimization performs almost the same after the spectral barrier, while

the proposed Algorithm 5 fails below the spectral barrier as expected from

the spectral analysis of Section 4.4. For the figure on the left, we choose

σ2 = 0.2, ρ2 = 1.4/3. From the analyses in Section 4.4, we predict the spec-
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tral barrier to be at ` = 11. In the second plot, we compare all the three

algorithms on real data collected from Amazon Mechanical Turk in [107].

This dataset considers binary classification tasks for comparing closeness in

human perception of colors; three colors are shown in each task and the

worker is asked to indicate “whether the first color is more similar to the

second color or the third color.” This is asked on 50 of such color compar-

ison tasks and 28 workers are recruited to complete all the tasks. We take

the ground truth according to which color is closer to the first color in pair-

wise distances in the Lab color space. The second plot shows probability

of error of the three algorithms when number of queries per task ` = Γ/m

is varied. We generated responses for different values of Γ/m by uniformly

sub-sampling. The alternating minimization and iterative algorithm perform

similarly. However, for very small Γ, alternating minimization outperforms

the iterative algorithm.
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Figure 4.4: The iterative algorithm improves over majority voting and has
similar performance as alternating minimization on both synthetic data
(left) and real data from Amazon’s Mechanical Turk (right).

4.6 Proofs

In this section, we provide the proofs of the main technical results.

4.6.1 Proof of Theorem 4.1

In this section, we first prove a slightly stronger result in Lemma 4.7 and

prove Theorem 4.1 as a corollary. Lemma 4.7 is stronger as it is an adaptive
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lower bound that holds for all discrete prior distributionsQ. The lower bound

in Equation (4.43) is adaptive in the sense that it automatically adjusts for

any given Q as shown in its explicit dependence in δmin and λ. On the other

hand, Theorem 4.1 only has to hold for one worst-case prior distribution Q.

Let Qλ,δmin
be the set of all discrete prior distributions on qi such that the

collective task difficulty is λ, and the minimum probability mass in it is δmin,

i.e.

Qλ,δmin
≡
{

discrete Q
∣∣∣ (EQ [ 1

(2qa − 1)2

])−1

= λ min
λa∈supp(Q̃)

Q̃(λa) = δmin

}
,

(4.42)

where Q̃ is the induced distribution on λa’s. We let TΓ be the set of all task

assignment schemes that make at most Γ queries to the crowd in expectation.

We prove a lower bound on the standard minimax error rate: the error that

is achieved by the best inference algorithm t̂ using the best adaptive task

assignment scheme τ ∈ TΓ under a worst-case worker parameter distribution

P ∈ Pσ2 and any task parameter distribution Q ∈ Qλ,δmin
. A proof of this

lemma is provided in the following section.

Lemma 4.7. For σ2 < 1, for any discrete Q ∈ Qλ,δmin
, there exists a positive

constant C ′ such that the average probability of error is lower bounded by

min
τ∈TΓ,t̂

max
P∈Pσ2

1

m

m∑
i=1

P[ti 6= t̂i] ≥ δmine
−C′

(
Γλσ2

m
+1
)
, (4.43)

where m is the number of tasks, Γ is the expected budget allowed in TΓ, λ

is the collective difficulty of the tasks from a prior distribution Q ∈ Qλ,δmin

defined in (4.42), σ2 is the collective reliability of the crowd from a prior

distribution P defined in (4.3), and δmin is defined in (4.42).

Theorem 4.1 follows immediately from Lemma 4.7 as it considers the worst-

case Q ∈ Qλ whereas the Lemma is proved for any discrete Q ∈ Qλ,δmin
.

For any given λ, there exists a discrete distribution Q ∈ Qλ,δmin
, namely

a distribution that is supported at two points q = (1 ±
√
λ)/2 with equal

probability mass of 1/2. Such a distribution has δmin = 1/2 and therefore

the Theorem 4.1 follows.
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4.6.2 Proof of Lemma 4.7

Let Wi ⊆ [n] denote the (random) set of workers assigned to task i in the

end, when n (random) number of workers have provided their responses. For

a task assignment scheme τ , we let

`
(τ)
i,qi

(Q,P) ≡ E[ |Wi||qi ] ,

denote the conditional expectation of number of workers assigned to a task

i conditioned on its quality qi, where expectation is w.r.t. the randomness

in the latent variables from (Q,P) except qi, the randomness in the task

assignment scheme τ and the responses A. Let

T`i,qi
≡
{
τ : `

(τ)
i,qi

= `i,qi

}
,

denote the set of all task assignment schemes that in expectation assign `i,qi
workers to the i-th task conditioned on its quality qi. Further, let

T{`i,qi}mi=1
≡
{
τ :
(
{`i,qi}mi=1

)(τ)
= {`i,qi}mi=1

}
,

denote the set of all task assignment schemes that in expectation assign `i,qi
workers to each task i ∈ [m] conditioned on its quality qi. The fundamental

lower bound crucially relies on the following technical lemma, whose proof is

provided in the following section.

Lemma 4.8. For any σ2 < 1, there exists a positive constant C ′ and a prior

distribution P∗ ∈ Pσ2 such that for each task i ∈ [m] with task difficulty qi

min
τ∈T`i,qi

,t̂
P[ti 6= t̂i|qi] ≥ e−C

′(λiσ2 `i,qi+1) ,

where λi = (2qi − 1)2. Moreover, the prior distribution P∗ does not depend

upon qi, therefore the bound holds simultaneously for all tasks i ∈ [m] with

varying qi’s.

This proves a lower bound on per task probability of error that decays

exponentially with exponent scaling as λiσ
2`i,qi . The easier the task (λi =

(2qi − 1)2 large), the more reliable the workers are (σ2 large), and the more

workers assigned to that task (`i,qi large), the smaller the achievable error.
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To get a lower bound on the minimax average probability of error, where the

error probability is over the randomness in the latent variables from (Q,P)

and the randomness in the task assignment scheme τ and the responses A,

we have,

min
τ∈TΓ,t̂

max
P∈Pσ2

1

m

m∑
i=1

P(P,Q,τ)[ti 6= t̂i]

= min
τ∈TΓ,t̂

max
P∈Pσ2

1

m

m∑
i=1

Eqi∼Q
[
P(P,Q,τ)[ti 6= t̂i|qi]

]
= min

`i,qi :
∑
i∈[m] EQ[`i,qi ]≤Γ

min
τ∈T{`i,qi}

m
i=1

,t̂
max
P∈Pσ2

1

m

m∑
i=1

Eqi∼Q
[
P(P,Q,τ)[ti 6= t̂i|qi]

]
≥ min

`i,qi :
∑
i∈[m] EQ[`i,qi ]=Γ

min
τ∈T{`i,qi}

m
i=1

,t̂

1

m

m∑
i=1

Eqi∼Q
[
P(P∗,Q,τ)[ti 6= t̂i|qi]

]
(4.44)

≥ min
`i,qi :

∑
i∈[m] EQ[`i,qi ]=Γ

1

m

m∑
i=1

{
Eqi∼Q

[
min

τ∈T`i,qi
,t̂

P(P∗,Q,τ)[ti 6= t̂i|qi]
]}
(4.45)

≥ min
`i,qi :

∑
i∈[m] EQ[`i,qi ]=Γ

1

m

m∑
i=1

Eqi∼Q
[
e−C

′
e−C

′λiσ2`i,qi

]
(4.46)

= min
`a:
∑
a∈[T ] δa`a=Γ/m

T∑
a=1

δae
−C′e−C

′λaσ2`a (4.47)

= e−C
′
e−C

′ Γλσ2

m

( T∑
a=1

δae
−λ
∑
a′ 6=a(δa′/λa′ ) log(λa/λa′ )

)
(4.48)

≥ e−C
′
δmine

−C′ Γλσ
2

m .

(4.44) follows from the fact that fixing a prior P∗ provides a lower bound.

(4.45) follows from the fact that exchanging min and sum (and also expecta-

tion which is essentially a weighted sum) provides a lower bound. (4.46) uses

Lemma 4.8. In (4.47), we used the assumption that Q is a discrete distribu-

tion supported on {qa}a∈[T ] points with probability mass δa’s. `a is expected

number of workers assigned to each task with difficulty δa and λa = (2qa−1)2.

To achieve (4.48), we assume that the task assignment scheme has access

to an oracle that reveals difficulty of each task qa. Therefore, solving the
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optimization problem in (4.47) we get (4.48). The optimal choice of `a is,

`a =
λ

λa

Γ

m
+

λ

λaC ′σ2

(∑
a′ 6=a

δa′

λa′
log
( λa
λa′

))
, (4.49)

where λ =
(
EQ
[

1
(2qi−1)2

])−1

= (
∑

a δa/λa)
−1. The summand in (4.48) does

not depend upon the budget Γ/m, and it is lower bounded by δmin > 0. This

follows from the fact that in the summand the term corresponding to a such

that λa = λmin is lower bounded by δmin. Ignoring the second term in the

above equation, which does not depend on Γ, in our adaptive algorithm, we

aim to assign `a = λ
λa

Γ
m

workers to tasks of difficulty λa.

4.6.3 Proof of Lemma 4.8

We will show that there exists a family of worker reliability distributions

P∗ ∈ Pσ2 such that for any adaptive task assignment scheme that assigns

E[|Wi||qi] workers in expectation to a task i conditioned on its difficulty qi, the

conditional probability of error of task i conditioned on qi is lower bounded

by exp (−C ′λiσ2E[|Wi||qi]). We define the following family of distributions

according to the spammer-hammer model. Define

pj =

{
1/2, w.p. 1− σ2,

1, w.p. σ2 ,
,

such that E[(2pj − 1)2] = σ2. Let E[Wi|qi] denote the expected number of

workers conditioned on the task difficulty qi, that the adaptive task assign-

ment scheme assigns to the task i. We consider a labeling algorithm that

has access to an oracle that knows reliability of every worker (all the pj’s).

Focusing on a single task i, since we know who the spammers are and spam-

mers give no information about the task, we only need the responses from the

hammers in order to make an optimal estimate. In particular, the optimal

estimate would be the majority vote of the hammers.

Let Ei denote the conditional error probability of the optimal estimate

conditioned on the realizations of the answers {Aij}j∈Wi
and the worker reli-

ability {pj}j∈Wi
. We have E[Ei|qi] ≡ P[ti 6= t̂i|qi]. The following lemma gives

a lower bound on the error that depends only on the number of hammer
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workers, which we denote by `i, a random variable.

Lemma 4.9. For any C < 1, there exists a positive constant C ′ such that

when (2qi − 1)2 < C, the conditional error achieved by majority vote of `i

hammer workers is at least

E[Ei|qi, `i] ≥ e−C
′(`i(2qi−1)2+1) .

The lemma follows immediately from Lemma 2.6 in [107] using the fact that

the label provided by each hammer worker is an i.i.d. random variable that

takes value 1 with probability qi and −1 otherwise, conditioned on the task

difficulty qi. Therefore, wlog, assuming the ground truth label ti = sign(2qi−
1) = 1, we have, E[Ei|qi, `i] = P[x < 0] where x ∼ 2 Binom(`i, qi) − `i. By

convexity and Jensen’s inequality, it follows that

E[Ei|qi] ≥ e−C
′(E[`i|qi](2qi−1)2+1) .

When we recruit |Wi| workers, using Doob’s Optional-Stopping Theorem

[210, 10.10], conditional expectation of number of hammer workers is

E[`i|qi] = σ2E[|Wi| |qi] . (4.50)

Combining the above two equations, we get the desired result

P[ti 6= t̂i|qi] = E[Ei|qi] ≥ e−C
′(σ2(2qi−1)2E[|Wi| |qi]+1) .

To verify Equation 4.50: Define Xi,k for k ∈ [|Wi|] to be a Bernoulli random

variable, for a fixed i ∈ [m] and fixed task difficulty qi. Let Xi,k take value

one when the k-th recruited worker for task i is reliable and zero otherwise.

Observe that the number of reliable workers is `i =
∑|Wi|

k=1 Xi,k. From the

spammer-hammer model that we have considered, E[Xi,k − σ2] = 0. Define

Zi,k ≡
∑k

k′=1(Xi,k′ − σ2) for k ∈ [|Wi|]. Since {(Xi,k − σ2)}k∈[|Wi|] are mean

zero i.i.d. random variables, {Zi,k}k∈[|Wi|] is a martingale with respect to the

filtration Fi,k = σ(Xi,1, Xi,2, · · · , Xi,k). Further, it is easy to check that the

random variable |Wi| for a fixed qi is a stopping time with respect to the

same filtration Fi,k and is almost surely bounded assuming the budget is

finite. Therefore using Doobs Optional-Stopping Theorem [210, 10.10], we

have E[Zi,|Wi|] = E[Zi,1] = 0. That is we have, E[Xi,1 +Xi,2 + · · ·+Xi,|Wi|] =
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σ2E[|Wi|]. Since this is true for any fixed task difficulty qi, we get Equation

(4.50).

4.6.4 Proof of Theorem 4.4

First we show that the messages returned by Algorithm 5 are normally dis-

tributed and identify their conditional means and conditional variances in the

following lemma. Assume in a sub-round (t, u), t ∈ [T ], u ∈ [st], the number

of tasks remaining unclassified are mt,u and the task assignment is performed

according to an (`t, rt)-regular random graph. To simplify the notation, let
ˆ̀
t ≡ `t − 1, r̂t ≡ rt − 1, and recall µ = E[2pj − 1], σ2 = EP [(2pj − 1)2]. Note

that µ, σ2 remain same in each round. Let ρ2
t,u = (1/|M |)∑i∈[M ] λi be the

exact value of average task difficulty of the tasks present in the (t, u) sub-

round. When `t and rt are increasing with the problem size, the messages

converge to a Gaussian distribution due to the central limit theorem. We

provide a proof of this lemma in Section 4.6.5.

Lemma 4.10. Suppose for `t = Θ(logmt,u) and rt = Θ(logmt,u), tasks are

assigned according to (`t, rt)-regular random graphs. In the limit mt,u →∞,

if µ > 0, then after k = Θ(
√

logmt,u) number of iterations in Algorithm 5,

the conditional mean µ
(k)
q and the conditional variance

(
ρ

(k)
q

)2
conditioned on

the task difficulty q of the message xi corresponding to the task i returned by

the Algorithm 5 are

µ(k)
q = (2q − 1)µ`t(ˆ̀

tr̂tρ
2
t,uσ

2)(k−1) ,(
ρ(k)
q

)2

= µ2`t(ˆ̀
tr̂tρ

2
t,uσ

2)2(k−1)

(
ρ2
t,u − (2q − 1)2

+
ρ2
t,u

ˆ̀
t(1− ρ2

t,uσ
2)(1 + r̂tρ

2
t,uσ

2)
(
1− (ˆ̀

tr̂tρ
4
t,uσ

4)−(k−1)
)

ˆ̀
tr̂tρ4

t,uσ
4 − 1

)
+`t(2− µ2ρ2

t,u)(
ˆ̀
tr̂t)

k−1 . (4.51)

We will show in (4.56) that the probability of misclassification for any

task in sub-round (t, u) in Algorithm 4 is upper bounded by e−(Cδ/4)(Γ/m)λσ2
.

Since, there are at most C1 = smaxT ≤ log2(2δmax/δmin) log2(2λmax/λmin)

rounds, using union bound we get the desired probability of error. In (4.60),
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we show that the expected total number of worker assignments across all

rounds is at most Γ.

Let’s consider any task i ∈ [m] having difficulty λi. Without loss of

generality assume that ti = 1 that is qi > 1/2. Let us assume that the

task i gets classified in the (t, u) sub-round, t ∈ [T ], u ∈ [st]. That is the

number of workers assigned to the task i when it gets classified is `t =

Cδ(Γ/m)(λ̂/λt) and the threshold Xt,u set in that round for classification is

Xt,u =
√
λtµ`t

(
(`t − 1)(rt − 1)ρ2

t,uσ
2
)kt−1

. From Lemma 4.10 the message xi

returned by Algorithm 5 is Gaussian with conditional mean and conditional

variance as given in (4.51). Therefore in the limit of m, the probability of

error in task i is

lim
m→∞

P
[
t̂i 6= ti|qi

]
= lim

m→∞
P
[
xi < −Xt,u|qi

]
= lim

m→∞
Q
(µ(k)

qi + Xt,u
ρ

(k)
qi

)
(4.52)

≤ lim
m→∞

exp
(−(µ

(k)
qi + Xt,u)2

2(ρ
(k)
qi )2

)
(4.53)

= exp
(−((2qi − 1) +

√
λt)

2`tσ
2

2(1− (2qi − 1)2σ2)

)
(4.54)

≤ exp
(−λt`tσ2

2

)
= exp

(−Cδ(Γ/m)λ̂σ2

2

)
(4.55)

≤ exp
(−Cδ(Γ/m)λσ2

4

)
, (4.56)

where Q(·) in (4.52) is the tail probability of a standard Gaussian dis-

tribution, and (4.53) uses the Chernoff bound. (4.54) follows from sub-

stituting conditional mean and conditional variance from Equation (4.51),

and using `t = Θ(logmt,u), k = Θ(
√

logmt,u) where m grows to infin-

ity. (4.55) uses `t = Cδ(Γ/m)(λ̂/λt), our choice of `t in Algorithm 4 line

4. (4.56) uses the fact that for the quantized distribution {λa, δa}a∈[T ],

λ̂ =
(∑

a∈[T ](δa/λa)
)−1 ≥ λ/2. We have established that our approach

guarantees the desired level of accuracy. We are left to show that we use at

most Γ assignments in expectation.

We upper bound the expected total number of workers used for tasks of

quantized difficulty level λa’s for each 1 ≤ a ≤ T . Recall that our adaptive
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algorithm runs in T rounds indexed by t, where each round t further runs st

sub-rounds. The total expected number of workers assigned to δa fraction of

tasks of quantized difficulty λa in t = 1 to t = a−1 rounds is upper bounded

by mδa
∑a−1

t=1 st`t. The upper bound assumes the worst-case (in terms of the

budget) that these tasks do not get classified in any of these rounds as the

threshold X set in these rounds is more than absolute value of the conditional

mean message x of these tasks.

Next, in st=a sub-rounds the threshold X is set less than or equal to the ab-

solute value of the conditional mean message x of these tasks, i.e. X ≤ |µ(k)
qa |

for (2qa − 1)2 = λa. Therefore, in each of these sa sub-rounds, probability of

classification of these tasks is at least 1/2. That is the expected total num-

ber of workers assigned to these tasks in sa sub-rounds is upper bounded by

2mδa`a. Further, sa is chosen such that the fraction of these tasks remaining

un-classified at the end of sa sub-rounds is at most same as the fraction of the

tasks having difficulty λa+1. That is to get the upper bound, we can assume

that the fraction of λa+1 difficulty tasks at the start of sa+1 sub-rounds is

2δa+1, and the fraction of λa difficulty tasks at the start of sa+1 sub-rounds is

zero. Further, recall that we have set sT = 1 as in this round our threshold

X is equal to zero. Therefore, we have the following upper bound on the

expected total number of worker assignments.

m∑
i=1

E[|Wi|] ≤ 2mδ1`1 +
T−1∑
a=2

4mδa`a + 2mδT `T +
T∑
a=2

(
mδa

a−1∑
b=1

sb`b

)
≤

T∑
a=1

4mδa`a + smax

T∑
a=1

mδa`a (4.57)

≤ (4 + dlog(2δmax/δmin)e)
T∑
a=1

mδa`a (4.58)

≤ (4 + dlog(2δmax/δmin)e)ΓCδ (4.59)

= Γ , (4.60)

Equation (4.57) uses the fact that `t = (Cδ(Γ/m)(λ̂/λt) where λt’s are sepa-

rated apart by at least a ratio of 2 (recall the quantized distribution), there-

fore
∑a−1

t=1 `t ≤ `a. Equation (4.58) follows from the choice of st’s in the

algorithm. Equation (4.59) follows from using `t = (Cδ(Γ/m)(λ̂/λt) and λ =

(
∑

a∈[T ](δa/λa))
−1, and Equation (4.60) uses Cδ = (4 + dlog(2δmax/δmin)e)−1.
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4.6.5 Proof of Lemma 4.10

We omit subscripts t and (t, u) from all the quantities for simplicity of nota-

tions. Also, we use notation `, average budget per task, ` = Γ/m. We will

prove it for a randomly chosen task I, and all the analyses naturally holds

for a specific i, when conditioned on qi. Let n be the number of workers, that

is n = (mr)/`. In our algorithm, we perform task assignment on a random

bipartite graph G([m] ∪ [n], E) constructed according to the configuration

model. Let Gi,k denote a subgraph of G([m] ∪ [n], E) that includes all the

nodes that are within k distance from the the “root” i. If we run our infer-

ence algorithm for one run to estimate t̂i, we only use the responses provided

by the workers who were assigned to task i. That is we are running inference

algorithm only on the local neighborhood graph Gi,1. Similarly, when we run

our algorithm for k iterations to estimate t̂i, we perform inference only on

the local subgraph Gi,2k−1. Since we update both task and worker messages

at each iteration, the local subgraph grows by distance two at each iteration.

We use a result from [107] to show that the local neighborhood of a randomly

chosen task node I is a tree with high probability. Therefore, assuming that

the graph is locally tree like with high probability, we can apply a technique

known as density evolution to estimate the conditional mean and conditional

variance. The next lemma shows that the local subgraph converges to a tree

in probability, in the limit m→∞ for the specified choice of `, r and k.

Lemma 4.11 (Lemma 5 from [107]). For a random (`, r)-regular bipartite

graph generated according to the configuration model,

P
[
GI,2k−1 is not a tree

]
≤
(
(`− 1)(r − 1)

)2k−2 3`r

m
. (4.61)

Density Evolution. Let {x(k)
i→j}(i,j)∈E and {y(k)

j→i}(i,j)∈E denote the mes-

sages at the k-th iteration of the algorithm. For an edge (i, j) chosen uni-

formly at random, let x
(k)
q denote the random variable corresponding to the

message x
(k)
i→j conditioned on the i-th task’s difficulty being q. Similarly, let

y
(k)
p denote the random variable corresponding to the message y

(k)
j→i condi-

tioned on the j-th worker’s quality being p.

At the first iteration, the task messages are updated according to x
(1)
i→j =∑

j′∈∂i\j Aij′y
(0)
j′→i. Since we initialize the worker messages {y(0)

j→i}(i,j)∈E with

independent Gaussian random variables with mean and variance both one,
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if we know the distribution of Aij′ ’s, then we have the distribution of x
(1)
i→j.

Since, we are assuming that the local subgraph is tree-like, all x
(1)
i→j for i ∈

GI,2k−1 for any randomly chosen node I are independent. Further, because

of the symmetry in the construction of the random graph G all messages

x
(1)
i→j’s are identically distributed. Precisely, x

(1)
i→j are distributed according

to x
(1)
q defined in Equation (7.5). In the following, we recursively define x

(k)
q

and y
(k)
p in Equations (7.5) and (4.64).

For brevity, here and after, we drop the superscript k-iteration number

whenever it is clear from the context. Let xq,a’s and yp,b’s be independent

random variables distributed according to xq and yp respectively. We use a

and b as indices for independent random variables with the same distribu-

tion. Also, let zp,q,a’s and zp,q,b’s be independent random variables distributed

according to zp,q, where

zp,q =

+1 w.p. pq + (1− p)(1− q) ,
−1 w.p. p(1− q) + (1− p)q .

(4.62)

This represents the response given by a worker conditioned on the task having

difficulty q and the worker having ability p. Let P1 and P2 over [0, 1] be the

distributions of the tasks’ difficulty level and workers’ quality respectively.

Let q ∼ P1 and p ∼ P2. Then qa’s and pb’s are independent random variables

distributed according to q and p respectively. Further, zp,qa,a’s and xqa,a’s

are conditionally independent conditioned on qa; and zpb,q,b’s and ypb,b’s are

conditionally independent conditioned on pb.

Let
d
= denote equality in distribution. Then for k ∈ {1, 2, · · · }, the task

messages (conditioned on the latent task difficulty level q) are distributed as

the sum of ` − 1 incoming messages that are i.i.d. according to y
(k−1)
p and

weighted by i.i.d. responses:

x(k)
q

d
=
∑
b∈[`−1]

zpb,q,by
(k−1)
pb,b

. (4.63)

Similarly, the worker messages (conditioned on the latent worker quality p)

are distributed as the sum of r−1 incoming messages that are i.i.d. according
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to x
(k)
q and weighted by the i.i.d. responses:

y(k)
p

d
=
∑

a∈[r−1]

zp,qa,ax
(k)
qa,a. (4.64)

For the decision variable x
(k)
I on a task I chosen uniformly at random, we

have

x̂(k)
q

d
=
∑
a∈[`]

zpa,q,ay
(k−1)
pa,a . (4.65)

Mean and Variance Computation. Define m
(k)
q ≡ E[x

(k)
q |q] and m̂

(k)
p ≡

E[y
(k)
p |p], ν(k)

q ≡ Var(x
(k)
q |q) and ν̂

(k)
p ≡ Var(y

(k)
p |p). Recall the notations

µ ≡ E[2p− 1], ρ2 ≡ E[(2q− 1)2], σ2 ≡ E[(2p− 1)2], ˆ̀= `− 1, and r̂ = r− 1.

Then from (7.5) and (4.64) and using E[zp,q] = (2p − 1)(2q − 1) we get the

following:

m(k)
q = ˆ̀(2q − 1)Ep

[
(2p− 1)m̂(k−1)

p

]
, (4.66)

m̂(k)
p = r̂(2p− 1)Eq

[
(2q − 1)m(k)

q

]
, (4.67)

ν(k)
q = ˆ̀

{
Ep
[
ν̂(k−1)
p + (m̂(k−1)

p )2
]
− (m(k)

q /ˆ̀)2
}
, (4.68)

ν̂(k)
p = r̂

{
Eq
[
ν(k)
q + (m(k)

q )2
]
− (m̂(k)

p /r̂)2
}
. (4.69)

Define m(k) ≡ Eq[(2q − 1)m
(k)
q ] and ν(k) ≡ Eq[ν(k)

q ]. From (4.66) and (4.67),

we have the following recursion on the first moment of the random variable

x
(k)
q :

m(k)
q = ˆ̀̂r(2q − 1)σ2m(k−1),m(k) = ˆ̀̂rρ2σ2m(k−1) . (4.70)

From (4.68) and (4.69), and using Eq[(m(k)
q )2] = (m(k))2/ρ2 (from (4.70)),

and Ep[(m̂(k)
p )2] = r̂2σ2(m(k))2 (from (4.67)) , we get the following recursion

on the second moment:

ν(k)
q = ˆ̀̂rν(k−1) + ˆ̀̂r(m(k−1))2

(
(1− ρ2σ2)(1 + r̂ρ2σ2)

+r̂ρ2(σ2)2(ρ2 − (2q − 1)2)
)
/ρ2 , (4.71)

ν(k) = ˆ̀̂rν(k−1) + ˆ̀̂r(m(k−1))2(1− ρ2σ2)(1 + r̂ρ2σ2)/ρ2. (4.72)
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Since m̂
(0)
p = 1 as per our assumption, we have m

(1)
q = ˆ̀µ(2q − 1) and

m(1) = ˆ̀µρ2. Therefore from (4.70), we have m(k) = ˆ̀µρ2(ˆ̀̂rρ2σ2)k−1 and

m
(k)
q = ˆ̀µ(2q− 1)(ˆ̀̂rρ2σ2)k−1. Further, since ν̂

(0)
p = 1 as per our assumption,

we have ν
(1)
q = ˆ̀(2 − µ2(2q − 1)2) and ν(1) = ˆ̀(2 − µ2ρ2). This implies

that ν(k) = aν(k−1) + bck−2, with a = ˆ̀̂r, b = µ2ρ2 ˆ̀3r̂(1 − ρ2σ2)(1 + r̂ρ2σ2)

and c = (ˆ̀̂rρ2σ2)2. After some algebra, we have that ν(k) = ν(1)ak−1 +

bck−2
∑k−2

`=0 (a/c)`. For ˆ̀̂r(ρ2σ2)2 > 1, we have a/c < 1 and

ν(k)
q = ˆ̀(2− µ2ρ2)(ˆ̀̂r)k−1 + µ2 ˆ̀(ˆ̀̂rρ2σ2)2k−2(ρ2 − (2q − 1)2)

+

(
1− 1/(ˆ̀̂r(ρ2σ2)2)k−1

ˆ̀̂rρ4σ4 − 1

)
(1− ρ2σ2)(1 + r̂ρ2σ2)µ2ρ2 ˆ̀2(ˆ̀̂rρ2σ2)2k−2.

(4.73)

By a similar analysis, mean and variance of the decision variable x̂
(k)
q in

(4.65) can also be computed. In particular, they are `/ˆ̀ times m
(k)
q and ν

(k)
q .

Gaussianity of the messages follows due to Central limit theorem.

4.6.6 Proof of Theorem 4.5

The proof uses the results derived in the proof of Lemma 4.10.

Let t̂
(k)
i denote the resulting estimate of task i after running the iterative

inference algorithm for k iterations. We want to compute the conditional

probability of error of a task I selected uniformly at random in [m], condi-

tioned on its difficulty level, i.e.,

P
[
tI 6= t̂

(k)
I

∣∣qI] .
In the following, we assume qI ≥ (1/2), i.e. the true label is ti = 1. Analysis

for qI ≤ (1/2) would be similar and result in the same bounds. Using the

arguments given in Lemma 4.10, we have,

P
[
tI 6= t̂

(k)
I

∣∣qI] ≤ P
[
tI 6= t̂

(k)
I

∣∣GI,2k−1 is a tree, qI
]

+ P
[
GI,2k−1 is not a tree

]
.

(4.74)

To provide an upper bound on the first term in (7.1), let x
(k)
i denote the

decision variable for task i after k iterations of the algorithm such that t̂
(k)
i =
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sign(x
(k)
i ). Then as per our assumption that ti = 1, we have,

P
[
tI 6= t̂

(k)
I |GI,2k−1is a tree, qI

]
≤ P

[
x

(k)
I ≤ 0|GI,2k−1is a tree, qI

]
.(4.75)

Next, we apply “density evolution” [152] and provide a sharp upper bound

on the probability of the decision variable x
(k)
I being negative in a locally

tree like graph given qI ≥ (1/2). The proof technique is similar to the one

introduced in [107]. Precisely, we show,

P
[
x

(k)
I ≤ 0|GI,2k−1 is a tree , qI

]
= P

[
x̂(k)
q ≤ 0

]
, (4.76)

where x̂
(k)
q is defined in Equations (7.5)-(4.65) using density evolution. We

will prove in the following that when ˆ̀̂r(ρ2σ2)2 > 1 and r̂ρ2 > 1,

P
[
x̂(k)
q ≤ 0

]
≤ e−`σ

2(2qI−1)2/(2σ2
k). (4.77)

Theorem 4.5 follows by combining Equations (7.1),(7.2),(7.3) and (4.76).

we show that x̂(k) is sub-Gaussian with some appropriate parameter and

then apply the Chernoff bound. A random variable x with mean µ is said to

be sub-Gaussian with parameter σ if for all λ ∈ R the following bound holds

for its moment generating function:

E[eλx] ≤ eµλ+(1/2)σ2λ2

. (4.78)

Define,

σ̃2
k ≡ 3ˆ̀3r̂µ2ρ2(r̂ρ2σ2 + 1)(ˆ̀̂rρ2σ2)2k−4

(1− 1/(ˆ̀̂r(ρ2σ2)2)k−1

1− 1/(ˆ̀̂rρ2σ2)

)
+ 2ˆ̀(ˆ̀̂r)k−1 ,

(4.79)

mk ≡ µˆ̀(ˆ̀̂rρ2σ2)k−1, and mk,q ≡ (2q − 1)mk for k ∈ Z, where q ∼ P1. We

will show that, x
(k)
q is sub-Gaussian with mean mk,q and parameter σ̃2

k for

|λ| ≤ 1/(2mk−1r̂ρ
2), i.e.,

E[eλx
(k)
q |q] ≤ emk,qλ+(1/2)σ̃2

kλ
2

. (4.80)

Analyzing the Density. Notice that the parameter σ̃2
k does not depend
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upon the random variable q. By definition of x̂
(k)
q , (4.65), we have

E[eλx̂
(k)
q |q] = E[eλx

(k)
q |q](`/ˆ̀) .

Therefore, it follows that E[eλx̂
(k)
q |q] ≤ e(`/ˆ̀)mk,qλ+(`/2ˆ̀)σ̃2

kλ
2
. Using the Chernoff

bound with λ = −mk,q/(σ̃
2
k), we have

P[x̂(k)
q ≤ 0 | q] ≤ E[eλx̂

(k)
q |q] ≤ e−`m

2
k,q/(2

ˆ̀̃σ2
k) . (4.81)

Note that, with the assumption that q ≥ (1/2), mk,q is non-negative. Since

mk,qmk−1,q

σ̃2
k

≤ (2q − 1)2µ2 ˆ̀2(ˆ̀̂rρ2σ2)2k−3

3µ2σ2(ρ2)2 ˆ̀3r̂2(ˆ̀̂rρ2σ2)2k−4
=

(2q − 1)2

3r̂ρ2
,

it follows that |λ| ≤ 1/(2mk−1r̂ρ
2). The desired bound in (7.4) follows.

Now, we are left to prove Equation (4.80). From (7.5) and (4.64), we have

the following recursive formula for the evolution of the moment generating

functions of xq and yp:

E[eλx
(k)
q |q] =

(
Ep
[
(pq + p̄q̄)E[eλy

(k−1)
p |p] + (pq̄ + p̄q)E[e−λy

(k−1)
p |p]

])ˆ̀
,

(4.82)

E[eλy
(k)
p |p] =

(
Eq
[
(pq + p̄q̄)E[eλx

(k)
q |q] + (pq̄ + p̄q)E[e−λx

(k)
q |q]

])r̂
, (4.83)

where p̄ = 1−p and q̄ = 1−q. We apply induction to prove that the messages

are sub-Gaussian. First, for k = 1, we show that x
(1)
q is sub-Gaussian with

mean m1,q = (2q − 1)µˆ̀ and parameter σ̃2
1 = 2ˆ̀. Since, yp is initialized

as a Gaussian random variable with mean and variance both one, we have

E[eλy
(0)
p ] = eλ+(1/2)λ2

. Substituting this into Equation (4.82), we get for any

λ,

E[eλx
(1)
q |q] =

((
E[p]q + E[p̄]q̄

)
eλ +

(
E[p]q̄ + E[p̄]q

)
e−λ
)ˆ̀
e(1/2)λ2 ˆ̀

(4.84)

≤ e(2q−1)µˆ̀λ+(1/2)(2ˆ̀)λ2

, (4.85)

where the inequality follows from the fact that aez+(1−a)e−z ≤ e(2a−1)z+(1/2)z2
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for any z ∈ R and a ∈ [0, 1] (Lemma A.1.5 from [5]). Next, assuming

E[eλx
(k)
q |q] ≤ emk,qλ+(1/2)σ̃2

kλ
2

for |λ| ≤ 1/(2mk−1r̂ρ
2), we show that

E[eλx
(k+1)
q |q] ≤ emk+1,qλ+(1/2)σ̃2

k+1λ
2

for |λ| ≤ 1/(2mkr̂ρ
2), and compute appropriate mk+1,q and σ̃2

k+1.

Substituting the bound E[eλx
(k)
q |q] ≤ emk,qλ+(1/2)σ̃2

kλ
2

in (4.83), we have

E[eλy
(k)
p |p]

≤
(
Eq
[
(pq + p̄q̄)emk,qλ + (pq̄ + p̄q)e−mk,qλ

])r̂
e(1/2)σ̃2

kλ
2r̂

≤
(
Eq
[
e(2q−1)(2p−1)mk,qλ+(1/2)(mk,qλ)2])r̂

e(1/2)σ̃2
kλ

2r̂ (4.86)

=
(
Eq
[
e(2p−1)(2q−1)2mkλ+(1/2)(2q−1)2(mkλ)2])r̂

e0.5σ̃2
kλ

2r̂ (4.87)

where (4.86) uses the inequality aez + (1− a)e−z ≤ e(2a−1)z+(1/2)z2
and (4.87)

follows from the definition of mk,q ≡ (2q − 1)mk. To bound the term in

(4.87), we use the following lemma.

Lemma 4.12. For any random variable s ∈ [0, 1], |z| ≤ 1/2 and |t| < 1, we

have

E
[
estz+(1/2)sz2] ≤ exp

(
E[s]tz + (3/2)E[s]z2

)
. (4.88)

For |λ| ≤ 1/(2mkr̂ρ
2), using the assumption that r̂ρ2 > 1, we have mkλ ≤

(1/2). Applying Lemma 4.12 on the term in (4.87), with s = (2q − 1)2,

z = mkλ and t = (2p− 1), we get

E[eλy
(k)
p |p] ≤ eρ

2(2p−1)r̂mkλ+(1/2)
(

3ρ2m2
k+σ̃2

k

)
λ2r̂ . (4.89)

Substituting the bound in (4.89) in Equation (4.82), we get

E[eλx
(k+1)
q |q]

≤
(
Ep
[
(pq + p̄q̄)eρ

2(2p−1)mkλr̂ + (pq̄ + p̄q)e−ρ
2(2p−1)mkλr̂

])ˆ̀
e(1/2)(3ρ2m2

k+σ̃2
k)λ2 ˆ̀̂r

≤
(
Ep
[
e(2q−1)(2p−1)2ρ2mkλr̂+(1/2)(2p−1)2(ρ2mkλr̂)

2])ˆ̀
e(1/2)(3ρ2m2

k+σ̃2
k)λ2 ˆ̀̂r (4.90)

≤ e
ˆ̀̂rρ2σ2mk,qλ+(1/2)ˆ̀̂r

(
σ̃2
k+3ρ2m2

k(1+r̂ρ2σ2)
)
λ2

, (4.91)
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where (4.90) uses the inequality aez + (1− a)e−z ≤ e(2a−1)z+(1/2)z2
. Equation

(4.91) follows from the application of Lemma 4.12, with s = (2p − 1)2, z =

ρ2mkλr̂ and t = (2q − 1). For |λ| ≤ 1/(2mkr̂ρ
2), |z| < (1/2).

In the regime where ˆ̀̂r(ρ2σ2)2 > 1, as per our assumption, mk is non-

decreasing in k. At iteration k, the above recursion holds for

|λ| ≤ 1/(2r̂ρ2) min{1/m1, · · · , 1/mk−1} = 1/(2mk−1r̂ρ
2) .

Hence, we get the following recursion for mk,q and σ̃2
k such that (4.80) holds

for |λ| ≤ 1/(2mk−1r̂ρ
2):

mk,q = ˆ̀̂rρ2σ2mk−1,q,

σ̃2
k = ˆ̀̂rσ̃2

k−1 + 3ˆ̀̂r(1 + r̂ρ2σ2)ρ2m2
k−1 . (4.92)

With the initialization m1,q = (2q−1)µˆ̀ and σ̃2
1 = 2ˆ̀, we have mk,q = µ(2q−

1)ˆ̀(ρ2σ2 ˆ̀̂r)k−1 for k ∈ {1, 2, · · · } and σ̃2
k = aσ̃2

k−1 + bck−2 for k ∈ {2, 3 · · · },
with a = ˆ̀̂r, b = 3ˆ̀3r̂µ2ρ2(1+ρ2σ2r̂), and c = (ρ2σ2 ˆ̀̂r)2. After some algebra,

we have σ̃2
k = σ̃2

1a
k−1+bck−2

∑k−2
`=0 (a/c)`. For ˆ̀̂r(ρ2σ2)2 6= 1, we have a/c 6= 1,

whence σ̃2
k = σ̃2

1a
k−1 + bck−2(1− (a/c)k−1)/(1− a/c). This finishes the proof

of (4.80).

4.6.7 Proof of Lemma 4.12

Using the fact that ea ≤ 1 + a+ 0.63a2 for |a| ≤ 5/8,

E
[
estz+(1/2)sz2]

≤ E
[
1 + stz + (1/2)sz2 + 0.63

(
stz + (1/2)sz2

)2]
≤ E

[
1 + stz + (1/2)sz2 + 0.63

(
(5/4)z

√
s
)2]

≤ 1 + E[s]tz + (3/2)E[s]z2

≤ exp
(
E[s]tz + (3/2)E[s]z2

)
.
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4.6.8 Proof of Theorem 4.6

Let P denote a distribution on the worker quality pj such that pj ∼ P . Let

Pσ2 be a collection of all distributions P such that:

Pσ2 =
{
P | EP [(2pj − 1)2] = σ2

}
.

Define the minimax rate on the probability of error of a task i, conditioned

on its difficulty level qi, as

min
τ∈T`i ,t̂

max
ti∈{±},P∈Pσ2

P[ti 6= t̂i | qi] , (4.93)

where T`i is the set of all nonadaptive task assignment schemes that assign

`i workers to task i, and t̂ ranges over the set of all estimators of ti. Since

the minimax rate is the maximum over all the distributions P ∈ Pσ2 , we

consider a particular worker quality distribution to get a lower bound on it.

In particular, we assume the pj’s are drawn from a spammer-hammer model

with perfect hammers:

pj =

1/2 with probability 1− σ2,

1 otherwise.

Observe that the chosen spammer-hammer models belongs to Pσ2 , i.e. E[(2pj−
1)2] = σ2. To get the optimal estimator, we consider an oracle estimator that

knows all the pj’s and hence makes an optimal estimation. It estimates t̂i

using majority voting on hammers and ignores the answers of hammers. If

there are no hammers then it flips a fair coin and estimates t̂i correctly with

half probability. It does the same in case of tie among the hammers. Con-

cretely,

t̂i = sign

(∑
j∈Wi

I{j ∈ H})Aij
)
,

where Wi denotes the neighborhood of node i in the graph and H is the

set of hammers. Note that this is the optimal estimation for the spammer-

hammer model. We want to compute a lower bound on P[ti 6= t̂i|qi]. Let ˜̀
i

be the number of hammers answering task i, i.e.,˜̀i = |Wi ∩ H|. Since pj’s

are drawn from spammer-hammer model, ˜̀
i is a binomial random variable
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Binom(`i, σ
2). We first compute probability of error conditioned on ˜̀

i, i.e.

P[ti 6= t̂i|˜̀i, qi]. For this, we use the following lemma from [107].

Lemma 4.13 (Lemma 2 from [107]). For any C < 1, there exists a positive

constant C ′ such that when (2qi − 1) ≤ C, the error achieved by majority

voting is at least

min
τ∈T˜̀

max
ti∈{±}

P[ti 6= t̂i|˜̀i, qi] ≥ e−C
′(˜̀
i(2qi−1)2+1). (4.94)

Taking expectation with respect to random variable ˜̀
i and applying Jensen’s

inequality on the term in right side, we get a lower bound on the minimax

probability of error in (4.93)

min
τ∈T˜̀,t̂

max
P∈Pσ2

ti∈{±}

P[ti 6= t̂i|qi] ≥ e−C
′(`iσ2(2qi−1)2+1) . (4.95)

4.7 Discussion

Recent theoretical advances in crowdsourcing systems have not been able

to explain the gain in adaptive task assignments, widely used in practice.

This is mainly due to the fact that existing models of the worker responses

failed to capture the heterogeneity of the tasks, while the gain in adaptivity

is signified when tasks are widely heterogeneous. To bridge this gap, we

propose studying the gain of adaptivity under a more general model recently

introduced by [220], which we call the generalized Dawid-Skene model.

We identify that the minimax error rate decays as e−Cλσ
2Γ/m, where the

dependence on the heterogeneity in the task difficulties is captured by the

error exponent λ defined as (6.27). This is proved by showing a fundamental

limit in Theorem 4.1 analyzing the best possible adaptive task assignment

scheme, together with the best possible inference algorithm, where the nature

chooses the worst-case task difficulty parameters q = (q1, . . . , qm) and the

worst-case worker reliability parameters p = (p1, . . . , pn). We propose an

efficient adaptive task assignment scheme together with an efficient inference

algorithm that matches the minimax error rate as shown in Theorem 4.4. To

characterize the gain in adaptivity, we also identify the minimax error rate of

non-adaptive schemes decaying as e−C
′λminσ

2`, where λmin is strictly smaller
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than λ. We show this fundamental limit in Theorem 4.6 and a matching

efficient scheme in Theorem 4.5. Hence, the gain of adaptivity is captured in

the budget required to achieve a target accuracy, which differ by a factor of

λ/λmin.

Adaptive task assignment schemes for crowdsourced classifications have

been first addressed in [91], where a similar setting was assumed. Tasks

are binary classification tasks, with heterogeneous difficulties, and workers

arrive in an online fashion. One difference is that, [91] studies a slightly

more general model where tasks are partitioned into a finite number of types

and the worker error probability only depends on the type (and the identity

of the worker), i.e. P(Aij = ti) = f(T (i), j) where T (i) is the type of the

task i. This includes the generalized Dawid-Skene model, if we restrict the

difficulty qi’s from a finite set. [91] provides an adaptive scheme based on a

linear program relaxation, and show that the sufficient condition to achieve

average error ε is for the average total budget to be larger than,

Γε ≥ C
m

λminλσ2

(
log(1/ε)

)3/2
.

Compared to the sufficient condition in (4.27), this is larger by a factor of

(1/λmin)
√

log(1/ε). In fact, this is larger than what can be achieved with a

non-adaptive scheme in (4.38).

On the other hand, there are other types of expert systems, where a finite

set of experts are maintained and a stream of incoming tasks are assigned.

This clearly departs from typical crowdsourcing scenario, as the experts are

identifiable and can be repeatedly assigned tasks. One can view this as

a multi-armed bandit problem with noisy feedback [56, 219, 63, 145], and

propose task assignment schemes with guarantees on the regret.

We have provided a precise characterization of the minimax rate under

the generalized Dawid-Skene model. Such a complete characterization is only

known only for a few simple cases: binary classification tasks with symmetric

Dawid-Skene model in [107] and binary classification tasks with symmetric

generalized Dawid-Skene model in this paper. Even for binary classification

tasks, there are other models where such fundamental trade-offs are still

unknown: e.g. permutation-based model in [185]. The analysis techniques

developed in this paper does not directly generalize to such models, and it

remains an interesting challenge.
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Technically, our analysis could be improved in two directions: finite Γ/m

regime and parameter estimation. First, our analysis is asymptotic in the

size of the problem, and also in the average degree of the task ` ≡ Γ/m

which increases as logm. This is necessary for applying the central limit

theorem. However, in practice, we observe the same error rate when ` does

not necessarily increases with m. In order to generalize our analysis to finite

` regime, we need sharp bounds on the tail of a sub-Gaussian tail of the

distribution of the messages. This is partially plausible, and we provide an

upper bound on this tail in (4.91). However, the main challenge is that we

also need a lower bound on this tail, which is generally difficult.

Secondly, we empirically observe that our parameter estimation algorithm

in Algorithm 8 works well in practice. It is possible to precisely analyze the

sample complexity of this estimator using spectral analysis. However, such

an error in the value of ρ2
t,u used in the inner-loop can result in accumulated

errors over iterations, and it is not clear how to analyze it. Currently, we

do not have the tools to analyze such error propagation, which is a chal-

lenging research direction. Also, the parameter estimation algorithm can be

significantly improved, by applying some recent advances in estimating such

smaller dimensional spectral properties of such random matrices, for example

[217, 119, 129, 115], which is an active topic for research.
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notation data type definition

µ [−1, 1]
average reliability of the crowd as per

P : EP [2pj − 1]

σ2 [0, 1]
collective reliability of the crowd as per

P : EP [(2pj − 1)2]

λi [0, 1]
individual difficulty level of task

i: (2qi − 1)2

λmin [0, 1]
worst-case difficulty as per
Q: minqi∈supp(Q)(2qi − 1)2

λmax [0, 1]
best-case difficulty

as per Q: maxqi∈supp(Q)(2qi − 1)2

λ [0, 1]
collective difficulty level of the tasks as per

Q: EQ[(2qi − 1)−2]−1

λ̂ [0, 1]
collective difficulty level of the tasks as per

Q̂: (
∑

a∈[T ] δa/λa)
−1

ρ2 [0, 1]
average difficulty of tasks as per

Q : EQ[(2qi − 1)2]

a [T ]
index for support points of

quantized distribution Q̂
λa [0, 1]

difficulty level of a-th support point of

Q̂
δa [0, 1]

probability mass at

λa in Q̂
δmin [0, 1]

minimum probability mass in

Q̂: mina∈[T ] δa

δmax [0, 1]
maximum probability mass in

Q̂: maxa∈[T ] δa
T Z+ number of rounds in Algorithm 4

t Z+ index for a round in Algorithm 4

st Z+
number of sub-rounds in round

t of Algorithm 4
u Z+ index for a sub-round of Algorithm 4

Table 4.2: Notations
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CHAPTER 5

LEARNING FROM NOISY
SINGLY-LABELED DATA

The traditional crowdsourcing problem addresses the challenge of aggregat-

ing multiple noisy labels. A naive approach is to aggregate the labels based

on majority voting. More sophisticated agreement-based algorithms jointly

model worker skills and ground truth labels, estimating both using EM or

similar techniques [47, 101, 208, 205, 223, 135, 44, 135]. [218] shows that

the EM algorithm with spectral initialization achieves minimax optimal per-

formance under the Dawid-Skene model. [108] introduces a message-passing

algorithm for estimating binary labels under the Dawid-Skene model, show-

ing that it performs strictly better than majority voting when the number of

labels per example exceeds some threshold. Similar observations are made by

[27]. A primary criticism of EM-based approaches is that in practice, it’s rare

to collect more than 3 to 5 labels per example; and with so little redundancy,

the small gains achieved by EM over majority voting are not compelling to

practitioners. In contrast, our algorithm performs well in the low-redundancy

setting. Even with just one label per example, we can accurately estimate

worker quality.

Several prior crowdsourcing papers incorporate the predictions of a super-

vised learning model, together with the noisy labels, to estimate the ground

truth labels. [205] consider binary classification and frames the problem as

a generative Bayesian model on the features of the examples and the labels.

[28] considers a generalization of the Dawid-Skene model and estimates its

parameters using supervised learning in the loop. In particular, they con-

sider a joint probability over observed image features, ground truth labels,

and the worker labels and computes the maximum likelihood estimate of the

true labels using alternating minimization. We also consider a joint prob-

ability model but it is significantly different from theirs as we assume that

the optimal labeling function gives the ground truth labels. We maximize

the joint likelihood using a variation of expectation maximization to learn
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the optimal labeling function and the true labels. Further, they train the

supervised learning model using the intermediate predictions of the labels

whereas we train the model by minimizing a weighted loss function where

the weights are the intermediate posterior probability distribution of the la-

bels. Moreover, with only one label per example, their algorithm fails and

estimates all the workers to be equally good. They only consider binary

classification, whereas we verify our algorithm on multi-class (ten classes)

classification problem.

A rich body of work addresses human-in-loop annotation for computer

vision tasks. However, these works assume that humans are experts, i.e.,

that they give noiseless annotations [29, 51, 200]. We assume workers are

unreliable and have varying skills. A recent work by [172] also proposes

to use predictions of a supervised learning model to estimate the ground

truth. However, their algorithm is significantly different than ours as it does

not use iterative estimation technique, and their approach of incorporating

worker quality parameters in the supervised learning model is different. Their

theoretical results are limited to the linear classifiers.

Another line of work employs active learning, iteratively filtering out exam-

ples for which aggregated labels have high confidence and collect additional

labels for the remaining examples [208, 206, 116]. The underlying modeling

assumption in these papers is that the questions have varying levels of dif-

ficulty. At each iteration, these approaches employ an EM-based algorithm

to estimate the ground truth label of the remaining unclassified examples.

For simplicity, our paper does not address example difficulties, but we could

easily extend our model and algorithm to accommodate this complexity.

Several papers analyze whether repeated labeling is useful. [191] analyzed

the effect of repeated labeling and showed that it depends upon the relative

cost of getting an unlabeled example and the cost of labeling. [96] shows

that if worker quality is below a threshold then repeated labeling is useful,

otherwise not. [131, 130] argues that it also depends upon expressiveness

of the classifier in addition to the factors considered by others. However,

these works do not exploit predictions of the supervised learning algorithm

to estimate the ground truth labels, and hence their findings do not extend

to our methodology.

Another body of work that is relevant to our problem is learning with noisy

labels where usual assumption is that all the labels are generated through
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the same noisy rate given their ground truth label. Recently [155] proposed a

generic unbiased loss function for binary classification with noisy labels. They

employed a modified loss function that can be expressed as a weighted sum

of the original loss function, and gave theoretical bounds on the performance.

However, their weights become unstably large when the noise rate is large,

and hence the weights need to be tuned. [195, 102] learns noise rate as

parameters of the model. A recent work by [83] trains an individual softmax

layer for each expert and then predicts their weighted sum where weights

are also learned by the model. It is not scalable to crowdsourcing scenario

where there are thousands of workers. There are works that aim to create

noise-robust models [103, 120], but they are not relevant to our work.

5.1 Problem Formulation

Let D be the underlying true distribution generating pairs (X, Y ) ∈ X ×
K from which n i.i.d. samples (X1, Y1), (X2, Y2), · · · , (Xn, Yn) are drawn,

where K denotes the set of possible labels K := {1, 2, · · · , K}, and X ⊆ Rd

denotes the set of euclidean features. We denote the marginal distribution

of Y by {q1, q2, · · · , qK}, which is unknown to us. Consider a pool of m

workers indexed by 1, 2, · · · ,m. We use [m] to denote the set {1, 2, · · · ,m}.
For each i-th sample Xi, r workers {wij}j∈[r] ∈ [m]r are selected randomly,

independent of the sample Xi. Each selected worker provides a noisy label

Zij for the sample Xi, where the distribution of Zij depends on the selected

worker and the true label Yi. We call r the redundancy and, for simplicity,

assume it to be the same for each sample. However, our algorithm can also

be applied when redundancy varies across the samples. We use Z
(r)
i to denote

{Zij}j∈[r], the set of r labels collected on the i-th example, and w
(r)
i to denote

{wij}j∈[r].

Following [47], we assume the probability that the a-th worker labels an

item in class k ∈ K as class s ∈ K is independent of any particular chosen

item, that is, it is a constant over i ∈ [n]. Let us denote this constant by πks;

by definition,
∑

s∈K πks = 1 for all k ∈ K, and we call π(a) ∈ [0, 1]K×K the

confusion matrix of the a-th worker. In particular, the distribution of Z is:

P [Zij = s | Yi = k, wij = a] = π
(a)
ks . (5.1)
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The diagonal entries of the confusion matrix correspond to the probabili-

ties of correctly labeling an example. The off-diagonal entries represent the

probability of mislabeling. We use π to denote the collection of confusion

matrices {π(a)}a∈[m].

We assume nr workers w1,1, w1,2, · · · , wn,r are selected uniformly at random

from a pool of m workers with replacement and a batch of r workers are

assigned to each of the examples X1, X2, · · · , Xn. The corrupted labels along

with the worker information

(X1, Z
(r)
1 , w

(r)
1 ), · · · , (Xn, Z

(r)
n , w(r)

n )

are what the learning algorithm sees.

Let F be the hypothesis class, and f ∈ F , f : X → RK , denote a vector

valued predictor function. Let `(f(X), Y ) denote a loss function. For a

predictor f , its `-risk under D is defined as

R`,D(f) := E(X,Y )∼D [`(f(X), Y )] . (5.2)

Given the observed samples (X1, Z
(r)
1 , w

(r)
1 ), · · · , (Xn, Z

(r)
n , w

(r)
n ), we want to

learn a good predictor function f̂ ∈ F such that its risk under the true

distribution D, R`,D(f̂) is minimal. Having access to only noisy labels Z(r)

by workers w(r), we compute f̂ as the one which minimizes a suitably modified

loss function `π̂,q̂(f(X), Z(r), w(r)). Where π̂ denote an estimate of confusion

matrix π, and q̂ an estimate of q, the prior distribution on Y . We define `π̂,q̂

in the following section.

5.2 Algorithm

Assume that there exists a function f ∗ ∈ F such that f ∗(Xi) = Yi for all i ∈
[n]. Under the Dawid-Skene model (described in previous section), the joint

likelihood of true labeling function f ∗(Xi) and observed labels {Zij}i∈[n],j∈[r]

as a function of confusion matrices of workers π can be written as

L
(
π; f ∗, {Xi}i∈[n], {Zij}i∈[n],j∈[r]

)
:=

n∏
i=1

(∑
k∈K

qkI[f ∗(Xi) = k]

(
r∏
j=1

(∑
s∈K

I[Zij = s]π
(wij)
ks

)))
. (5.3)
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qk’s are the marginal distribution of the true labels Yi’s. We estimate the

worker confusion matrices π and the true labeling function f ∗ by maximizing

the likelihood function L(π; f ∗(X), Z). Observe that the likelihood function

L(π; f ∗(X), Z) is different than the standard likelihood function of Dawid-

Skene model in that we replace each true hidden labels Yi by f ∗(Xi). Like

the EM algorithm introduced in [47], we propose ‘Model Bootstrapped EM’

(MBEM) to estimate confusion matrices π and the true labeling function

f ∗. EM converges to the true confusion matrices and the true labels given

an appropriate spectral initialization of worker confusion matrices [218]. We

show in Section 5.2.4 that MBEM converges under mild conditions when the

worker quality is above a threshold and the number of training examples is

sufficiently large. In the following two subsections, we motivate and explain

our iterative algorithm to estimate the true labeling function f ∗ given a good

estimate of worker confusion matrices π and vice-versa.

5.2.1 Learning with noisy labels

To begin, we ask, what is the optimal approach to learn the predictor function

f̂ when for each worker we have π̂, a good estimation of the true confusion

matrix π, and q̂, an estimate of the prior? A recent paper, [155] proposes

minimizing an unbiased loss function specifically, a weighted sum of the orig-

inal loss over each possible ground truth label. They provide weights for

binary classification where each example is labeled by only one worker. Con-

sider a worker with confusion matrix π, where πy > 1/2 and π−y > 1/2 rep-

resent her probability of correctly labeling the examples belonging to class y

and −y respectively. Then their weights are π−y/(πy + π−y − 1) for class y

and −(1 − πy)/(πy + π−y − 1) for class −y. It is evident that their weights

become unstably large when the probabilities of correct classification πy and

π−y are close to 1/2, limiting the method’s usefulness in practice. As ex-

plained below, for the same scenario, our weights would be πy/(1 +πy−π−y)
for class y and (1−π−y)/(1+πy−π−y) for class −y. Inspired by their idea, we

propose weighing the loss function according to the posterior distribution of

the true label given the Z(r) observed labels and an estimate of the confusion

matrices of the worker who provided those labels. In particular, we define
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`π̂,q̂ to be

`π̂,q̂(f(X), Z(r), w(r)) :=
∑
k∈K

Pπ̂,q̂[Y = k | Z(r);w(r)] `(f(X), Y = k) .

(5.4)

If the observed label is uniformly random, then all weights are equal and

the loss is identical for all predictor functions f . Absent noise, we recover

the original loss function. Under the Dawid-Skene model, given the observed

noisy labels Z(r), an estimate of confusion matrices π̂, and an estimate of

prior q̂, the posterior distribution of the true labels can be computed as

follows:

Pπ̂,q̂[Yi = k | Z(r)
i ;w

(r)
i ] =

q̂k
∏r

j=1

(∑
s∈K I[Zij = s]π̂

(wij)
ks

)
∑

k′∈K

(
q̂k′
∏r

j=1

(∑
s∈K I[Zij = s]π̂

(wij)
k′s

)) ,
(5.5)

where I[.] is the indicator function which takes value one if the identity inside

it is true, otherwise zero. We give guarantees on the performance of the

proposed loss function in Theorem 7.3. In practice, it is robust to noise level

and significantly outperforms the unbiased loss function. Given `π̂,q̂, we learn

the predictor function f̂ by minimizing the empirical risk

f̂ ← arg min
f∈F

1

n

n∑
i=1

`π̂,q̂(f(Xi), Z
(r)
i , w

(r)
i ) . (5.6)

5.2.2 Estimating annotator noise

The next question is: how do we get a good estimate π̂ of the true confusion

matrix π for each worker. If redundancy r is sufficiently large, we can employ

the EM algorithm. However, in practical applications, redundancy is typi-

cally three or five. With so little redundancy, the standard applications of

EM are of limited use. In this paper we look to transcend this problem, pos-

ing the question: Can we estimate confusion matrices of workers even when

there is only one label per example? While this isn’t possible in the stan-

dard approach, we can overcome this obstacle by incorporating a supervised

learning model into the process of assessing worker quality.
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Under the Dawid-Skene model, the EM algorithm estimates the ground

truth labels and the confusion matrices in the following way: It alternately

fixes the ground truth labels and the confusion matrices by their estimates

and and updates its estimate of the other by maximizing the likelihood of

the observed labels. The alternating maximization begins by initializing the

ground truth labels with a majority vote. With only 1 label per example,

EM estimates that all the workers are perfect.

We propose using model predictions as estimates of the ground truth labels.

Our model is initially trained on the majority vote of the labels. In particular,

if the model prediction is {ti}i∈[n], where ti ∈ K, then the maximum likelihood

estimate of confusion matrices and the prior distribution is given below. For

the a-th worker, π̂
(a)
ks for k, s ∈ K, and q̂k for k ∈ K, we have,

π̂
(a)
ks =

∑n
i=1

∑r
j=1 I[wij = a]I[ti = k]I[Zij = s]∑n
i=1

∑r
j=1 I[wij = a]I[ti = k]

, q̂k = (1/n)
n∑
i=1

I[ti = k]

(5.7)

The estimate is effective when the hypothesis class F is expressive enough

and the learner is robust to noise. Thus the model should, in general, have

small training error on correctly labeled examples and large training error

on wrongly labeled examples. Consider the case when there is only one label

per example. The model will be trained on the raw noisy labels given by the

workers. For simplicity, assume that each worker is either a hammer (always

correct) or a spammer (chooses labels uniformly random). By comparing

model predictions with the training labels, we can identify which workers are

hammers and which are spammers, as long as each worker labels sufficiently

many examples. We expect a hammer to agree with the model more often

than a spammer.

5.2.3 Iterative Algorithm

Building upon the previous two ideas, we present ‘Model Bootstrapped EM’,

an iterative algorithm for efficient learning from noisy labels with small re-

dundancy. MBEM takes data, noisy labels, and the corresponding worker

IDs, and returns the best predictor function f̂ in the hypothesis class F . In

the first round, we compute the weights of the modified loss function `π̂,q̂ by
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using the weighted majority vote. Then we obtain an estimate of the worker

confusion matrices π̂ using the maximum likelihood estimator by taking the

model predictions as the ground truth labels. In the second round, weights of

the loss function are computed as the posterior probability distribution of the

ground truth labels conditioned on the noisy labels and the estimate of the

confusion matrices obtained in the previous round. In our experiments, only

two rounds are required to achieve substantial improvements over baselines.

Algorithm 7 Model Bootstrapped EM (MBEM)

Input: {(Xi, Z
(r)
i , w

(r)
i )}i∈[n], T : number of iterations

Output: f̂ : predictor function
Initialize posterior distribution using weighted majority vote
Pπ̂,q̂[Yi = k | Z(r)

i ;w
(r)
i ]← (1/r)

∑r
j=1 I[Zij = k] , for k ∈ K, i ∈ [n]

Repeat T times:
learn predictor function f̂
f̂ ← arg minf∈F

1
n

∑n
i=1

∑
k∈K Pπ̂,q̂[Yi = k | Z(r)

i ;w
(r)
i ] `(f(Xi), Yi = k)

predict on training examples
ti ← arg maxk∈K f̂(Xi)k, for i ∈ [n]
estimate confusion matrices π̂ and prior class distribution q̂ given
{ti}i∈[n]

π̂(a) ← Equation (5.7), for a ∈ [m]; q̂ ← Equation (5.7)
estimate label posterior distribution given π̂, q̂
Pπ̂,q̂[Yi = k | Z(r)

i ;w
(r)
i ],← Equation (5.5), for k ∈ K, i ∈ [n]

Return f̂

5.2.4 Performance Guarantees

The following result gives guarantee on the excess risk for the learned pre-

dictor function f̂ in terms of the VC dimension of the hypothesis class

F . Recall that risk of a function f w.r.t. loss function ` is defined to be

R`,D(f) := E(X,Y )∼D [`(f(X), Y )], Equation (5.2). We assume that the clas-

sification problem is binary, and the distribution q, prior on ground truth

labels Y , is uniform and is known to us. We give guarantees on the excess

risk of the predictor function f̂ , and accuracy of π̂ estimated in the second

round. For the purpose of analysis, we assume that fresh samples are used

in each round for computing function f̂ and estimating π̂. In other words,

we assume that f̂ and π̂ are each computed using n/4 fresh samples in the
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first two rounds. We define α and βε to capture the average worker quality.

Here, we give their concise bound for a special case when all the workers are

identical, and their confusion matrix is represented by a single parameter,

0 ≤ ρ < 1/2. Where πkk = 1− ρ, and πks = ρ for k 6= s. Each worker makes

a mistake with probability ρ. βε ≤ (ρ + ε)r
∑r

u=0

(
r
u

)
(τu + τ r−u)−1, where

τ := (ρ + ε)/(1 − ρ − ε). α for this special case is ρ. A general definition of

α and βε for any confusion matrices π is provided in the Appendix.

Theorem 5.1. Define N := nr to be the number of total annotations collected

on n training examples with redundancy r. Suppose minf∈F R`,D(f) ≤ 1/4.

For any hypothesis class F with a finite VC dimension V , and any δ < 1,

there exists a universal constant C such that if N is large enough and satisfies

N ≥ max

{
Cr
((√

V +
√

log(1/δ)
)
/(1− 2α)

)2
, 212m log(26m/δ)

}
, (5.8)

then for binary classification with 0-1 loss function `, f̂ and π̂ returned by

Algorithm 7 after T = 2 iterations satisfies

R`,D(f̂)−min
f∈F

R`,D(f) ≤ C
√
r

1− 2βε

(√
V

N
+

√
log(1/δ)

N

)
, (5.9)

and ‖π̂(a) − π(a)‖∞ ≤ ε1 for all a ∈ [m], with probability at least 1 − δ.

Where ε := 24γ + 28
√
m log(26mδ)/N , and γ := minf∈F R`,D(f) + C(

√
V +√

log(1/δ))/((1 − 2α)
√
N/r). ε1 is defined to be ε with α in it replaced by

βε.

The price we pay in generalization error bound on f̂ is (1 − 2βε). Note

that, when n is large, ε goes to zero, and βε ≤ 2ρ(1− ρ), for r = 1.

If minf∈F R`,D(f) is sufficiently small, VC dimension is finite, and ρ is

bounded away from 1/2 then for n = O(m log(m)/r), we get ε1 to be suf-

ficiently small. Therefore, for any redundancy r, error in confusion matrix

estimation is small when the number of training examples is sufficiently large.

Hence, for N large enough, using Equation (5.9) and the bound on βε, we

get that for fixed total annotation budget, the optimal choice of redundancy

r is 1 when the worker quality (1 − ρ) is above a threshold. In particular,

if (1 − ρ) ≥ 0.825 then label once is the optimal strategy. However, in ex-

periments we observe that with our algorithm the choice of r = 1 is optimal

even for much smaller values of worker quality.
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5.3 Experiments

We experimentally investigate our algorithm, MBEM, on multiple large

datasets. On CIFAR-10 [121] and ImageNet [50], we draw noisy labels

from synthetic worker models. We confirm our results on multiple worker

models. On the MS-COCO dataset [132], we accessed the real raw data

that was used to produce this annotation. We compare MBEM against the

following baselines:

• MV: First aggregate labels by performing a majority vote, then train the

model.

• weighted-MV: Model learned using weighted loss function with weights

set by majority vote.

• EM: First aggregate labels using EM. Then train model in the standard

fashion. [47]

• weighted-EM: Model learned using weighted loss function with weights

set by standard EM.

• oracle weighted EM: This model is learned by minimizing `π, using the

true confusion matrices.

• oracle correctly labeled: This baseline is trained using the standard

loss function ` but only using those training examples for which at least

one of the r workers has given the true label.

Note that oracle models cannot be deployed in practice. We show them

to build understanding only. In the plots, the dashed lines correspond to

MV and EM algorithm. The black dashed-dotted line shows generalization

error if the model is trained using ground truth labels on all the training

examples. For experiments with synthetic noisy workers, we consider two

models of worker skill:

• hammer-spammer: Each worker is either a hammer (always correct)

with probability γ or a spammer (chooses labels uniformly at random).

• class-wise hammer-spammer: Each worker can be a hammer for some

subset of classes and a spammer for the others. The confusion matrix in
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this case has two types of rows: (a) hammer class: row with all off-diagonal

elements being 0. (b) spammer class: row with all elements being 1/|K|.
A worker is a hammer for any class k ∈ K with probability γ.

We sample m confusion matrices {π(a)}a∈[m] according to the given worker

skill distribution for a given γ. We assign r workers uniformly at random

to each example. Given the ground truth labels, we generate noisy labels

according to the probabilities given in a worker’s confusion matrix, using

Equation (5.1). While our synthetic workers are sampled from these specific

worker skill models, our algorithms do not use this information to estimate

the confusion matrices. A Python implementation of the MBEM algorithm

is available for download at https://github.com/khetan2/MBEM.

CIFAR-10 This dataset has a total of 60K images belonging to 10 different

classes where each class is represented by an equal number of images. We

use 50K images for training the model and 10K images for testing. We use

the ground truth labels to generate noisy labels from synthetic workers. We

choose m = 100, and for each worker, sample confusion matrix of size 10×10

according to the worker skill distribution. All our experiments are carried

out with a 20-layer ResNet which achieves an accuracy of 91.5%. With the

larger ResNet-200, we can obtain a higher accuracy of 93.5% but to save

training time we restrict our attention to ResNet-20. We run MBEM 7 for

T = 2 rounds. We assume that the prior distribution q̂ is uniform. We report

mean accuracy of 5 runs and its standard error for all the experiments.

Figure 5.1 shows plots for CIFAR-10 dataset under various settings. The

three plots in the first row correspond to “hammer-spammer” worker skill dis-

tribution and the plots in the second row correspond to “class-wise hammer-

spammer” distribution. In the first plot, we fix redundancy r = 1, and

plot generalization error of the model for varying hammer probability γ.

MBEM significantly outperforms all baselines and closely matches the Or-

acle weighted EM. This implies MBEM recovers worker confusion matrices

accurately even when we have only one label per example. When there is

only one label per example, MV, weighted-MV, EM, and weighted-EM all

reduce learning with the standard loss function `.

In the second plot, we fix hammer probability γ = 0.2, and vary redun-

dancy r. This plot shows that weighted-MV and weighted-EM perform signif-
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Figure 5.1: Plots for CIFAR-10. Line colors- black: oracle correctly labeled,
red: oracle weighted EM, blue: MBEM, green: weighted EM, yellow:
weighted MV.

icantly better than MV and EM and confirms that our approach of weighing

the loss function with posterior probability is effective. MBEM performs

much better than weighted-EM at small redundancy, demonstrating the ef-

fect of our bootstrapping idea. However, when redundancy is large, EM

works as good as MBEM.

In the third plot, we show that when the total annotation budget is fixed, it

is optimal to collect one label per example for as many examples as possible.

We fixed hammer probability γ = 0.2. Here, when redundancy is increased

from 1 to 2, the number of of available training examples is reduced by 50%,

and so on. Performance of weighted-EM improves when redundancy is in-

creased from 1 to 5, showing that with the standard EM algorithm it might

be better to collect redundant annotations for fewer example (as it leads to

better estimation of worker qualities) than to singly annotate more examples.

However, MBEM always performs better than the standard EM algorithm,

achieving lowest generalization error with many singly annotated examples.

Unlike standard EM, MBEM can estimate worker qualities even with singly

annotated examples by comparing them with model predictions. This cor-
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Figure 5.2: Plots for ImageNet. Solid lines represent top-5 error,
dashed-lines represent top-1 error. Line colors- blue: MBEM, green:
weighted majority vote, yellow: majority vote

roborates our theoretical result that label-once is the optimal strategy when

worker quality is above a threshold. The plots corresponding to class-wise

hammer-spammer workers follow the same trend. Estimation of confusion

matrices in this setting is difficult and hence the gap between MBEM and

the baselines is less pronounced.

ImageNet The ImageNet-1K dataset contains 1.2M training examples and

50K validation examples. We divide test set in two parts: 10K for validation

and 40K for test. Each example belongs to one of the possible 1000 classes.

We implement our algorithms using a ResNet-18 that achieves top-1 accuracy

of 69.5% and top-5 accuracy of 89% on ground truth labels. We use m = 1000

simulated workers. Although in general, a worker can mislabel an example to

one of the 1000 possible classes, our simulated workers mislabel an example

to only one of the 10 possible classes. This captures the intuition that even

with a larger number of classes, perhaps only a small number are easily

confused for each other. Therefore, each workers’ confusion matrix is of size

10×10. Note that without this assumption, there is little hope of estimating a

1000×1000 confusion matrix for each worker by collecting only approximately

1200 noisy labels from a worker. The rest of the settings are the same as in our

CIFAR-10 experiments. In Figure 5.2, we fix total annotation budget to be

1.2M and vary redundancy from 1 to 9. When redundancy is 9, we have only

(1.2/9)M training examples, each labeled by 9 workers. MBEM outperforms

baselines in each of the plots, achieving the minimum generalization error

with many singly annotated training examples.
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Figure 5.3: Results on raw MS-COCO annotations.

MS-COCO These experiments use the real raw annotations collected

when MS-COCO was crowdsourced. Each image in the dataset has mul-

tiple objects (approximately 3 on average). For validation set images (out of

40K), labels were collected from 9 workers on average. Each worker marks

which out of the 80 possible objects are present. However, on many exam-

ples workers disagree. These annotations were collected to label bounding

boxes but we ask a different question: what is the best way to learn a model

to perform multi-object classification, using these noisy annotations. We

use 35K images for training the model and 1K for validation and 4K for

testing. We use raw noisy annotations for training the model and the final

MS-COCO annotations as the ground truth for the validation and test set.

We use ResNet-98 deep learning model and train independent binary classi-

fier for each of the 80 object classes. Table in Figure 5.3 shows generalization

F1 score of four different algorithms: majority vote, EM, MBEM using all

9 noisy annotations on each of the training examples, and a model trained

using the ground truth labels. MBEM performs significantly better than the

standard majority vote and slightly improves over EM. In the plot, we fix

the total annotation budget to 35K. We vary redundancy from 1 to 7, and

accordingly reduce the number of training examples to keep the total num-

ber of annotations fixed. When redundancy is r < 9 we select uniformly at

random r of the original 9 noisy annotations. Again, we find it best to singly

annotate as many examples as possible when the total annotation budget

is fixed. MBEM significantly outperforms majority voting and EM at small

redundancy.
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5.4 Conclusion

We introduced a new algorithm for learning from noisy crowd workers. We

also presented a new theoretical and empirical demonstration of the insight

that when examples are cheap and annotations expensive, it’s better to label

many examples once than to label few multiply when worker quality is above

a threshold. Many avenues seem ripe for future work. We are especially keen

to incorporate our approach into active query schemes, choosing not only

which examples to annotate, but which annotator to route them to based

on our models current knowledge of both the data and the worker confusion

matrices.

5.5 Proofs

Assuming the prior on Y , distribution q, to be uniform, we change the no-

tation for the modified loss function `π̂,q̂ to `π̂. Observe that for binary

classification, Z(r) ∈ {±1}r. Let ρ denote the posterior distribution of Y ,

Equation (5.5), when q is uniform. Let τ denote the probability of observ-

ing an instance of Z(r) as a function of the latent true confusion matrices π,

conditioned on the ground truth label Y = y.

ρπ̂(y, Z(r), w(r)) := Pπ̂[Y = y | Z(r);w(r)] , (5.10)

τπ(y, Z(r), w(r)) := Pπ[Z(r) | Y = y;w(r)] . (5.11)

Let W denote the uniform distribution over a pool of m workers, from

which nr workers are selected i.i.d. with replacement, and a batch of r

workers are assigned to each example Xi. We define the following quantities
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which play an important role in our analysis.

βπ̂(y) := Ew∼W
[ ∑
Z(r)∈{±1}r

ρπ̂(−y, Z(r), w(r))τπ(y, Z(r), w(r))

]
. (5.12)

βπ̂ := Ew∼W
[

max
y∈{±1}

{ ∑
Z(r)∈{±1}r

ρπ̂(−y, Z(r), w(r))τπ(y, Z(r), w(r))

}]
.

(5.13)

α(y) := Ew∼W
[
Pπ[Z = −y | Y = y;w]

]
. (5.14)

α := Ew∼W
[

max
y∈{±1}

Pπ[Z = −y | Y = y;w]
]
. (5.15)

For any given π̂ with |π̂(a)
ks − π

(a)
ks | ≤ ε, for all a ∈ [m], k, s ∈ K, we can

compute βε from the definition of βπ̂ such that βπ̂ ≤ βε. For the special case

described in Section 5.2.4, we have the following bound on βε.

βε

≤
r∑

u=0

(ρ+ ε)(r−u)(1− ρ− ε)u
(ρ+ ε)u(1− ρ− ε)(r−u) + (ρ+ ε)(r−u)(1− ρ− ε)u

(
r

u

)
(1− ρ)r−uρu

= (ρ+ ε)r
r∑

u=0

(
r

u

)((
ρ+ ε

1− ρ− ε

)u
+

(
ρ+ ε

1− ρ− ε

)r−u)−1

. (5.16)

It can easily be checked that βε ≤ (ρ+ ε)r
∑dr/2e

u=0

(
r
u

)
(1− ρ− ε)u(ρ+ ε)−u.

We present two lemma that analyze the two alternative steps of our algo-

rithm. The following lemma gives a bound on the excess risk of function f̂

learnt by minimizing the modified loss function `π̂.

Lemma 5.2. Under the assumptions of Theorem 7.3, the excess risk of func-

tion f̂ in Equation (5.6), computed with posterior distribution Pπ̂ (5.5) using

n training examples is bounded by

R`,D(f̂)−min
f∈F

R`,D(f) ≤ C

1− 2βπ̂

(√
V

n
+

√
log(1/δ1)

n

)
, (5.17)

with probability at least 1 − δ1, where C is a universal constant. When Pπ̂
is computed using majority vote, while initializing the iterative Algorithm 7,

the above bound holds with βπ̂ replaced by α.
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The following lemma gives an `∞ norm bound on confusion matrices π̂

estimated using model prediction f̂(X) as the ground truth labels. In the

analysis, we assume fresh samples are used for estimating confusion matrices

in step 3, Algorithm 7. Therefore the function f̂ is independent of the samples

Xi’s on which π̂ is estimated. Let K = |K|.

Lemma 5.3. Under the assumptions of Theorem 7.3, `∞ error in estimated

confusion matrices π̂ as computed in Equation (5.7), using n samples and a

predictor function f̂ with risk R`,D ≤ δ, is bounded by

∣∣∣π̂(a)
ks − π

(a)
ks

∣∣∣ ≤ 2δ + 16
√
m log(4mK2δ1)/(nr)

1/K − δ − 8
√
m log(4mK2/δ1)/(nr)

, ∀ a ∈ [m], k, s ∈ K ,

(5.18)

with probability at least 1− δ1.

First we apply Lemma 5.2 with Pπ̂ computed using majority vote. We get a

bound on the risk of function f̂ computed in the first round. With this f̂ , we

apply Lemma 5.3. When n is sufficiently large such that Equation (5.8) holds,

the denominator in Equation (5.18), 1/K − δ − 8
√
m log(4mK2/δ1)/(nr) ≥

1/8. Therefore, in the first round, the error in confusion matrix estimation

is bounded by ε, which is defined in the Theorem.

For the second round: we apply Lemma 5.2 with Pπ̂ computed as the

posterior distribution (5.5). Where `∞ error in π̂ is bounded by ε. This gives

the desired bound in (5.9). With this f̂ , we apply Lemma 5.3 and obtain `∞

error in π̂ bounded by ε1, which is defined in the Theorem.

For the given probability of error δ in the Theorem, we chose δ1 in both the

lemma to be δ/4 such that with union bound we get the desired probability

of δ.

5.5.1 Proof of Lemma 5.2

Let f ∗ := arg minf∈F R`,D(f). Let’s denote the distribution of (X,Z(r), w(r))

by DW,π,r. For ease of notation, we denote DW,π,r by Dπ. Similar to R`,D,

risk of decision function f with respect to the modified loss function `π̂ is

characterized by the following quantities:

1. `π̂-risk under Dπ: R`π̂ ,Dπ(f) := E(X,Z(r),w(r))∼Dπ
[
`π̂(f(X), Z(r), w(r))

]
.
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2. Empirical `π̂-risk on samples: R̂`π̂ ,Dπ(f) := 1
n

∑n
i=1 `π̂(f(Xi), Z

(r)
i , w

(r)
i ).

With the above definitions, we have the following,

R`,D(f̂)−R`,D(f ∗)

= R`π̂ ,Dπ(f̂)−R`π̂ ,Dπ(f ∗)

+
(
R`,D(f̂)−R`π̂ ,Dπ(f̂)

)
− (R`,D(f ∗)−R`π̂ ,Dπ(f ∗))

≤ R`π̂ ,Dπ(f̂)−R`π̂ ,Dπ(f ∗) + 2βπ̂

(
R`,D(f̂)−R`,D(f ∗)

)
(5.19)

= R̂`π̂ ,Dπ(f̂)− R̂`π̂ ,Dπ(f ∗)

+
(
R`π̂ ,Dπ(f̂)− R̂`π̂ ,Dπ(f̂)

)
+
(
R̂`π̂ ,Dπ(f ∗)−R`π̂ ,Dπ(f ∗)

)
+2βπ̂

(
R`,D(f̂)−R`,D(f ∗)

)
≤ 2 max

f∈F

∣∣∣R̂`π̂ ,Dπ(f)−R`π̂ ,Dπ(f)
∣∣∣+ 2βπ̂

(
R`,D(f̂)−R`,D(f ∗)

)
(5.20)

≤ C

(√
V

n
+

√
log(1/δ)

n

)
+ 2βπ̂

(
R`,D(f̂)−R`,D(f ∗)

)
, (5.21)

where (7.31) follows from Equation (5.24). (5.20) follows from the fact that

f̂ is the minimizer of R̂`π̂ ,Dπ as computed in (5.6). (5.21) follows from the

basic excess-risk bound. V is the VC dimension of hypothesis class F , and

C is a universal constant.

Following shows the inequality used in Equation (7.31). For binary classi-

fication, we denote the two classes by Y,−Y .

= R`,D(f̂)−R`π̂ ,Dπ(f̂)− (R`,D(f ∗)−R`π̂ ,Dπ(f ∗))

= E(X,Y )∼D

[
βπ̂(Y )

((
`(f̂(X), Y )− `(f ∗(X), Y )

)
−
(
`(f̂(X),−Y )− `(f ∗(X),−Y )

))]
(5.22)

= 2E(X,Y )∼D

[
βπ̂(Y )

(
`(f̂(X), Y )− `(f ∗(X), Y )

)]
(5.23)

≤ 2βπ̂

(
R`,D(f̂)−R`,D(f ∗)

)
, (5.24)

where (5.22) follows from Equation (7.34). (7.35) follows from the fact that

for 0-1 loss function `(f(X), Y ) + `(f(X),−Y ) = 1. (5.24) follows from

the definition of βπ̂ defined in Equation (5.13). When `π̂ is computed using

weighted majority vote of the workers then (5.24) holds with βπ̂ replaced by
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α. α is defined in (5.15).

Following shows the equality used in Equation (5.22). Using the notations

ρπ̂ and τπ, in the following, for any function f ∈ F , we compute the excess

risk due to the unbiasedness of the modified loss function `π̂.

R`,D(f)−R`π̂ ,Dπ(f)

= E(X,Y )∼D [`(f(X), Y )]− E(X,Z(r),w(r))∼Dπ [`π̂(f(X), Z(r), w(r))]

= E(X,Y )∼D [`(f(X), Y )]

−E(X,Y,w(r))∼Dπ

[ ∑
Z(r)∈{±1}r

(
(1− ρπ̂(−Y, Z(r), w(r)))`(f(X), Y )

(5.25)

+ρπ̂(−Y, Z(r), w(r))`(f(X),−Y )
)
τπ(Y, Z(r), w(r))

]
= E(X,Y )∼D [βπ̂(Y ) (`(f(X), Y )− `(f(X),−Y ))] , (5.26)

where βπ̂(Y ) is defined in (5.12). Where (5.25) follows from the definition of

`π̂ given in Equation (5.4). Observe that when `π̂ is computed using weighted

majority vote of the workers then Equation (7.34) holds with βπ̂(Y ) replaced

by α(y). α(y) is defined in (5.14).

5.5.2 Proof of Lemma 5.3

Recall that we have

π̂
(a)
ks =

∑n
i=1

∑r
j=1 I[wij = a]I[ti = k]I[Zij = s]∑n
i=1

∑r
j=1 I[wij = a]I[ti = k]

(5.27)

Let ti denote f̂(Xi). By the definition of risk, for any k ∈ K, we have

P
[∣∣I[Yi = k]− I[ti = k]

∣∣ = 1
]

= δ .
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Let |K| = K. Define, for fixed a ∈ [m], and k, s ∈ K,

A :=
n∑
i=1

r∑
j=1

I[wij = a]I[ti = k]I[Zij = s] , Ā :=
nrπks
mK

(5.28)

B :=
n∑
i=1

r∑
j=1

I[wij = a]I[ti = k] , B̄ :=
nr

mK
(5.29)

C :=
n∑
i=1

r∑
j=1

I[wij = a]
∣∣∣I[Yi = k]− I[ti = k]

∣∣∣ , C̄ :=
nrδ

m
, (5.30)

D :=
n∑
i=1

r∑
j=1

I[wij = a]I[Yi = k]I[Zij = s] , (5.31)

E :=
n∑
i=1

r∑
j=1

I[wij = a]I[Yi = k] . (5.32)

Note that A,B,C,D,E depend upon a ∈ [m], k, s ∈ K. However, for ease of

notations, we have not included the subscripts. We have,∣∣∣π̂(a)
ks − π

(a)
ks

∣∣∣ =
A−Bπks

B
=
|(A− Ā)− (B − B̄)πks|
|B̄ + (B − B̄)|

≤ |A− Ā|+ |(B − B̄)|πks
|B̄| − |B − B̄| (5.33)

Now, we have,

|A− Ā| ≤ |A−D| + |D − Ā|
≤ C + |D − Ā| . (5.34)

We have,

|B − B̄| ≤ |B − E| + |E − B̄|
≤ C + |E − B̄| (5.35)

Observe that C is a sum of nr i.i.d. Bernoulli random variables with mean

δ/m. Using Chernoff bound we get that

C ≤ nrδ

m
+

√
3nrδ log(2mK/δ1)

m
, (5.36)
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for all a ∈ [m], and k ∈ K with probability at least 1 − δ1. Similarly, D is

a sum of nr i.i.d. Bernoulli random variables with mean πks/(mk). Again,

using Chernoff bound we get that

∣∣D − Ā∣∣ ≤ √
3nrπks log(2mK2/δ1)

mK
, (5.37)

for all a ∈ [m], k, s ∈ K with probability at least 1− δ1. From the bound on

|D − Ā|, it follows that

|E − B̄| ≤
√

3nr log(2mK2/δ1)

m
(5.38)

Collecting Equations (5.33)-(5.38), we have for all a ∈ [m], k, s ∈ K

∣∣∣π̂(a)
ks − π

(a)
ks

∣∣∣ ≤ 2δ + 16
√
m log(2mK2δ1/(nr)

1/K − δ − 8
√
m log(2mK2/δ1)/(nr)

, (5.39)

with probability at least 1− 2δ1.
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CHAPTER 6

SPECTRUM ESTIMATION FROM A FEW
ENTRIES

We want to estimate the Schatten k-norm of a positive semidefinite matrix

M ∈ Rd×d from a subset of its entries. The restriction to positive semidefi-

nite matrices is primarily for notational convenience, and our analyses, the

estimator, and the efficient algorithms naturally generalize to any non-square

matrices. Namely, we can extend our framework to bipartite graphs and es-

timate Schatten k-norm of any matrix for any even k. Let Ω denote the set

of indices of samples we are given and let PΩ(M) = {(i, j,Mij)}(i,j)∈Ω denote

the samples. With a slight abuse of notation, we used PΩ(M) to also denote

the d× d sampled matrix:

PΩ(M)ij =

{
Mij if (i, j) ∈ Ω ,

0 otherwise ,

and it should be clear from the context which one we refer to. Although we

propose a framework that generally applies to any probabilistic sampling, it

is necessary to propose specific sampling scenarios to provide tight analyses

on the performance. Hence, we focus on Erdös-Rényi sampling.

There is an extensive line of research in low-rank matrix completion prob-

lems [31, 110], which addresses a fundamental question of how many samples

are required to complete a matrix (i.e. estimate all the missing entries) from

a small subset of sampled entries. It is typically assumed that each entry of

the matrix is sampled independently with a probability p ∈ (0, 1]. We re-

fer to this scenario as Erdös-Rényi sampling, as the resulting pattern of the

samples encoded as a graph is distributed as an Erdös-Rényi random graph.

The spectral properties of such an sampled matrix have been well studied in

the literature [75, 1, 69, 110, 123]. In particular, it is known that the original

matrix is close in spectral norm to the sampled one where the missing en-

tries are filled in with zeros and properly rescaled under certain incoherence
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assumptions. This suggests using the singular values of the sampled and

rescaled matrix (d2/|Ω|)P(M) directly for estimating the Schatten norms.

However, in the sub-linear regime in which the number of samples |Ω| = d2p

is comparable to or significantly smaller than the degrees of freedom in rep-

resenting a symmetric rank-r matrix, which is dr − r2, the spectrum of the

sampled matrix is significantly different from the spectrum of the original

matrix as shown in Figure 6.1. We need to design novel estimators that are

more sample efficient in the sub-linear regime where d2p� dr.

 10

 20

 30

 40

 50

 0  10  20  30

true spectrum←

sampled spectrum↓

Figure 6.1: In yellow, we show the histogram of the singular values of a
positive semi-definite matrix M ∈ Rd×d of size d = 1000 with rank r = 100,
with σ1 = · · · = σ50 = 10, σ51 = · · · = σ100 = 5, and the rest at zero (we
omit zero singular values in the plot for illustration). In comparison, we
show in black the histogram of the singular values of the sampled matrix
where each entry of M is sampled with probability p = (1/d)r1−2/7

(properly rescaled by 1/p to best match the original spectrum).

6.1 Summary of the approach and preview of results

We propose first estimating one or a few Scahtten norms, which can be ac-

curately estimated from samples, and using these estimated Schatten norms

to approximate the spectral properties of interest: spectral sum functions

and the spectrum. We use an alternative expression of the Schatten k-norm

for positive semidefinite matrices as the trace of the k-th power of M , i.e.

(‖M‖k)k = Tr(Mk). This sum of the entries along the diagonal of Mk is the

sum of total weights of all the closed walks of length k. Consider the entries of

M as weights on a complete graph Kd over d nodes (with self-loops). A closed

walk of length k is defined as a sequence of nodes w = (w1, w2, . . . , wk+1) with
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w1 = wk+1, where we allow repeated nodes and repeated edges. The weight

of a closed walk w = (w1, . . . , wk, w1) is defined as ωM(w) ≡ ∏k
i=1Mwiwi+1

,

which is the product of the weights along the walk. It follows that

‖M‖kk =
∑

w: all length k closed walks

ωM(w) . (6.1)

Following the notations from enumeration of small simple cycles in a graph

by [6], we partition this summation into those with the same pattern H that

we call a k-cyclic pseudograph. Let Ck = (Vk, Ek) denote the undirected

simple cycle graph with k nodes, e.g. A3 in Figure 7.1 is C3. We expand the

standard notion of simple k-cyclic graphs to include multiedges and loops,

hence the name pseudograph.

Definition 6.1. We define an unlabelled and undirected pseudograph H =

(VH , EH) to be a k-cyclic pseudograph for k ≥ 3 if there exists an onto

node-mapping from Ck = (Vk, Ek), i.e. f : Vk → VH , and a one-to-one edge-

mapping g : Ek → EH such that g(e) = (f(ue), f(ve)) for all e = (ue, ve) ∈
Ek. We useHk to denote the set of all k-cyclic pseudographs. We use c(H) to

the number of different node mappings f from Ck to a k-cyclic pseudograph

H.

A1 A2 A3

c(A1) = 1 c(A2) = 3 c(A3) = 6

Figure 6.2: The 3-cyclic pseudographs H3 = {A1, A2, A3}.

In the above example, each member of H3 is a distinct pattern that can

be mapped from C3. For A1, it is clear that there is only one mapping from

C3 to A1 (i.e. c(A1) = 1). For A2, one can map any of the three nodes to

the left-node of A2, hence c(A2) = 3. For A3, any of the three nodes can be

mapped to the bottom-left-node of A3 and also one can map the rest of the

nodes clockwise or counter-clockwise, resulting in c(A3) = 6. For k ≤ 7, all

the k-cyclic pseudo graphs are given in the Section 6.9 (See Figures 7.2–6.17).

Each closed walk w of length k is associated with one of the graphs inHk, as

there is a unique H that the walk is an Eulerian cycle of (under a one-to-one
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mapping of the nodes). We denote this graph by H(w) ∈ Hk. Considering

the weight of a walk ωM(w), there are multiple distinct walks with the same

weight. For example, a length-3 walk w = (v1, v2, v2, v1) has H(w) = A2

and there are 3 walks with the same weight ω(w) = (Mv1v2)2Mv2v2 , i.e.

(v1, v2, v2, v1), (v2, v2, v1, v2), and (v2, v1, v2, v2). This multiplicity of the

weight depends only on the structure H(w) of a walk, and it is exactly

c(H(w)) the number of mappings from Ck to H(w) in Definition 7.1. The

total sum of the weights of closed walks of length k can be partitioned into

their respective pattern, which will make computation of such terms more

efficient (see Section 6.2) and also de-biasing straight forward (see Equation

(7.12)):

‖M‖kk =
∑
H∈Hk

ωM(H) c(H) , (6.2)

where with a slight abuse of a notation, we let ωM(H) for H ∈ Hk be the sum

of all distinct weights of walks w with H(w) = H, and c(H) is the multiplicity

of each of those distinct weights. This gives an alternative tool for computing

the Schatten k-norm without explicitly computing the singular values.

Given only the access to a subset of sampled entries, one might be tempted

to apply the above formula to the sampled matrix with an appropriate scal-

ing, i.e. ∥∥∥ d2

|Ω|PΩ(M)
∥∥∥k
k

=
d2

|Ω|
∑
H∈Hk

ωPΩ(M)(H) c(H) , (6.3)

to estimate ‖M‖kk. However, this is significantly biased. To eliminate the

bias, we propose rescaling each term in (7.8) by the inverse of the probability

of sampling that particular walk w (i.e. the probability that all edges in w

are sampled). A crucial observation is that, for any sampling model that is

invariant under a relabelling of the nodes, this probability only depends on

the pattern H(w). In particular, this is true for the Erdös-Rényi sampling.

Based on this observation, we introduce a novel estimator that de-biases each

group separately:

Θ̂k(PΩ(M)) =
∑
H∈Hk

1

p(H)
ωPΩ(M)(H) c(H) . (6.4)
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where p(H) is the probability a pattern H is sampled, i.e. all edges traversed

in a walk w with H(w) = H is sampled. It immediately follows that this esti-

mator is unbiased, i.e. EΩ[Θ̂k(PΩ(M))] = ‖M‖kk, where the randomness is in

Ω. However, computing this estimate can be challenging. Naive enumeration

over all closed walks of length k takes time scaling as O(d∆k−1), where ∆

is the maximum degree of the graph. Except for extremely sparse graphs,

this is impractical. Inspired by the work of [6] in counting short cycles in a

graph, we introduce a novel and efficient method for computing the proposed

estimate for small values of k.

Proposition 6.2. For a positive semidefinite matrix M and any sampling

pattern Ω, the proposed estimate Θ̂k(PΩ(M)) in (7.12) can be computed in

time O(dα) for k ∈ {3, 4, 5, 6, 7}, where α < 2.373 is the exponent of matrix

multiplication. For k = 1 or 2, Θ̂k(PΩ(M)) can be computed in time O(d)

and O(d2), respectively.

This bound holds regardless of the degree, and the complexity can be

even smaller for sparse graphs as matrix multiplications are more efficient.

We give a constructive proof by introducing a novel algorithm achieving

this complexity in Section 6.2. For k ≥ 8, our approach can potentially be

extended, but the complexity of the problem fundamentally changes as it is

at least as hard as counting K4 in a graph, for which the best known run

time is O(dα+1) for general graphs [117].

We make the following contributions in this paper:

• We give in (7.12) an unbiased estimator of the Schatten k-norm of

a positive semidefinite matrix M , from a random sampling of its en-

tries. In general, the complexity of computing the estimate scales as

O(d∆k−1) where ∆ is the maximum degree (number of sampled entries

in a column) in the sampled matrix. We propose a novel efficient al-

gorithm for computing the estimate in (7.12) exactly for small k ≤ 7,

which involves only matrix operations. This algorithm is significantly

more efficient and has run-time scaling as O(dα) independent of the

degree and for all k ≤ 7 (see Proposition 6.2) .

• Under the typical Erdös-Rényi sampling, we show that the Schatten

k-norm of an incoherent rank-r matrix can be approximated within

any constant multiplicative error, with number of samples scaling as
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O(dr1−2/k) (see Theorem 6.3). In particular, this is strictly smaller

than the number of samples necessary to complete the matrix, which

scales as O(dr log d). Below this matrix completion threshold, numeri-

cal experiments confirm that the proposed estimator significantly out-

performs simple heuristics of using singular values of the sampled ma-

trices directly or applying state-of-the-art matrix completion methods

(see Figure 6.4).

• Given estimation of first K Schatten norms, it is straight forward to ap-

proximate spectral sum functions of the form (6.5) using Chebyshev’s

expansion, and also estimate the spectrum itself using moment match-

ing in Wasserstein distance. We apply our Schatten norm estimates

to the applications of estimating the generalized rank studied in [217]

and estimating the spectrum studied in [119]. We provide performance

guarantees for both applications and provide experimental results sug-

gesting we improve upon other competing methods.

• We propose a new sampling model, which we call graph sampling, that

preserves the structural properties of the pattern of the samples. We

identify a fundamental property of the structure of the pattern (λ∗G,r
in Eq.(6.27)) that captures the difficulty of estimating the Schatten

k-norm from such graph sampling (see Theorem 6.11). Under this

graph sampling, we show that there are sampling patterns that are

significantly more efficient, for estimating the spectral properties, than

Erdös-Rényi sampling.

In the remainder of this section, we review existing work in Schatten norm

approximation, and provide an efficient implementation of the estimator

(7.12) for small k in Section 6.2. In Section 6.3, we provide a theoretical

analysis of our estimator under the Erdös-Rényi sampling scenario. In Sec-

tion 6.4, we provide a theoretical analysis under the graph sampling scenario.

We conclude with a discussion on interesting observations and remaining

challenges in Section 6.5.
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6.1.1 Related work

We review existing methods in approximating the Schatten norms, counting

small structures in graphs, and various applications of Schatten norms.

Estimating k-Schatten norms of a data matrix. The proposed Schat-

ten norm estimator can be used as a black box in various applications where

we want to test the property of a data matrix or a network but limited to

observe only a small portion of the data. These include, for example, network

forensics, matrix spectral property testing, and testing for graph isospectral

properties. Relatively little is known under the matrix completion setting

studied in this paper. However, Schatten norm estimation under different

resource constrained scenarios have been studied. [94] propose a randomized

algorithm for approximating the trace of any large matrix, where the con-

straint is on the computational complexity. The goal is to design a random

rank-one linear mapping such that the trace is preserved in expectation and

the variance is small [11, 175]. [127] propose an optimal bilinear sketching

of a data matrix, where the constraint is on the memory, i.e. the size of the

resulting sketch. The goal is to design a sketch of a data matrix M using

minimal storage and a corresponding approximate reconstruction method for

‖M‖kk. [128] propose an optimal streaming algorithm where only one-pass

on the data is allowed in a data stream model and the constraint is on the

space complexity of the algorithm. The goal is to design a streaming al-

gorithm using minimal space to estimate ‖M‖kk. [217] propose an estimator

under a distributed setting where columns of the data are store in distributed

storage and the constraint is on the communication complexity. The goal is

to design a distributed protocol minimizing the communication to estimate

‖M‖kk. Given a random vector X, [119] propose an optimal estimator for

the Schatten k-norm of the covariance matrix, where the constraint is on the

number of samples n. The goal is to design an estimator using minimum

number of samples to estimate ‖E[XXT ]‖kk.
One of our contribution is that we propose an efficient algorithm for com-

puting the weighted counts of small structures in Section 6.2, which can

significantly improve upon less sample-efficient counterpart in, for example,

[119]. Under the setting of [119] (and also [127]), the main idea of the es-

timator is that the weight of each length-k cycle in the observed empiri-

cal covariance matrix (1/n)
∑n

i=1XiX
T
i provides an unbiased estimator of
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‖E[XXT ]‖kk. One prefers to sum over the weights of as many cycles as com-

putationally allowed in order to reduce the variance. As counting all cycles

is in general computationally hard, they propose counting only increasing

cycles (which only accounts for only 1/k! fraction of all the cycles), which

can be computed in time O(dα). If one has an efficient method to count all

the (weighted) cycles, then the variance of the estimator could potentially

decrease by an order of k!. For k ≤ 7, our proposed algorithm in Section 6.2

provides exactly such an estimator. We replace [119, Algorithm 1] with ours,

and run the same experiment to showcase the improvement in Figure 6.3, for

dimension d = 2048 and various values of number of samples n comparing

the multiplicative error in estimating ‖E[XXT ]‖kk, for k = 7. With the same

run-time, significant gain is achieved by simply substituting our proposed

algorithm for counting small structures, in the sub-routine. In general, the

efficient algorithm we propose might be of independent interest to various

applications, and can directly substitute (and significantly improve upon)

other popular but less efficient counterparts.

 0.01

 0.1

 1

 10

 100

 256  512  1024  2048

increasing simple cycles
all simple cycles

number of samples, n

̂|‖E[XXT ]‖kk−‖E[XXT ]‖kk|
‖E[XXT ]‖kk

Figure 6.3: By replacing Algorithm 1 in [119] that only counts increasing
cycles with our proposed algorithm that counts all cycles, significant gain is
acheived in estimating ‖E[XXT ]‖kk, for k = 7.

One of the main challenges under the sampling scenario considered in this

paper is that existing counting methods like that of [119] cannot be applied,

regardless of how much computational power we have. Under the matrix

completion scenario, we need to (a) sum over all small structures H ∈ Hk

and not just Ck as in [119]; and (b) for each structure we need to sum over

all subgraphs with the same structure and not just those walks whose labels

form a monotonically increasing sequence as in [119].

Algorithms for counting structures. An important problem in graph
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theory is to count the number of small structures, also called network mo-

tifs, in a given graph. This has many practical applications in designing

good LDPC codes [196], understanding the properties social networks [198],

and explaining gene regulation networks [189]. Exact and approximate algo-

rithms have been proposed in [6, 117, 133, 85, 109, 202]. The most relevant

one is the work of [6] on counting the number of cycles Ck, where counts of

various small structures called k-cyclic graphs are used as sub-routines and

efficient approaches are proposed for k ≤ 7. These are similar to k-cyclic

pseudographs, but with multiedges condensed to a single edge. When count-

ing cycles in a simple (unweighted) graph, k-cyclic graphs are sufficient as

all the edges have weight one. Hence, one does not need to track how many

times an edge has been traversed; the weight of that walk is one, regardless.

In our setting, the weight of a walk depends on how many times an edge has

been traversed, which we track using multiedges. It is therefore crucial to

introduce the class of k-cyclic pseudographs in our estimator.

In a distributed environment, fast algorithms for counting small structures

have been proposed by [61] and [62] for small values of k ∈ {3, 4}. However,

the main strength of this approach is in distributed computing, and under

the typical centralized setting we study, this approach can be slower by a

factor exponential in k for, say k ≤ 7.

From Schatten norms to spectral sum functions. A dominant applica-

tion of Schatten norms is in approximating a family of functions of a matrix,

which are called spectral sum functions [87] of the form

F (M ; f) ≡
d∑
i=1

f(σi(M)) '
K∑
k=0

ak

{ d∑
i=1

σi(M)k
}
. (6.5)

A typical approach is to compute the coefficients of a Chebyshev approxi-

mation of f , which immediately leads to an approximation of the spectral

sum function of interest as the weighted sum of Schatten k-norms. This

follows from the approximation of f(x) ' ∑K
k=0 akx

k. This approach has

been widely used in fast methods for approximating the log-determinant

[163, 216, 26, 10, 88], corresponding to f(x) = log x. Practically, log-

determinant computations are routinely (approximately) required in applica-

tions including Gaussian graphical models [176], minimum-volume ellipsoids

[199], and metric learning [45]. Fast methods for approximating trace of
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matrix inverse has been studied in [211, 37], corresponding to f(x) = x−1,

motivated by applications in lattice quantum chromodynamics [194]. Fast

methods for approximating the Estarada index has been studied in [87],

corresponding to f(x) = exp(x). Practically, it is used in characterizing 3-

dimensional molecular structure [64] and measuring graph centrality [65], the

entropy of a graph [33], and the bipartivity of a graph [66]. Approximating

the generalized rank under communication constraints has been studied in

[217], corresponding to f(x; c1) = I(x ≤ c1). The generalized rank approxi-

mates a necessary tuning parameter in a number of problems where low-rank

solutions are sought including robust PCA [32, 159] and matrix completion

[111, 110, 97], and also is required in sampling based methods in numerical

analysis [142, 86]. Similarly, [177] studied the number of singular values in

an interval, corresponding to f(x; c1, c2) = I(c1 ≤ x ≤ c2). In practice, a

number of eigensolvers [167, 178, 179] require the number of eigenvalues in

an given interval. For more comprehensive list of references and applications

of this framework, we refer to the related work section in [87].

In a recent work, [119] provide a novel approach to tackle the challeng-

ing problem of estimating the singular values themselves. Considering the

histogram of the singular values as a one-dimensional distribution and the

Schatten k-norm as the k-th moment of this distribution, the authors pro-

vide an innovative algorithm to estimate the histogram that best matches

the moments in Wasserstein distance.

Matrix completion. Low-rank matrix completion addresses the problem

of recovering a low-rank matrix from its sampled entries. Tight lower and

upper bounds on the sample complexity is well studied in both cases where

you want exact recovery when samples are noiseless [31, 110, 20], and also

when samples are noisy and where you want approximate recovery [111, 158].

In practical applications, one might not have enough samples to estimate all

the missing entries with sufficient accuracy. However, one might still be able

to infer important spectral properties of the data, such as the singular values

or the rank. Such spectral properties can also assist in making decisions

on how many more samples to collect in order to make accurate inference

on the quantity of interest. In this paper, one of the fundamental question

we ask and answer affirmatively is: Can we accurately recover the spectral

properties of a low-rank matrix from sampling of its entries, below the matrix
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completion threshold?

6.2 Efficient Algorithm

In this section we give a constructive proof of Proposition 6.2, inspired by the

seminal work of [6] and generalize their counting algorithm for k-cyclic graphs

for counting (weighted) k-cyclic pseudographs. In computing the estimate

in (7.12), c(H) can be computed in time O(k!) and suppose p(H) has been

computed (we will explain how to compute p(H) for Erös-Rényi sampling and

graph sampling in Sections 6.3 and 6.4). The bottleneck then is computing

the weights ωPΩ(M)(H) for each H ∈ Hk. Let γM(H) ≡ ωM(H)c(H). We give

matrix multiplication based equations to compute γM(H) for every H ∈ Hk

for k ∈ {3, 4, 5, 6, 7}. This establishes that γM(H), and hence ωM(H), can

be computed in time O(dα), proving Proposition 6.2.

For any matrix A ∈ Rd×d, let diag(A) to be a diagonal matrix such that

(diag(A))ii = Aii, for all i ∈ [d] and (diag(A))i,j = 0, for all i 6= j ∈ [d].

For a given matrix M ∈ Rd×d, define the following: OM to be matrix of off-

diagonal entries of M that is OM ≡M−diag(M) and we let DM ≡ diag(M).

Let tr(A) denote trace of A, that is tr(A) =
∑

i∈[d] Aii, and let A∗B denote

the standard matrix multiplication of two matrices A and B to make it more

explicit. Consider computing γM(H) for H ∈ H3 as labeled in Figure 7.1:

γM(A1) = tr(DM∗DM∗DM) (6.6)

γM(A2) = 3 tr(DM∗OM∗OM) (6.7)

γM(A3) = tr(OM∗OM∗OM) (6.8)

The first weighted sum γM(A1) is sum of all weights of walks of length 3 that

consists of three self-loops. One can show that γM(A1) =
∑

i∈[d] M
3
ii, which

in our matrix operation notations is (6.6). Similarly, γM(A3) is the sum of

weights of length 3 walks with no self-loop, which leads to (6.8). γM(A2) is

the sum of weights of length 3 walks with a single self-loop, which leads to

(6.7). The factor 3 accounts for the fact that the self loop could have been

placed at first, second, or third in the walk.

Similarly, for each k-cyclic pseudographs in Hk for k ≤ 7, computing

γM(H) involves a few matrix operations with run-time O(dα). We provide
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the complete set of explicit expressions in Section 6.10. A MATLAB imple-

mentation of the estimator (7.12), that includes as its sub-routines the com-

putation of the weights of all k-cyclic pseudographs, is available for down-

load at https://github.com/khetan2/Schatten_norm_estimation. The

explicit formulae in Section 6.10 together with the implementation in the

above url might be of interest to other problems involving counting small

structures in graphs.

For k = 1, the estimator simplifies to Θ̂k(PΩ(M)) = (1/p)
∑

iPΩ(M)ii,

which can be computed in time O(d). For k = 2, the estimator simplifies to

Θ̂k(PΩ(M)) = (1/p)
∑

i,j PΩ(M)2
ij, which can be computed in time O(|Ω|).

However, for k ≥ 8, there exists walks over K4, a clique over 4 nodes, that

cannot be decomposed into simple computations involving matrix operations.

The best known algorithm for a simpler task of counting K4 has run-time

scaling as O(dα+1), which is fundamentally different. We refer to Section 6.5

for further discussions on the computational complexity beyond k = 7.

Algorithm 8 Schatten k-norm estimator

Input: PΩ(M), k, Hk, p(H) for all H ∈ Hk

Output: Θ̂k(PΩ(M))
1: if k ≤ 7 then
2: For each H ∈ Hk, compute γPΩ(M)(H) using the formula from

Eq. (6.6)–(6.8) for k = 3 and Eq. (6.90) – (??) for k ∈ {4, 5, 6, 7}
3: Θ̂k(PΩ(M))←∑

H∈Hk
1

p(H)
γPΩ(M)(H)

4: else
5: Θ̂k(PΩ(M)) ← Algorithm 11[PΩ(M), k, Hk, p(H) for all H ∈ Hk]

[Section 6.6]
6: end if

6.3 Erdös-Rényi sampling

Under the stylized but canonical Erdös-Rényi sampling, notice that the prob-

ability p(H) that we observe all edges in a walk with pattern H is

p(H) = pm(H) , (6.9)

where p is the probability an edge is sampled and m(H) is the number of

distinct edges in a k-cyclic pseudograph H. Plugging in this value of p(H),
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which can be computed in time linear in k, into the estimator (7.12), we get

an estimate customized for Erdös-Rényi sampling.

Given a rank-r matrix M , the difficulty of estimating properties of M

from sampled entries is captured by the incoherence of the original matrix

M , which we denote by µ(M) ∈ R [31]. Formally, let M ≡ UΣU> be

the singular value decomposition of a positive definite matrix where U is

a d × r orthonormal matrix and Σ ≡ diag(σ1, · · · , σr) with singular values

σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Let Ui,r denote the i-th row and j-th column entry

of matrix U . The incoherence µ(M) is defined as the smallest positive value

µ such that the following holds:

A1. For all i ∈ [d], we have
∑r

a=1 U
2
ia(σa/σ1) ≤ µr/d.

A2. For all i 6= j ∈ [d], we have |∑r
a=1 UiaUja(σa/σ1)| ≤ µ

√
r/d.

The incoherence measures how well spread out the matrix is and is a common

measure of difficulty in completing a matrix from random samples [31, 110].

The lower the incoherence, the more spread out the entries are, and esti-

mation is easier. On the other hand, if there a a few entries that are much

larger than the rest, estimating a property of the matrix (such as the Schatten

k-norm) from sampled entries can be extremely challenging.

6.3.1 Performance guarantee

For any d × d positive semidefinite matrix M of rank r with incoherence

µ(M) = µ and the effective condition number κ = σmax(M)/σmin(M), we

define

ρ2 ≡ (κµ)2kg(k) max

{
1,

(dp)k−1

d
,
rkpk−1

dk−1

}
, (6.10)

such that the variance of our estimator is bounded by

Var(Θ̂(PΩ(M))/‖M‖kk) ≤ ρ2(r1−2/k/dp)k as we show in the proof of

Theorem 6.3 in Section 6.8.1. Here, g(k) = O(k!) is a function depending

only on k.

Theorem 6.3 (Upper bound under the Erdös-Rényi sampling). For any

integer k ∈ [3,∞), any δ > 0, any rank-r positive semidefinite matrix
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M ∈ Rd×d, and given i.i.d. samples of the entries of M with probability p,

the proposed estimate of (7.12) achieves normalized error δ with probability

bounded by

P

(∣∣Θ̂k(PΩ(M))− ‖M‖kk
∣∣

‖M‖kk
≥ δ

)
≤ ρ2

δ2

(r1−2/k

dp

)k
. (6.11)

Consider a typical scenario where µ, κ, and k are finite with respect to d

and r. Then the Chebyshev’s bound in (6.11) implies that the sample d2p =

O(dr1−2/k) is sufficient to recover ‖M‖kk up to arbitrarily small multiplicative

error and arbitrarily small (but strictly positive) error probability. This is

strictly less than the known minimax sample complexity for recovering the

entire low-rank matrix, which scales is Θ(rd log d). As we seek to estimate

only a property of the matrix (i.e. the Schatten k-norm) and not the whole

matrix itself, we can be more efficient on the sample complexity by a factor

of r2/k in rank and a factor of log d in the dimension. We emphasize here that

such a gain can only be established using the proposed estimator based on

the structure of the k-cyclic pseudographs. We will show empirically that the

standard matrix completion approaches fail in the critical regime of samples

below the recovery threshold of O(rd log d).

Figure 6.4 is a scatter plot of the absolute relative error in estimated Schat-

ten k-norm,
∣∣‖M‖kk−‖̂M‖kk∣∣/‖M‖kk, for k = 5, for three approaches: the pro-

posed estimator, Schatten norm of the scaled sampled matrix (after rank-r

projection), and Schatten norm of the completed matrix, using state-of-the-

art alternating minimization algorithm [97]. All the three estimators are

evaluated 20 times for each value of p. M is a symmetric positive semi-

definite matrix of size d = 500, and rank r = 100 (left panel) and r = 500

(right panel). Singular vectors U of M = UΣU>, are generated by QR de-

composition of N (0, Id×d) and Σi,i is uniformly distributed over [1, 2]. For

a low rank matrix on the left, there is a clear critical value of p ' 0.45,

above which matrix completion is exact with high probability. However, this

algorithm knows the underlying rank and crucially exploits the fact that the

underlying matrix is exactly low-rank. In comparison, our approach is ag-

nostic to the low-rank assumption but finds the accurate estimate that is

adaptive to the actual rank in a data-driven manner. Using the first r sin-
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Figure 6.4: The proposed estimator outperforms both baseline approaches
below the matrix completion threshold. For k = 5, comparison of the
absolute relative error in estimated Schatten norm that is∣∣‖M‖kk − ‖̂M‖kk∣∣/‖M‖kk for the three algorithms: (1) the proposed

estimator, ‖̂M‖kk = Θ̂k(PΩ(M)), (2) Schatten norm of the scaled sampled

matrix, ‖̂M‖kk = ‖(1/p)Pr(PΩ(M))‖kk, (3) Schatten norm of the completed

matrix, M̃ = AltMin(PΩ(M)) from [97], ‖̂M‖kk = ‖M̃‖kk, where Pr(·) is the
standard best rank-r projection of a matrix. Ω is generated by Erdös-Rényi
sampling of matrix M with probability p.

gular values of the (rescaled) sampled matrix fails miserably for all regimes

(we truncate the error at one for illustration purposes). In this paper, we

are interested in the regime where exact matrix completion is impossible as

we do not have enough samples to exactly recover the underlying matrix:

p ≤ 0.45 in the left panel and all regimes in the right panel.

The sufficient condition of d2p = O(dr1−2/k) in Theorem 6.3 holds for

a broad range of parameters where the rank is sufficiently small r =

O(dk/((k−1)(k−2))) (to ensure that the first term in ρ2 dominates). However,

the following results in Figure 6.5 on numerical experiments suggest that our

analysis holds more generally for all regimes of the rank r, even those close

to d. M is generated using settings similar to that of Figure 6.4. Empirical

probabilities are computed by averaging over 100 instances.

One might hope to tighten the Chebyshev bound by exploiting the fact

that the correlation among the summands in our estimator (7.12) is weak.

This can be made precise using recent result from [180], where a Bernstein-

type bound was proved for sum of polynomials of independent random vari-
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Figure 6.5: Each colormap in each block for k ∈ {2, 3, 4, 5, 6, 7} show

empirical probability of the event
{∣∣‖M‖kk − Θ̂k(PΩ(M))

∣∣/‖M‖kk ≤ δ
}

, for
δ = 0.5 (left panel) and δ = 0.2 (right panel). Ω is generated by
Erdös-Rényi sampling of matrix M with probability p (vertical axis). M is
a symmetric positive semi-definite matrix of size d = 1000. The solid lines
correspond to our theoretical prediction p = (1/d)r1−2/k.

ables that are weakly correlated. The first term in the bound (6.12) is the

natural Bernstein-type bound corresponding to the Chebyshev’s bound in

(6.11). However, under the regime where k is large or p is large, the cor-

relation among the summands become stronger, and the second and third

term in the bound (6.12) starts to dominate. In the typical regime of inter-

est where µ, κ, k are finite, d2p = O(dr1−2/k), and sufficiently small rank

r = O(dk/((k−1)(k−2))), the error probability is dominated by the first term

in the right-hand side of (6.12). Neither one of the two bounds in (6.11)

and (6.12) dominates the other, and depending on the values of the problem

parameters, we might want to apply the one that is tighter. We provide a

proof in Section 6.8.2.

Theorem 6.4. Under the hypotheses of Theorem 6.3, the error probability

is upper bounded by

P

(∣∣Θ̂k(PΩ(M))− ‖M‖kk
∣∣

‖M‖kk
≥ δ

)

≤ e2 max

{
e
− δ

2

ρ2

(
dp

r1−2/k

)k
, e
−(dp)

(
δd

ρrk−1

)1/k

, e
−(dp)

(
δd

ρrk−1

)
, e−

δdp
ρ

}
. (6.12)
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These two results show that the sample size of d2p = O(dr1−2/k) is sufficient

to estimate a Schatten k-norm accurately. In general, we do not expect to

get a universal upper bound that is significantly tighter for all r, because for

a special case of r = d, the following corollary of [127, Theorem 3.2] provides

a lower bound; it is necessary to have sample size d2p = O(d2−4/k) when

r = d. Hence, the gap is at most a factor of r2/k in the sample complexity.

Corollary 6.5. Consider any linear observation X ∈ Rn of a matrix M ∈
Rd×d and any estimate θ(X) satisfying (1−δk)‖M‖kk ≤ θ(X) ≤ (1+δk)‖M‖kk
for any M with probability at least 3/4, where δk = (1.2k−1)/(1.2k+1). Then,

n = Ω(d2−4/k).

For k ∈ {1, 2}, precise bounds can be obtained with simpler analyses. In

particular, we have the following remarks, whose proof follows immediately

by applying Chebyshev’s inequality and Bernstien’s inequality along with the

incoherence assumptions.

Remark 6.6. For k = 1, the probability of error in (6.11) is upper bounded

by min{ν1, ν2}, where

ν1 ≡
1

δ2

(κµ)2

dp
, and ν2 ≡ 2 exp

(−δ2

2

((κµ)2

dp
+ δ

(κµ)

3dp

)−1)
.

Remark 6.7. For k = 2, the probability of error in (6.11) is upper bounded

by min{ν1, ν2}, where

ν1 ≡
1

δ2

(κµ)4

d2p

(
2 +

r2

d

)
, and

ν2 ≡ 2 exp
(
− δ2

2

((κµ)4

d2p

(
2 +

r2

d

)
+ δ

(κµ)2r

3d2p

)−1)
.

When k = 2, for rank small r ≤ C
√
d, only we only need d2p = O(1)

samples for recovery up to any arbitrary small multiplicative error. When

rank r is large, our estimator requires d2p = O(d) for both k ∈ {1, 2}.
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6.3.2 From Schatten norms to spectrum and spectral sum
functions

Schatten norms by themselves are rarely of practical interest in real applica-

tions, but they provide a popular means to approximate functions of singular

values, which are often of great practical interest [53, 217, 119]. In this sec-

tion, we consider two such applications using the first few Schatten norms

explicitly: estimating the generalized rank in Section 6.3.2 and estimating

the singular values in Section 6.3.2.

Estimating the generalized rank

For a matrix M ∈ Rd×d and a given constant c ≥ 0, its generalized rank of

order c is given by

rank(M, c) =
d∑
i=1

I
[
σi(M) > c

]
. (6.13)

This recovers the standard rank as a special case when c = 0. Without loss

of generality, we assume that σmax(M) ≤ 1. For any given 0 ≤ c2 < c1 ≤ 1,

and δ ∈ [0, 1), our goal is to get an estimate r̂(PΩ(M)) from sampled entries

PΩ(M) such that

(1− δ) rank(M, c1) ≤ r̂(PΩ(M)) ≤ (1 + δ) rank(M, c2) . (6.14)

The reason we take two different constants c1, c2 is to handle the ambiguous

case when the matrix M has many eigenvalues smaller but very close to c1. If

we were to set c2 = c1, then any estimator r̂(M) would be strictly prohibited

from counting these eigenvalues. However, since these eigenvalues are so close

to the threshold, distinguishing them from other eigenvalues just above the

threshold is difficult. Setting c2 < c1 allows us to avoid this difficulty and

focus on the more fundamental challenges of the problem.

Consider the function Hc1,c2 : R→ [0, 1] given by

Hc1,c2(x) =


1 if x > c1

0 if x < c2

x−c2
c1−c2 otherwise.

(6.15)
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It is a piecewise linear approximation of a step function and satisfies the

following:

rank(M, c1) ≤ ∑d
i=1Hc1,c2(σi(M)) ≤ rank(M, c2) . (6.16)

We exploit this sandwich relation and estimate the generalized rank. Given a

polynomial function f : R→ R of finite degree m such that f(x) ≈ Hc1,c2(x)

for all x, such that f(x) = a0 + a1x + · · ·+ amx
m, we immediately have the

following relation, which extends to a function on the cone of PSD matrices

in the standard way:

d∑
i=1

f(σi(M)) = a0d+
m∑
k=1

ak‖M‖kk . (6.17)

Using this equality, we propose the estimator:

r̂(PΩ(M); c1, c2) ≡ a0d+
m∑
k=1

akΘ̂k(PΩ(M)) , (6.18)

where we use the first several Θ̂k(PΩ(M))’s obtained by the estimator (7.12).

Note that function f depends upon c1, c2. The remaining task is to obtain

the coefficients of the polynomials in f that is a suitable approximation of

the function Hc1,c2 . In a similar context of estimating the generalized rank

from approximate Schatten norms, [217] propose to use a composite function

f = qs ◦ q where q is a finite-degree Chebyshev polynomial of the first kind

such that supx∈[0,1] |q(x)−Hc1,c2(x)| ≤ 0.1, and qs is a polynomial of degree

2s+ 1 given by

qs(x) =
1

B(s+ 1, s+ 1)

∫ x

0

ts(1− t)sdt , (6.19)

where B(·, ·) is the Beta function. Note that, since Hc1,c2 is a continuous

function with bounded variation, classical theory in [143, Theorem 5.7], guar-

antees existence of the Chebyshev polynomial q of a finite constant degree,

say Cb, that depends upon c1 and c2. Concretely, for a given choice of thresh-

olds 0 ≤ c1 < c2 ≤ 1 and degree of the beta approximation s, the estimator

r̂(PΩ(M); c1, c2) in (6.18) can be computed as follows.

The approximation of Hc1,c2 with f = qs ◦ q and our upper bound on
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Algorithm 9 Generalized rank estimator (a variation of [217])

Input: PΩ(M), c1, c2, s
Output: r̂(PΩ(M); c1, c2)

1: For given c1 and c2, find a Chebyshev polynomial of the first kind q(x)
satisfying

sup
x∈[0,1]

|q(x)−Hc1,c2(x)| < 0.1

[Algorithm 6.7]
2: Let Cb denote the degree of q(x)
3: Find the degree (2s + 1)Cb polynomial expansion of qs ◦ q(x) =∑(2s+1)Cb

k=0 akx
k

4: r̂(PΩ(M); c1, c2)← a0d+
∑(2s+1)Cb

k=1 akΘ̂k(PΩ(M)) [Algorithm 8]

estimated Schatten norms Θ̂k(PΩ(M)) translate into the following guarantee

on generalized rank estimator r̂(PΩ(M); c1, c2) given in (6.18).

Corollary 6.8. Suppose ‖M‖2 ≤ 1. Under the hypotheses of Theorem 6.3,

for any given 1 ≥ c1 > c2 ≥ 0, there exists a constant Cb, such that for any

s ≥ 0 and any γ > 0, the estimate in (6.18) with the choice of f = qs ◦ q
satisfies

(1− δ)(rank(M, c1)− 2−sd) ≤ r̂(PΩ(M); c1, c2)

≤ (1 + δ)(rank(M, c2) + 2−sd) , (6.20)

with probability at least 1 − γCb(2s + 1), where δ ≡
max1≤k≤Cb(2s+1)

{√
ρ2

γ
(max{1,r1−2/k}

dp
)k
}

.

The proof follows immediately using Theorem 6.3 and the following lemma

which gives a uniform bound on the approximation error between Hc1,c2 and

f = qs ◦ q. Lemma 6.9, together with Equations. (6.16) and (7.4), provides

a (deterministic) functional approximation guarantee of

rank(M, c1)− d 2−s ≤
d∑
i=1

f(σi(M)) ≤ rank(M, c1) + d 2−s , (6.21)

for any c1 < c2 and any choice of s, as long as Cb is large enough to guar-

antee 0.1 uniform error bound on the Chebyshev polynomial approximation.

Since we can achieve 1 ± δ approximation on each polynomial in f(σi(x)),

Theorem 6.3 implies the desired Corollary 6.8. Note that using Remarks 6.6
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and 6.7, the bounds in (6.12) hold for k ∈ [1,∞) with r1−2/k replaced by

max{1, r1−2/k}.
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Figure 6.6: The left panel shows a histogram of singular values of M chosen
for the experiment. The right panel compares absolute error in estimation
r̂(PΩ(M); c1 = 0.5, c2 = 0.6) for two choices of the Schatten norm estimates

‖̂M‖kk: first the proposed estimator Θ̂k(PΩ(M)) in (7.12), and second the

Schatten norm of the completed matrix, M̃ = AltMin(PΩ(M)) from [97].

Lemma 6.9 ([217], Lemma 1). Consider the composite polynomial f(x) =

qs(q(x)). Then f(x) ∈ [0, 1] for all x ∈ [0, 1], and moreover

|f(x)−Hc1,c2(x)| ≤ 2−s , for all x ∈ [0, c2] ∪ [c1, 1] . (6.22)

In Figure 6.6, we evaluate the performance of estimator (6.18) numerically.

We construct a symmetric matrix M of size d = 1000 and rank r = 200.

σi ∼ Uni(0, 0.4) for 1 ≤ i ≤ r/2, and σi ∼ Uni(0.6, 1) for r/2 + 1 ≤ i ≤ r.

We estimate r̂(PΩ(M); c1, c2) for Erdös-Rényi sampling Ω, and a choice of

c2 = 0.5 and c1 = 0.6, which is motivated by the distribution of σi. We use

Chebyshev polynomial of degree Cb = 2, and s = 1 for qs. That is function

f is of degree 6. Accuracy of the estimator can be improved by increasing

Cb and s, however that would require estimating higher Schatten norms.
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Estimating the spectrum

Given accurate estimates of first K Schatten norms of a matrix M , we can

estimate singular values of M using a linear programming based algorithm

given in [119]. In particular, we get the following guarantees on the estimated

singular values, whose proof follows directly using the analysis techniques in

the proof of [119, Theorem 2]. The main idea is that given the rank, the

maximum support size of the true spectrum, and an estimate of its first K

moments, one can find r singular values whose K first moments are close to

the estimated Schatten norms.

Algorithm 10 Spectrum estimator (a variation of [119])

Input: PΩ(M), K, ε, target rank r, lower bound a and upper bound b on
the positive singular values

Output: estimated singular values (σ̂1, σ̂2, . . . , σ̂r)

1: L ∈ RK : Lk = Θ̂k(PΩ(M)) for k ∈ [K] [Algorithm 8]
2: t = d(b− a)/εe+ 1, x ∈ Rt: xi = a+ ε(i− 1), for i ∈ [t],
3: V ∈ RK×t : Vij = xij for i ∈ [K], j ∈ [t]
4: p∗ ≡ {minp∈Rt |V p− L|1 : 1>t p = 1, p ≥ 0}
5: σ̂i = min{xj :

∑
`≤j p

∗
` ≥ i

r+1
}, ith (r + 1)st-quantile of distribution

corresponding to p∗

Further, our upper bound on the first K moments can be translated into

an upper bound on the Wasserstein distance between those two distributions,

which in turn gives the following bound on the singular values. With small

enough ε and large enough K and r, we need sample size d2p > Cr,K,ε,γdr
1−2/k

to achieve arbitrary small error.

Corollary 6.10. Under the hypotheses of Theorem 6.3, given rank r, con-

stants 0 ≤ a < b such that σmin ≥ a, σmax ≤ b, and estimates of the

first K Schatten norms of M , {Θ̂k(PΩ(M))}k∈[K] obtained by the estima-

tor (7.12), for any 0 < ε � (b − a), and γ > 0, Algorithm 10 runs in time

poly(r,K, (b − a)/ε) and returns {σ̂i}i∈[r] an estimate of {σi(M)}i∈[r] such
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that

1

r

r∑
i=1

|σ̂i − σi|

≤ C(b− a)

K
+
b− a
r

+ g(K)(b− a)

(
εKbK−1 +

K∑
k=1

σkmax

√
ρ2

γ

(
max{1, r1−2/k}

dp

)k)
,

(6.23)

with probability at least 1 − γK, where C is an absolute constant and g(K)

only depends on K.

In Figure 6.7, we evaluate the performance of the proposed estimator

(7.12), in recovering the true spectrum using Algorithm 10. We compare the

results with the case when Schatten norms are estimated using matrix com-

pletion. We consider two distributions on singular values, one peak and two

peaks. More general distributions of spectrum can be recovered accurately,

however that would require estimating higher Schatten norms. For both

cases, the proposed estimator outperforms matrix completion approaches,

and achieves better accuracy as sample size increases with α. In each graph,

the black solid line depicts the empirical Cumulative Distribution Function

(CDF) of the ground truths {σi}i∈[r] for those r strictly positive singular val-

ues. In the first experiment (the top panel), there are r singular values at

one peak σi = 1, and in the second experiment (the bottom pannel) there

are r/2 singular values at each of the two peaks at σi = 1 and σi = 2. Each

cell shows the result of a choice of rank r ∈ {50, 200, 500} and a parame-

ter α ∈ {3, 5, 8, 10}, where Ω is generated using Erdös-Rényi sampling with

probability p = (α/d)r1−2/7. M is a symmetric matrix of size d = 1000 and

rank r with singular values {σi}i∈[d]. In each cell, there are one black line,

three blue lines, and three orange lines. Each blue line corresponds to the

empirical CDF of {σ̂i}i∈[d] for each trial, over three independent trials. Each

orange line corresponds to the empirical CDF of {σ̃i}i∈[d]. Here, σ̂i’s are es-

timated using {Θ̂k(PΩ(M))}k∈[K] obtained by the estimator (7.12), and σ̃i’s

are estimated using {‖M̃‖kk}k∈[K] where M̃ = AltMin(PΩ(M)), along with

Algorithm 2 in [119], for K = 7.
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6.4 Graph sampling

Our framework for estimating the Schatten k-norms can be applied more

generally to any random sampling, as long as the distribution is permutation

invariant. In practice, we typically observe one instance of a sampled matrix

and do not know how the samples were generated. Under a mild assumption

that the probability of sampling an entry is independent of the value of that

entry, the only information about the sampling model that we have is the

pattern, i.e. an unlabelled graph G = (V,E) capturing the pattern of sampled

indices by the edges. This naturally suggests a novel sampling scenario that

we call graph sampling.

The Erdös-Rényi sampling has been criticized as being too strict for ex-

plaining how real-world datasets are sampled. When working with natural

data, we typically only get one instance of a sampled matrix without the

knowledge of how those entries are sampled. In this section, we propose a

new sampling model that we call graph sampling that makes minimal as-

sumptions about how the data was sampled. We assume that the pattern

has been determined a priori, which is represented by a deterministic graph

G = (V,E) with d nodes denoted by V and undirected edges denoted by E.

The random sampling Ω is chosen uniformly at random over all relabeling of

the nodes in G. Formally, for a given G = (V,E), a permutation π : [d]→ V

is drawn uniformly at random and samples are drawn according to

PΩ(M) = {(i, j,Mij)}(π(i),π(j))∈E . (6.24)

As the sampling pattern G is completely known to the statistician who only

has one instance of a random sampling, we are only imposing that the sam-

ples are drawn uniformly at random from all instances that share the same

pattern. Further, understanding this graph sampling model has a potential

to reveal the subtle dependence of the estimation problem to the underlying

pattern, which is known to be hard even for an established area of matrix

completion.

In this section, we provide an estimator under graph sampling, and char-

acterize the fundamental limit on the achievable error. This crucially de-

pends on the original pattern G via a fundamental property λ∗G,r, which is

generally challenging to compute. However, we provide a bound on λ∗G,r
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for two extreme cases of varying difficulty: a clique sampling that requires

only O(r2−4/k) samples and a clique-star sampling that requires as many

as O(dr1−4/k) samples. This is made formal by showing a lower bound

on the minimax sample complexity. Comparing the two necessary condi-

tions on sample complexity, O(r2−4/k) for clique sampling and O(dr1−4/k) for

clique-star sampling, it follows that depending on the pattern of the samples,

the sample complexity can vary drastically, especially for low-rank matrices

where r � d.

Under the graph sampling, the probability p(H) that we observe all edges

in a walk with pattern H is

p(H) =
ωPΩ(1d1

T
d )(H)

ω1d1Td (H)
, (6.25)

where 1d1
T
d is the all ones matrix, and by permutation invariance, the

probability is the ratio between total (unweighted) number of walks with

H(w) = H in the original pattern Ω and that of the complete graph Kd.

Note that although Ω is a random quantity, ωPΩ(11T )(H) only depends on

the structure and not the labelling of the nodes and hence is a deterministic

quantity. Plugging in this value of p(H), which can be computed in time

O(dα) for k ≤ 7 as shown in Proposition 6.2 (and in general only increases

the computational complexity of the estimate by a factor of two), into the

estimator (7.12), we get an estimate customized for graph sampling.

6.4.1 Performance Guarantees

Recall the graph sampling defined above, where we relabel the nodes of a

pattern graph G(V,E) according to a random uniform permutation, and

sample the entries of the matrix M on the edges. We prove a fundamental

lower bound on the sample complexity that crucially depends on the following

property of the pattern G. Let Gπ(Ṽ ,Ω) denote the graph after relabeling

the nodes of G = (V,E) with permutation π : [d] → [d]. For independent

Rademacher variables ui for i ∈ [r]

fG,r(λ) ≡ max
π

{
Eu
[

exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

uiuj

)]}
, (6.26)
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where P(r)(Gπ) ⊆ [r]×[r] is a projection of the edges Ω over d nodes to a set of

edges over r nodes by mapping a node i ∈ [d] to a node 1 + (i− 1 mod r) ∈
[r]. Precisely, (i, j) ∈ P(r)(Gπ) if there exists an edge (i′, j′) ∈ Ω such

that i = 1 + (i′ − 1 mod r) and j = 1 + (j′ − 1 mod r). Observe that

fG,r(λ) is a non-decreasing function of λ. It follows from the fact that for

any positive λ and random variable x and any ε > 0, we have E[eλ(1+ε)x] ≥
E[eλx](E[eλx])ε ≥ E[eλx]eελE[x] ≥ E[eλx]. The first and the second inequalities

use Jensen’s inequality and the third one holds when E[x] ≥ 0. Note that

Eu[
∑

(i,j)∈P(r)(Gπ) uiuj] ≥ 0, since ui’s are i.i.d. Rademacher variables.

This function measures the distance between a particular low-rank matrix

with Gaussian entries and its rank one perturbation, which is used in our

constructive lower bound (see Eq. (6.60)). Intuitively, smaller fG,r(λ) im-

plies that two rank-r matrices with separated Schatten norms look similar

after graph sampling w.r.t. G. Hence, when this function is small, say less

than 26/25, then it is hard to distinguish which of the two (distributions of)

matrices we are observing. This is captured by the largest value of λ that

still maintains fG,r(λ) sufficiently small:

λ∗G,r ≡ max
{λ>0:fG,r(λ)≤26/25}

λ . (6.27)

One can choose any number not necessarily 26/25 as long as it is strictly

larger than one and strictly smaller than two, and this will only change

the probability upper bound in (6.28). If we sample from a graph G with

large λ∗G,r, then we cannot distinguish two distributions even if they have a

large Schatten norm separation. We do not have enough samples and/or our

pattern is not sample efficient. The dependence of the fundamental lower

bound on the graph G is captured by this property λ∗G,r, which is made

precise in the following theorem. We provide a lower bound that captures

how sample complexity depends on the pattern G and also on the underlying

matrix, by providing analysis customized for each family of matrices Mr,µ

parametrized by its rank and incoherence:

Mr,µ ≡
{
M ∈ Rd×d : M = M>, rank(M) ≤ r , µ(M) ≤ µ

}
.

Theorem 6.11 (General lower bound under graph sampling). For any finite

k ∈ [3,∞) suppose we observe samples under the graph sampling defined
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above with respect to a pattern graph G = (V,E). Then there exist universal

constants C > 0, C ′ > 0 and C ′′ > 0 such that for any r ≥ eC
′′k and

µ ≥ C ′
√

log r, if λ∗G,r ≥ Cdr1/k−1/2 then

inf
M∈Mr,µ

sup
Θ̃

P
(

1

2
‖M‖k ≤ Θ̃(PΩ(M)) ≤ 2‖M‖k

)
≤ 3

4
, (6.28)

where the supremum is over any measurable function of PΩ(M) and the prob-

ability is with respect to the random sampling Ω.

A proof of Theorem 6.11 is given in Section 6.8.3. It is in general challeng-

ing to evaluate λ∗G,r for a given graph. For a special case of clique sampling

where the pattern G(V,E) is a clique over a subset of ` nodes among d, we

provide a sharp upper bound on λ∗G,r.

Lemma 6.12 (Lower bound for clique sampling). If the pattern graph

G(V,E) is a clique over a subset of ` nodes, then λ∗G,r ≤ 2−4d(min{`, r})−1/2.

Together with Theorem 6.11, this implies that if ` ≤ 2−8C−2r1−2/k (such

that λ∗G,r ≥ Cdr1/k−1/2), then with probability at least 1/4 any estimator

makes an multiplicative error larger than two. Hence, sample size of `(` +

1)/2 = O(r2−4/k) is necessary to achieve multiplicative error of two with

high probability. We show that our estimator is optimal, by providing a

matching upper bound on the sample complexity when k = 3. For any

positive semidefinite matrix M ∈ Rd×d of rank r with incoherence µ(M) = µ,

κ = σmax(M)/σmin(M), and some function g(k) = O(k!), we define

ρ̃2 ≡ (κµ)2kg(k) max

{
1 ,

`k−1

rk−2
,
`

r
,
r1/2`k

d

}
,

such that the variance of our estimator is bounded by

Var(Θ̂(PΩ(M))/‖M‖kk) ≤ ρ2(r1−2/k/`)k as we show for k = 3 in the

proof of Theorem 6.13 in Section 6.8.6. Here, g(k) = O(k!) is a function of

k only.

Theorem 6.13 (Upper bound for clique sampling). For k = 3, any δ > 0,

and any rank-r matrix M � 0, the proposed estimator (7.12) achieves a
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multiplicative error δ with probability of error bounded by

P

(∣∣Θ̂k(PΩ(M))− ‖M‖kk
∣∣

‖M‖kk
≥ δ

)
≤ ρ̃2

δ2

(r1−2/k

`

)k
, (6.29)

under the graph sampling with the pattern graph G that is a clique over `

nodes.

For a typical scenario with finite µ and κ, this upper bound shows that

sample size of `(` + 1)/2 = O(r2−4/k) is sufficient to achieve any arbitrarily

small multiplicative error for k = 3 and sufficiently small rank r ≤ d2k/(3k−2)

and ` ≤ r(k−2)/(k−1), to ensure that the first term dominates in ρ̃2. However,

the numerical experiments suggest that our analysis holds more generally for

all regimes of the rank r. This matches the previous lower bound, proving

optimality of the proposed estimator. Although the current analysis holds

only for k = 3, we are intentionally writing the guarantee in general form as

we expect the bound to hold more generally. In particular, we believe that

Lemma 6.19 holds for all k ≥ 3, and thereby Theorem 6.13 holds for any

fixed integer k ∈ [3,∞). In the numerical experiments in Figure 6.8, M is

generated using settings similar to that of Figure 6.4. Empirical probabilities

are computed by averaging over 100 instances.

Although our analysis does not give a tight lower bound for Erdös-Rényi

sampling, there exists graph patterns such that sample complexity is large,

i.e. scales linearly in d. Consider a clique-star sampling where the pattern

graph G(V,E) has a clique on a small subset of nodes V1, |V1| = `, and the

remaining nodes V \ V1 are disconnected among themselves and are fully

connected with the clique in V1. Precisely, G = (V,E) with (i, j) ∈ E if

i ∈ V1 or j ∈ V1.

Lemma 6.14 (Lower bound for clique-star sampling). Under the clique-star

sampling over a clique of size `, there exists an absolute constant c such that

λ∗G,r ≤ cd(r(min{`, r}))−1/4.

Together with Theorem 6.11, this implies that if ` ≤ c4C−4r1−4/k, then

with probability at least 1/4 any estimator makes an multiplicative error

larger than two. This implies that the total number of edges in the pattern

graph should be O(dr1−4/k) for accurate estimation. Together with the up-

per bound on clique sampling in Theorem 6.13, this shows that the sample
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complexity can drastically change based on the pattern of your sampling

model. Clique sampling requires only O(r2−4/k) samples (for k = 3) whereas

clique-star sampling requires at least O(dr1−4/k). A proof of Lemma 6.12

and Lemma 6.14 is given in Section 6.8.4 and 6.8.5 respectively.

6.5 Discussion

We list some observations and future research directions.

Complexity of the estimator beyond k = 7. For k ≥ 8, our approach

of using matrix operations to count (the weights of) walks for each pattern

H ∈ Hk can potentially be extended. However, the complexity of the prob-

lem fundamentally changes for k ≥ 8. As our estimator is at least as hard

as counting small structures in a simple (unweighted) graph, we can borrow

known complexity results to get a lower bound. For instance, for k ≥ 8, we

need to count K4 in a graph, which the best known run time is O(dα+1) for

general graphs [117]. For general k, under standard hardness assumptions,

[71] show that there is no algorithm with run time O(f(k)dc) for counting cy-

cles of length k, for any function f(k) and a constant c that does not depend

on k. In comparison, finding one cycle of length k can be done in time 2O(k)dα

[6]. This implies that the complexity should scale as O(df(k)), and we believe

f(k) should be larger than (α
√

2k/3). The reason is that for k ≥
(
`
2

)
for an

odd `, our estimator needs to count the number of cliques K` of size `. Simi-

larly, for k ≥ (1/2)`2 for an even `, we require counting K`. The best known

algorithm for counting K` takes time O(min{d1+αd(`−1)/3e, d2+αd(`−2)/3e}) for

general graphs [6, Theorem 6.4]. Putting these bounds together, we believe

that the estimator take time at least dα
√

2k/3.

Graph sampling. Typical guarantees known for matrix completion assumes

the Erdös-Rényi sampling. One exception is the deterministic sampling stud-

ied by [20], but such generalization in sampling comes at a price of requiring

more strict assumptions on the matrixM . We propose graph sampling, which

can potentially capture how estimation guarantees depends explicitly on the

pattern G, and still remain analytically tractable. We give such examples for

special graphs in Section 6.4, and graph sampling model can potentially be

used to bridge the gap in sampling models between theory and practice.
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(Standard) rank estimation. As several popular matrix completion ap-

proaches require the knowledge of the rank of the original matrix, it is of great

practical interest to estimate the standard rank of a matrix from sampled

entries. Our framework in Section 6.3.2 provides a way to estimate the stan-

dard rank from samples. However, there are a few parameters that needs to

be tuned, such as the thresholds c1 and c2, and the degree of the polynomial

approximation and the degree of the Schatten norm. For rank estimation,

[112] give an estimator that is provably correct in the regime where matrix

completion works, justifying the requirement that popular matrix comple-

tion algorithms [110, 97] need to know the underlying rank. However, in

the regime of our interest, which is below the standard matrix completion

threshold, the algorithm fails miserably and there are no guarantees. In a

more recent work, [177] propose a novel rank estimator of counting the nega-

tive eigenvalues of Bethe Hessian matrix. It is an interesting future direction

to build upon our framework to provide a guideline for choosing the param-

eters for standard rank estimation, and compare its performance to existing

methods.

The effect of the effective rank. One property of the Schatten norm

is that as k gets large and as the singular values have small effective rank

(meaning that they decay fast), the summation is dominated by the largest

few singular values. In such scenarios, in the estimation problem, any algo-

rithm that tracks the first few singular values correctly would achieve small

error. Hence, the gap get smaller as effective rank gets smaller, between the

proposed estimator and the simple Schatten k-norm of the rescaled sampled

matrix, as depicted in Figure 6.9. We are using the same setting as those

in Figure 6.4 with a full rank matrix M with r = d = 500, but the effective

rank is relatively small as the singular values are decaying as σi = 1/i2. For

the current choice of k = 5, notice that the contribution in ‖M‖kk of the 2nd

singular value is a factor of 210 smaller than the top singular value, making

it effectively a rank one matrix.

Technical challenges. The technical challenge in proving bounds on the

necessary number of samples needed to estimate Schatten k-norms lies in

getting tight bounds on the variance of the estimator. Variance is a function

of weighted counts of each pseudograph of 2k-closed walks, in the complete

matrix. As the weight of each walk can be positive or negative, significant
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cancellation occurs when we sum all the weights. However, this stochastic

cancellation is hard to capture in the analysis and we assume the worst case

when all the weights are positive, which cannot occur for incoherent and well-

conditioned matrices. This weakness of the analysis leads to the requirement

of rank being sufficiently small in the case of Erdös-Rényi sampling and

k small in the case of clique sampling. We believe these bounds can be

tightened and the same is reflected in the numerical simulations which show

the same scaling holds for all small values of k and rank close to the dimension

of the matrix.

6.6 Algorithm for estimating Schatten k-norm for

k ≥ 8

The collection of pseudographs Hk is partitioned into sets {Hiso
k,i}1≤i≤r, for

some r ≤ k!. The partitions Hiso
k,i are defined such that the pseudographs in

one partition are isomorphic to each other when multi-edges are condensed

into one. This is useful since all the pseudographs in one partition are ob-

served together in G([d],Ω) for any fixed subgraph in G. The underlying

simple graph (including self loops) for each partition Hiso
k,i is denoted by Fk,i.

The main idea is to enumerate a list L` of all connected `-vertex induced

subgraphs (possibly with loops) of the graph G([d],Ω), for each 1 ≤ ` ≤
k. The unbiased weighted count of all pseudographs Hk for each of these

vertex induced subgraphs g ∈ L` is computed. This is achieved by further

enumerating a list Sg,` of all `-vertex subgraphs for each g. Then the unbiased

weight of all pseudographs H ∈ Hk that exist in the subgraph h is computed

and is summed over to get the estimate of the k-th Schatten norm. Recall

the notation PΩ(M) which is used to denote the partially observed matrix

corresponding to the index set Ω with the unobserved entries being replaced

by zero. We abuse this notation and use h(M) to represent the matrix M

restricted to the subgraph h of the observed graph G([d],Ω).

Each connected induced subgraphs of size k in a graph can be enumerated

in time polynomial in d and k [60]. The number of connected induced sub-

graphs of size k in a graph is upper bounded by (e∆)k/((∆− 1)k) where ∆

is the maximum degree of the graph [197]. Therefore, Algorithm 11 runs in

time, super exponential in k, polynomial in d and the number of k connected

246



induced subgraphs in the observed graph G([d],Ω).

Algorithm 11 Schatten k-norm estimator

Input: PΩ(M), k, Hk, p(H) for all H ∈ Hk

Output: Θ̂k(PΩ(M))

1: Θ̂k(PΩ(M))← 0
2: for 1 ≤ ` ≤ k do
3: Enumerate a list, L`, of all connected `-vertex induced subgraphs (pos-

sibly with loops) of the graph G([d],Ω)
4: for all g ∈ L` do
5: Enumerate a list Sg,` of all connected `-vertex subgraphs of the graph

g by removing one or more edges
6: for all h ∈ Sg,` do
7: for 1 ≤ i ≤ r do
8: if h is isomorphic to Fk,i then

9: Θ̂k(PΩ(M))← Θ̂k(PΩ(M)) +
∑

H∈Hiso
k,i

1
p(H)

ωh(M)(H)c(H)

10: end if
11: end for
12: end for
13: end for
14: end for

6.7 Algorithm for computing the Chebyshev

polynomial

In the following, we algorithm to compute coefficients of the Chebyshev poly-

nomial of first kind.

6.8 Proofs

We provide proofs for main results and technical lemmas.

6.8.1 Proof of Theorem 6.3

Consider W̃ to be the collection of all length k closed walks on a complete

graph of d vertices. Here we slightly overload the notion of complete graph

to refer to an undirected graph with not only all the d(d− 1)/2 simple edges
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Algorithm 12 Chebyshev polynomial of the first kind approximating
Hc1,c2(x)

Input: Hc1,c2 , c1, c2, and target accuracy δ = 0.1
Output: Chebyshev polynomial q(x) of first kind

1: g(x) ≡ x−c2
c1−c2

2: T0(x) ≡ 1, T1(x) ≡ x

3: q(x)← 1
π

∫ c1
c2

(1− x2)−1/2g(x)T0(x)dx+ 1
π

∫ 1

c1
(1− x2)−1/2T0(x)dx

4: i = 1
5: while supx∈[0,1] |q(x)−Hc1,c2(x)| ≥ δ do

6: q(x) ← q(x) + 2Ti(x)
π

∫ c1
c2

(1 − x2)−1/2g(x)Ti(x)dx + 2Ti(x)
π

∫ 1

c1
(1 −

x2)−1/2Ti(x)dx
7: i← i+ 1
8: Ti(x) ≡ 2xTi−1(x)− Ti−2(x)
9: end while

but also with d self loops as well. Construct the largest possible collection

W from W̃ wherein each walk has distinct weights that is ω(w) 6= ω(w′)

for all w,w′ ∈ W . We partition W according to the pattern among k-cyclic

pseudographs, which are further partitioned into four groups. The estimator

(7.12) can be re-written as

Θ̂k(PΩ(M)) =
∑
w∈W

c(H(w))

p(H(w))
ωPΩ(M)(w)

=
∑
H∈Hk

{ c(H)

p(H)

∑
w:H(w)=H

ωM(w) I(w ⊆ Ω)
}

(6.30)

=
4∑
i=1

∑
H∈Hk,i

{ c(H)

p(H)

∑
w:H(w)=H

ωM(w) I(w ⊆ Ω)
}
, (6.31)

where we write w ⊆ Ω to denote the event that all the edges in the walk w

are sampled, and we define

• Hk,1 ≡ {Ck} is just a (set of a) simple cycle of length k and there are

total |{w ∈ W : H(w) ∈ Hk,1}| =
(
d
k

)
(k!/2k) ≤ (dk/2k) corresponding

walks to this set, and c(Ck) = 2k.

• Hk,2 ≡ {H(VH , EH) ∈ Hk : |VH | ≤ k − 1 and no self loops}, and there

are total |{w ∈ W : H(w) ∈ Hk,2| ≤ dk−1 corresponding walks to this

set.

• Hk,3 ≡
⋃k−1
s=1 Hk,3,s where Hk,3,s = {H ∈ Hk with s self loops}, and
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there are total |{w ∈ W : H(w) ∈ Hk,3}| ≤ dk−s corresponding walks

in this set.

• Hk,4 ≡ {H(VH , EH) ∈ Hk : |VH | = 1} is a (set of a) graph with k self

loops and there are total |{w ∈ W : H(w) ∈ Hk,4}| = d corresponding

walks to this set.

Given this unbiased estimator, we provide an upper bound on the variance

of each of the partitions to prove concentration with Chebyshev’s inequality.

For any walk w ∈ W , let |w| denote the number of unique edges (including

self loops) that the walk w traverses. Let |w ∩ w′| denote the number of

unique overlapping edges (including self loops) of walks w and w′. We have,

Var
(
Θ̂k(PΩ(M)))

= 2
k−1∑
`=1

∑
w 6=w′∈W̃
|w∩w′|=`

Covar

(
I(w ⊆ Ω)ωM(w)c(H(w))

p(H(w))
,
I(w′ ⊆ Ω)ωM(w′)c(H(w′))

p(H(w′))

)

+
4∑
i=1

∑
H∈Hk,i

{ c(H)2

p(H)2

∑
w:H(w)=H

ωM(w)2Var
(
I(w ⊆ Ω)

)}
(6.32)

< 4
k−1∑
`=1

∑
w 6=w′∈W
|w∩w′|=`

E
[
I(w ⊆ Ω)I(w′ ⊆ Ω)

](∣∣ωM(w)ωM(w′)
∣∣c(H(w))c(H(w′))

p(H(w)) p(H(w′))

)

+
4∑
i=1

∑
H∈Hk,i

∑
w:H(w)=H

c(H)2ωM(w)2

p(H)2
E
[
I(w ⊆ Ω)

]
. (6.33)

Recall from the definition of incoherence that |Mii| ≤ σ1(M)µr/d and |Mij| =
σ1(M)µr1/2/d, and let α = σ1(M)µr1/2/d denote the maximum off-diagonal

entry, such that |Mij| ≤ α and |Mii| ≤ α
√
r for all i, j ∈ [d]. Let Ap,k,α,d =

dkα2k/pk denote the target scaling of the variance, then

∑
H∈Hk,i

∑
w:H(w)=H

c(H)2 ωM(w)2

p(H)2
E
[
I(w ⊆ Ω)

]
≤
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

dk

2k

(2k)2α2k

pk
= 2kAp,k,α,d , for i = 1 , (6.34)

dk−1f(k)2α2k

pk
=
f(k)2

d
Ap,k,α,d , for i = 2 , (6.35)

d
rkα2k

p
=
rkpk−1

dk−1
Ap,k,α,d , for i = 4 , (6.36)

and for i = 3 and for 1 ≤ s ≤ k − 1, we have

∑
H∈Hk,3,s

∑
w:H(w)=H

c(H)2 ωM(w)2

p(H)2
E
[
I(w ⊆ Ω)

]
≤ dk−s

f(k)2α2krs

pk
=
f(k)2rs

ds
Ap,k,α,d , (6.37)

where c(H) is defined as the multiplicity of walks with the same weight

satisfying c(H) ≤ f(k). For w 6= w′ and |w ∩ w′| = `, where the range of

` varies across equations depending upon the set to which w,w′ belongs, we

have the following: ∑
w 6=w′∈W

|w∩w′|=`,H(w)∈Hk,i,s,H(w′)∈Hk,i′,s′

E
[
I(w ∈ Ω)I(w′ ∈ Ω)

]
·

∣∣ωM(H(w))ωM(H(w′))
∣∣ c(H(w))c(H(w′))

p(H(w))p(H(w′))
≤
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

dkdk−(`+1)

2k

α2k(2k)2

p`
=

(dp)k−`

d
2kAp,k,α,d,

for i = i′ = 1 (6.38)

f(k)2dk−1dk−1−(`+1)α2k

p`
≤ f(k)2(dp)k−`

d3
Ap,k,α,d

for i = i′ = 2 (6.39)

f(k)2dk−sdk−s
′−`α2k−s−s′(α

√
r)s+s

′

p`
≤ f(k)2(dp)k−`

(d/
√
r)s+s′

Ap,k,α,d ,

for i = i′ = 3 (6.40)

f(k)2dkdk−1−(`+1)α2k

p`
≤ f(k)2(dp)k−`

d2
Ap,k,α,d.

for i = 1, i′ = 2(6.41)

f(k)2dkdk−s−(`+1)α2k−s(α
√
r)s

p`
≤ f(k)2(dp)k−`

d(d/
√
r)s

Ap,k,α,d

for i = 1, i′ = 3(6.42)

f(k)2dk−1dk−s−(`+1)α2k−s(α
√
r)s

p`
≤ f(k)2(dp)k−`

d2(d/
√
r)s

Ap,k,α,d

for i = 2, i′ = 3(6.43)

f(k)2ddk−s−`αk−s(α
√
r)k+s

p`
≤ f(k)2(dp)k−`

dk−1(d/
√
r)k+s

Ap,k,α,d

for i = 3, i′ = 4(6.44)

where (6.44) is valid only for ` = 1. Note that for any w with H(w) ∈
Hk,1

⋃Hk,2, it has no overlap with w′ such that H(w′) ∈ Hk,4.

Observe that Var
(
Θ̂k(PΩ(M))) as bounded in (6.33) is upper bounded by

the sum of quantities in (6.70)-(6.44), summating over all possible values of

1 ≤ ` ≤ k − 1, and 1 ≤ s, s′ ≤ k − 1. Let h(k) ≡ f(k)2Ap,k,α,d. Observe that

quantities in (6.70),(6.71), and (6.73) are upper bounded by h(k). Quantities

in (6.38)-(6.44) are upper bounded by h1(k) ≡ h(k)(dp)k−1/d. Quantity in

(6.72) is upper bounded by h2(k) ≡ h(k)rkpk−1/dk−1.

Given ‖M‖kk ≥ r(σmin)k, recall a bound on off diagonals of matrix M by

|Mij| ≤ α = µσmax

√
r/d and Ap,k,α,d = dkα2k/pk. This gives

Ap,k,α,d
‖M‖2k

k

≤ κ2kµ2krk−2

dkpk
. (6.45)

Using Chebyshev’s inequality and collecting all terms in the upper bound on
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the variance, we have for sufficiently large d, the following bound:

P

(∣∣Θ̂k(PΩ(M))− ‖M‖kk
∣∣

‖M‖kk
≥ δ

)

≤ (κµ)2kf(k)2rk−2

δ2(dp)k
max

{
1,

(dp)k−1

d
,
rkpk−1

dk−1

}
, (6.46)

where the second and the third term in the max expression follow by evalu-

ating h1(k) and h2(k). If sampling probability p is small enough such that

dp ≤ Cd1/(k−1) for some constant C, then the second and the third terms are

smaller than the first term. Hence, the desired result in Theorem 6.3 follows.

6.8.2 Proof of Theorem 6.4

We can prove a Bernstien-type bound on accuracy of the estimator. The

estimator (7.12) can be re-written as a multi-linear polynomial function of

d(d+ 1)/2 i.i.d. Bernoulli(p) random variables.

Θ̂k(PΩ(M)) =
∑
w∈W

{
c(H(w))

p(H(w))
ωM(w)

∏
(i,j)∈unique(w)

I((i, j) ∈ Ω)

}
,(6.47)

where I((i, j) ⊆ Ω) is a random variable that takes value 1 if the (i, j)th entry

of the matrix M is sampled, and unique(w) denotes the set of the unique

edges (and self loops) that the walk w traverses. Let q denote the power of

the polynomial function that is the maximum number of unique edges in the

walk w, that is q = k.

We use the following Bernstien-type concentration results of [180] for the

polynomials of independent random variables.

Lemma 6.15 ([180],Theorem 1.3). We are given d(d + 1)/2 independent

central moment bounded random variables {I((i, j) ∈ Ω)}1≤i≤j≤d with same

parameter L. We are given a multilinear polynomial Θ̂k(PΩ(M)) of power q,

then

P
[∣∣∣Θ̂k(PΩ(M))− E

[
Θ̂k(PΩ(M))

]∣∣∣ ≥ λ
]

≤ e2 max

{
e

−λ2

Var[Θ̂k(PΩ(M))]Rq ,max
t∈[q]

e
−( λ

µtL
tRq

)1/t
}
, (6.48)
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where R is some absolute constant and µt is defined as follows:

µt max
S⊆{(i,j):i,j∈[d]}

|S|=t

( ∑
w∈W |w⊇S

c(H(w))

p(H(w))
|ωM(w)|

∏
(i,j)∈unique(w)\S

E[I((i, j) ∈ Ω)]

)
,

(6.49)

where w ⊇ S denotes that the walk w comprises edges(and self loops) con-

tained in the set S. L is defined as follows: A random variable Z is called

central moment bounded with real parameter L > 0, if for any integer i ≥ 1

we have

E
[
|Z − E[Z]|i

]
≤ i LE[|Z − E[Z]|i−1] . (6.50)

For Bernoulli random variables L ∈ [1/4, 1]. In the following, we show

that µt ≤ (µσmax)kg(k)rk/(d(dp)t), for t ∈ [k]. Using Lemma 6.15, along

with ‖M‖kk ≥ r(σmin)k, the bound in (6.12) follows immediately.

To compute µt, define a set of walks W`,s,ŝ such that w ∈ W`,s,ŝ has 0 ≤
` ≤ k unique edges and 0 ≤ s ≤ k unique self loops, and ŝ total self loops

with ` + ŝ ≤ k. For the set S as required in (6.49), let S˜̀,s̃ be a set of ˜̀

unique edges and s̃ unique self loops, with |S˜̀,s̃| = ˜̀+ s̃ where 1 ≤ ˜̀+ s̃ ≤ k.
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Therefore, we have

µt

= max
S˜̀,s̃

:˜̀+s̃=t

( ∑
0≤s≤ŝ≤k
`∈[k]:`+ŝ≤k

∑
w∈W`,s,ŝ

:w⊇S˜̀,s̃

c(H(w))

p(H(w))
|ωM(w)|

∏
(i,j)∈unique(w)\S˜̀,s̃

E[I((i, j) ⊆ Ω)]

)

≤ max
S˜̀,s̃

:˜̀+s̃=t

( ∑
0≤s≤ŝ≤k
`∈[k]:`+ŝ≤k

∑
w∈W`,s,ŝ

:w⊇S˜̀,s̃

f(k)

p`+s
αkrŝ/2p`+s−(˜̀+s̃)

)

≤ max
S˜̀,s̃

:˜̀+s̃=t

( ∑
0≤s≤ŝ≤k

`∈[k]:`+ŝ≤k,s̃≤s

d`−(1+˜̀)f(k)

p`+s
(µσmax)kr(k+ŝ)/2

dk
p`+s−(˜̀+s̃)

)

= max
S˜̀,s̃

:˜̀+s̃=t

( ∑
0≤s≤ŝ≤k

`∈[k]:`+ŝ≤k,s̃≤s

f(k)(µσmax)kr(k+ŝ)/2

dd(k−`−s̃)(dp)(˜̀+s̃)

)

≤ max
S˜̀,s̃

:˜̀+s̃=t

(
k3f(k)(µσmax)kr(k+ŝ)/2

dd(k−`−s̃)(dp)(˜̀+s̃)

)
≤ (µσmax)kg(k)rk

d(dp)t
.

6.8.3 Proof of Theorem 6.11

The proof technique is a generalization to a rank r symmetric matrix of the

proof given by [127] for deriving lower bound on the size of a random bi-linear

sketch needed for approximating Schatten norm of any matrix. It also draws

on the techniques used in [9] for proving a lower bound on the size of the

linear sketches of moments.

We prove Theorem 6.11 for an arbitrary fixed relabeling permutation π

of the graph nodes. Indeed, by Yao’s minimax principle, it suffices to give

two distributions on matrix M ∈ Mr for which the ‖M‖k values differ by a

constant factor with high probability, but for any relabeling permutation π of

the nodes of the pattern graph G, the induced distributions on the sampled

entries PΩ(M) corresponding to the relabeled graph Gπ(Ṽ ,Ω), have low total

variation distance.

For positive C > 0 to be specified later, define λ ≡ Cdr1/k−1/2. We

construct distributions D1 and D2 for M ∈ Mr,µ with µ = C ′
√

log r, for

some absolute constant C ′, such that the following holds:
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1. ‖M‖k ≤ λ on the entire support of D1, and ‖M‖k ≥ 4λ on the entire

support of D2.

2. Let E1 and E2 denote the distribution of the sampled matrix PΩ(M)

when M is drawn from D1 and D2 respectively. Recall that Ω is the

set of edges of the relabeled graph Gπ(Ṽ ,Ω) as defined in Section 6.4.1.

If λ∗G,r ≥ λ then, the total variation distance between E1 and E2 is

bounded by TV(E1, E2) ≤ 1/2.

The desired result (6.28) follows from the above claims and the following

relationship between statistical tests and estimators:

P
M∼ 1

2
(D1+D2)

(
1

2
‖M‖k ≤ Θ̃(PΩ(M)) ≤ 2‖M‖k

)
≤ 1

2
P

M∼D2

(
Θ̃(PΩ(M)) ≥ 2λ

)
+

1

2
P

M∼D1

(
Θ̃(PΩ(M)) ≤ 2λ

)
(6.51)

≤ 1

2

(
1 + TV(E1, E2)

)
≤ 3

4
, (6.52)

where the last inequality follows from the following characterization of the

total variation distance TV(E1, E2) ≡ supA |E1(A)− E2(A)|.
To prove the two claims, we construct one of the desired rank-r random

matrix via tiling, i.e. covering the matrix with copies of a single r × r

sub-matrix from the Gaussian Wigner Ensemble, where diagonals and off-

diagonals(upper triangle) are both distributed as i.i.d. standard Gaussians.

Another one is constructed by adding a rank one perturbation. Precisely, we

define a random matrix drawn from D1 as follows.

A random r×r matrix Z chosen from Gaussian Wigner Ensemble, G(r, r),

is a symmetric matrix whose entries Zi,i and Zi,j for i < j are independent

with N(0, 1) distribution. Define B ≡ 1dd/re1
>
dd/re to be an all-ones matrix

of size dd/re × dd/re. Let D̄1 denote the distribution of M1 = Y ⊗ B where

Y ∼ G(r, r), and ⊗ denotes the standard Kronecker product of two matrices.

Note that the matrix norm of M1 and Y are related by ‖M1‖k = dd/re‖Y ‖k.
Since the Schatten norm of Y ∼ G(r, r) takes value on the entire R+, we

need to truncate it. We set D1 to be D̄1 conditioned on the event S1 = {M1 :

‖M1‖k ≤ λ, µ(M1) ≤ C ′
√

log r}, i.e. D1(A) = D̄1(A ∩ S1)/D̄1(S1).

We define D̄2 by adding a rank one perturbation. Precisely, let M2 =

M1 + (5/d)λU , where M1 ∼ D̄1 and U = uu> ⊗ B. Here a random vector
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u ∈ {±1}r is a vector of i.i.d. Rademacher random variables. Note that

U is a rank one matrix and ‖U‖k = dd/re‖uu>‖k = d. We set D2 to be

D̄2 conditioned on the event S2 = {M2 : ‖M2‖k ≥ 4λ, µ(M2) ≤ C ′
√

log r}.
Observe that M1 ∼ D̄1 and M2 ∼ D̄2 belong to Rd×d, are symmetric and

both are rank at most r + 1.

Let Ē1 and Ē2 denote the distribution of PΩ(M) when M is drawn from

D̄1 and D̄2 respectively. We first show that their total variation distance is

not too large. Using the triangle inequality, we have

TV(E1, E2) ≤ TV(Ē1, Ē2) + TV(Ē1, E1) + TV(Ē2, E2)

≤ TV(Ē1, Ē2) + TV(D̄1,D1) + TV(D̄2,D2) (6.53)

= TV(Ē1, Ē2) + P
M1∼D1

(
(‖M1‖k ≥ λ) ∪ (µ(M1) ≥ C ′

√
log r)

)
+ P
M2∼D2

(
(‖M2‖k ≤ 4λ) ∪ (µ(M2) ≥ C ′

√
log r)

)
, (6.54)

where (6.53) follows from the data processing inequality and (6.54) follows

from TV(E1, E2) ≡ supA |E1(A)−E2(A)|. We next show that the three terms

in (6.54) are sufficiently small.

We first provide an upper bound on TV(Ē1, Ē2). As per our construction,

only the upper triangular (including diagonals) of the upper-left submatrix of

size r×r of M1 ∼ D1 and M2 ∼ D2 has unique entries and the rest are copies

of these. Observe that the set of unique entries ofM1(orM2) corresponding to

any pattern graph G(V,E) are precisely the following entries of the projection

graph P(r)(G) that is defined in Section 6.4.1:

E(P(r)(G)) ≡
{

(i, j) : i ≤ j ∈ [r], (i, j) ∈ P(r)(G(V,E))
}
. (6.55)

For the purpose of computing the total variation distance TV(Ē1, Ē2),

it is sufficient to consider only E(P(r)(Gπ)) entries of M1 distributed as

i.i.d. standard Gaussians N(0, I`1×`1), and the entries of M2 distributed as

N(W, I`1×`1)), where `1 = |E(P(r)(Gπ))|. The random vector W represents

the rank one perturbation and is distributed as

Wi,j = (5/d)λuiuj , (i, j) ∈ E(P(r)(Gπ)) . (6.56)

To bound total variation distance between Ē1 and Ē2, we use the following

lemma and the fact that for any two distributions µ and ν, TV(µ, ν) ≤
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√
X 2(µ ‖ ν). Let µ ∗ ν denote the convolution of the density (or equivalently

addition of the two random variables).

Lemma 6.16 ([95], p97). It holds that X 2(N(0, In) ∗ µ ‖N(0, In)) ≤
E exp(〈z, z′〉)− 1, where z, z′ ∼ µ are independent.

It follows that

TV(Ē1, Ē2) ≤
√

Ee〈W,W ′〉 − 1 ≤ 1/5 ,

for λ∗G ≥ λ where the expectation is taken over independent W and W ′ which

are identically distributed. We show that if λ∗G ≥ λ the last inequality holds,
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as following:

EW,W ′ exp
(
〈W,W ′〉

)
= Eu,u′ exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

uiu
′
iuju

′
j

)

= Eu exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

uiuj

)
(6.57)

= Eu
[

exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

:i 6=j

uiuj

)]

exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

:i=j

uiuj

)

≤ Eu
[

exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

:i 6=j

2uiuj

)]

exp

(
(5/d)2λ2

∑
(i,j)∈E(P(r)(Gπ))

:i=j

uiuj

)
(6.58)

= Eu
[

exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

:i 6=j

uiuj

)]

exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

:i=j

uiuj

)
(6.59)

= Eu
[

exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

uiuj

)]
≤ 1 + 1/25 , (6.60)

where (6.57) follows from the fact that u, u′ are i.i.d. Rademacher variables,

(6.58) follows from the fact that fG,r(λ) defined in (6.26) is non-decreasing

in λ, (6.59) follows from the definition of E(P(r)(Gπ)) in (6.55),and (6.60)

follows from the definition of λ∗G in (6.27).

To bound the other two terms in (6.54), we use Wigner’s semicircular law

and its rate of convergence for Gaussian Wigner Ensemble, G(r, r) as defined
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above. Consider the empirical spectral distribution of Z ∈ Rr×r as

FZ(x) =
1

r
|{i : λi(Z) ≤ x}|. (6.61)

Lemma 6.17 ([209]). Define Z = (1/
√
r)Y for Y ∼ G(r, r). Then as r →∞

the empirical distribution FZ(x) of Z converges weakly to the distribution

G(x) with density

g(t) =

√
4− t2
2π

t ∈ [−2, 2] . (6.62)

Lemma 6.18 ([81]). For any positive constant α > 0, let `r,α =

log r(log log r)α. There exists an absolute positive constant C and c such

that for r large enough,

P
{

sup
x

∣∣FZ(x)−G(x)
∣∣ ≥ r−1 log r`6

r,α

}
≤ C exp

{
− c`r,α

}
. (6.63)

To bound the schatten norm of a matrix Y ∼ G(r, r), along with Lemma

6.17 and Lemma 6.18 we use the following. If F (x) and G(x) are cumulative

distribution functions of densities µ, ν then for any continuous and bounded

function f , we have∣∣∣∣ ∫ fdµ−
∫
fdν

∣∣∣∣ ≤ ‖f‖∞ sup
x

∣∣F (x)−G(x)
∣∣ . (6.64)

Choosing f(x) = xk for x ∈ [−2, 2], we can see that for k = O(log r) there

exists a constant C > 2 such that with probability 1− 1/80 it holds that

‖(1/√r)Y ‖kk =

(∫ 2

−2

xk
√

4− x2

2π
dx+ o(1)

)
r ≤ (2k + o(1))r ≤ Ckr .(6.65)

Hence ‖Y ‖k ≤ Cr(1/k+1/2). By construction of distribution D̄1, for M1 ∼ D̄1,

‖M1‖k = (d/r)‖Y ‖k ≤ Cdr(1/k−1/2) = λ. Also, by construction M2 ∼ D̄2 is

M2 = M1 + (5/d)λU where ‖U‖k = d. Using triangle inequality, we have

‖M2‖k ≥ ‖(5/d)λU‖k − ‖M1‖k
≥ 5λ− Cdr1/k−1/2 = 4λ ,

Recall that, incoherence parameter µ(M) is defined as µ(M) =
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maxi 6=j∈[d] Mi,j/(|σmax(M)|√r/d). From (6.65), there exists a constant 0 <

C ′ < 1 such that with probability 1− 1/160 it holds that ‖Y ‖2 ≥ C ′r. The

integral evaluates to 1 for k = 2. Therefore, the largest singular value of M1

is lower bounded: |σmax(M1)| ≥ C ′d/
√
r. Using the fact that there exists a

constant C ′′ such that maxi,j∈[r]{Yi,j} ≤ C ′′
√

log r with probability at least

1 − 1/160, we have, µ(M1) ≤ (C ′′/C ′)
√

log r. The same µ(M1) satisfies the

upper bound on diagonals as well. Therefore, using union bound, the second

and the third term in (6.54) are upper bounded by 1/40.

6.8.4 Proof of Lemma 6.12

Observe that for any given permutation π, P(r)(Gπ) as defined in Section

6.4.1 is a clique over a subset of nodes Ṽπ, where |Ṽπ| ≤ min{`, r}. From the

definition of fG,r(λ), (6.26), we have the following:

fG,r(λ) = max
π

{
Eu exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

uiuj

)}

= max
π

{
Eu exp

(
(5/d)2λ2

(∑
i∈Ṽπ

ui
)2
)}

= max
π

{ ∞∑
t=0

(5/d)2tλ2tEu
[(∑

i∈Ṽπ ui
)2t]

t!

}
≤ max

π

{(
1 + 2

∞∑
t=1

(
(5/d)2λ2|Ṽπ|

)t)}
,

where the inequality follows from the bound in (6.66). Therefore, from the

definition of λ∗G,r, we have that λ∗G,r is upper bounded by 2−4d(min{`, r})−1/2.

To bound E(
∑

i∈Ṽπ ui)
2t, for t ∈ [1,∞), using Hoeffding bound we have

that

E
∣∣∣∣∑
i∈Ṽπ

ui

∣∣∣∣2t =

∫ |Ṽπ |2t
0

P
(∣∣∣∣∑

i∈Ṽπ

ui

∣∣∣∣2t ≥ z

)
dz

≤ 2

∫ |Ṽπ |2t
0

exp

(−z1/t

2|Ṽπ|

)
dz ≤ 2(2|Ṽπ|)tt! , (6.66)

where the integral is evaluated by variable substitution.
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6.8.5 Proof of Lemma 6.14

For the given pattern graph G and any given permutation π, let Ãπ ∈
{0, 1}r×r be the adjacency matrix of the graph P(r)(Gπ) that is defined in

Section 6.4.1. Observe that for a permutation π, `π rows of Ãπ are all-

ones and the remaining are all-zeros, where `π ≤ min{`, r}. Let Aπ be a

copy of Ãπ where all the diagonal entries are replaced with zero. Note that

Eu(u>Aπu)2t+1 = 0 for all t ≥ 0, where ui’s are i.i.d. Rademacher random

variables. Define Cπ ≡ exp((5/d)2λ2`π).

From the definition of fG,r(λ), (6.26), we have the following:

fG,r(λ) = max
π

{
Eu exp

(
(5/d)2λ2

∑
(i,j)∈P(r)(Gπ)

uiuj

)}

= max
π

{
CπEu exp

(
(5/d)2λ2(u>Aπu)

)}
= max

π

{
Cπ

∞∑
t=0

(5/d)4tλ4tEu
[
(u>Aπu)2t

]
(2t)!

}
≤ max

π

{
Cπ

(
1 + 4

∞∑
t=1

(
2c(5/d)2λ2

√
`πr
)2t
)}

,

where the inequality follows from the bound in (6.67), and c is some absolute

constant. Therefore, from the definition of λ∗G,r, we have that λ∗G,r is upper

bounded by cd((min{`, r})r)−1/4.

To bound Eu
[
(u>Aπu)2t

]
, for t ∈ [1,∞), we use Hanson-Wright Inequality.

Observe that ‖Aπ‖2 ≤
√
`πr, and ‖Aπ‖2

F = (r − 1)`π < `πr.

Eu
[
(u>Aπu)2t

]
=

∫ (2
√
r`π)2t

0

P
(
(u>Aπu)2t ≥ z

)
dz +

∫ (`πr)2t

(2
√
r`π)2t

P
(
(u>Aπu)2t ≥ z

)
dz

≤
∫ (2

√
r`π)2t

0

exp

(−cz1/t

4`πr

)
dz +

∫ (`πr)2t

(2
√
r`π)2t

exp

(−cz1/(2t)

2
√
`πr

)
dz

≤ 2(4`πr/c)
tt! + 2(2

√
`πr/c)

2t(2t)! ≤ 4(2
√
`πr/c)

2t(2t)! , (6.67)

where the integral is evaluated by variable substitution.
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6.8.6 Proof of Theorem 6.13

For a clique of size m selected uniformly at random, we derive an upper

bound on variance of our estimator. Following the notations defined in the

proof of Theorem 6.3, we have the following bound on the variance.

Var
(
Θ̂k(PΩ(M)))

= 2
k∑
`=0

∑
w 6=w′∈W̃
|w∩w′|=`

Covar

(
I(w ⊆ Ω)ωM(w)c(H(w))

p(H(w))
,
I(w′ ⊆ Ω)ωM(w′)c(H(w′))

p(H(w′))

)

+
4∑
i=1

∑
H∈Hk,i

{ c(H)2

p(H)2

∑
w:H(w)=H

ωM(w)2Var
(
I(w ⊆ Ω)

)}
(6.68)

< 2
k∑
`=0

∑
w 6=w′∈W
|w∩w′|=`

E
[
I(w ⊆ Ω)I(w′ ⊆ Ω)

](ωM(w)ωM(w′)c(H(w))c(H(w′))

p(H(w)) p(H(w′))

)

− 2
k∑
`=0

∑
w 6=w′∈W
|w∩w′|=`

E
[
I(w ⊆ Ω)

]
E
[
I(w′ ⊆ Ω)

](ωM(w)ωM(w′)c(H(w))c(H(w′))

p(H(w)) p(H(w′))

)

+
4∑
i=1

∑
H∈Hk,i

∑
w:H(w)=H

c(H)2ωM(w)2

p(H)2
E
[
I(w ⊆ Ω)

]
. (6.69)

where we abuse the earlier defined notation |w ∩ w′| to denote the number

of overlapping nodes in the two walks w,w′ ∈ W instead of number of over-

lapping edges. Note that in pattern sampling, covariance term for two walks

that do not have any overlapping node is not zero. As earlier, we provide

bound on each of the terms in (6.69).

Probability of any walk w being sampled is P[w ∈ Ω] =
(
m
`

)
/
(
d
`

)
≤

f(`)m`/d`, where ` is the number of unique nodes that the walk traverses

and f(`) is an exponential function in `. Recall that off diagonals of matrix

M are bounded by |Mij| ≤ α = µσmax

√
r/d and the diagonals are bounded

by |Mii| ≤ µσmaxr/d. We have,

∑
H∈Hk,i

∑
w:H(w)=H

c(H)2 ωM(w)2

p(H)2
E
[
I(w ⊆ Ω)

]
≤
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

dk

2k

f(k)2α2kdk

mk
≤ f(k)2(µσmax)2krk

mk
, for i = 1 , (6.70)(

d2

m

)k−1

f(k)2α2k =
m

d2

f(k)2(µσmax)2krk

mk
, for i = 2 , (6.71)

d2

m
rkα2k =

rkmk−1

d2k−2

f(k)2(µσmax)2krk

mk
, for i = 4 , (6.72)

and for i = 3 and for 1 ≤ s ≤ k − 1, we have

∑
H∈Hk,3,s

∑
w:H(w)=H

c(H)2 ωM(w)2

p(H)2
E
[
I(w ⊆ Ω)

]
≤

(
d2

m

)k−s
f(k)2α2krs =

msrs

d2s

f(k)2(µσmax)2krk

mk
, (6.73)

For any two walks w,w′ with ` ≥ 0 overlapping nodes, P[w,w′ ∈ Ω]/(P[w ∈
Ω]P[w′ ∈ Ω]) ≤ f(k)d`/m`. For w 6= w′ and |w ∩ w′| = `, where the range of

` varies across equations depending upon the set to which w,w′ belongs, we

have the following:

∑
w 6=w′∈W
|w∩w′|=`

H(w)∈Hk,i,s
H(w′)∈Hk,i′,s′

(
E
[
I(w ⊆ Ω)I(w′ ⊆ Ω)

]
− E

[
I(w ⊆ Ω)

]
E
[
I(w′ ⊆ Ω)

])

(
ωM(w)ωM(w′)c(H(w))c(H(w′))

p(H(w)) p(H(w′))

)
≤

263
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f(k)2d`

m`

(µσmax)2kr2

d`
=

f(k)2(µσmax)2k max{r2, r`}
m`

,

for i = i′ = 1, ` ≥ 1 (6.74)

m2k−1

d2k

d2kf(k)2(µσmax)2kr2

m2k
=

f(k)2(µσmax)2kr2

m
,

for i = i′ = 1, ` = 0 (6.75)

f(k)2d`d2k−2−`α2k

m`
≤ f(k)2(µσmax)2krk

m`d2
,

for i = i′ = 2 (6.76)

f(k)2d`d2k−s−s′−`α2k(
√
r)s+s

′

m`
≤ f(k)2(µσmax)2krk

m`d
,

for i = i′ = 3 (6.77)

f(k)2d2α2k(
√
r)2k ≤ f(k)2(µσmax)2krk

d2k−2/rk
,

for i = i′ = 4 (6.78)

f(k)2d`d2k−1−`α2k

m`
≤ f(k)2(µσmax)2krk

m`d
,

for i = 1, i′ = 2 (6.79)

f(k)2d`d2k−s−`α2k(
√
r)s

m`
≤ f(k)2(µσmax)2krk

m`d/
√
r

,

for i = 1, i′ = 3 (6.80)

f(k)2d`dk+1−`α2k(
√
r)k

m`
≤ f(k)2(µσmax)2krk

m`dk−1/(
√
r)k

,

for i = 1, i′ = 4 , (6.81)

f(k)2d`d2k−1−s−`α2k(
√
r)s

m`
≤ f(k)2(µσmax)2krk

m`d2/
√
r

,

for i = 2, i′ = 3 (6.82)

f(k)2d`dk−`α2k(
√
r)k

m`
≤ f(k)2(µσmax)2krk

m`dk(
√
r)k

,

for i = 2, i′ = 4 , (6.83)

f(k)2d`dk+1−s−`α2k(
√
r)s+k

m`
≤ f(k)2(µσmax)2krk

m`dk−1/(
√
r)k

,

for i = 3, i′ = 4 , (6.84)

Where (6.74) and (6.75) both use (6.86), and (6.75) also uses (6.85). Note

that ` is zero in (6.78). Collecting all the terms, and using Chebyshev’s

inequality, along with ‖M‖kk ≥ r(σmin)k, we get the desired result.

For any two disjoint simple cycles w 6= w′ ∈ Hk,1 with |w ∩ w′| = 0, we
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have the following

P
[
w ∈ Ω

]
− P

[
w ∈ Ω

∣∣ w′ ∈ Ω
]

=

(
m
k

)(
d
k

) − (m−kk )(
d−k
k

)
≤ mk

(d− k + 1)k
− (m− 2k + 1)k

(d− k)k
≤ f(k)mk−1

dk
,

(6.85)

where the last inequality assumes that k < d/2.

Lemma 6.19. For k = 3, and any 0 ≤ ` ≤ k

∑
w 6=w′∈Hk,1:|w∩w′|=`

ωM(w)ωM(w′) ≤ f(k)(µσmax)2k max{r2, r`}
d`

. (6.86)

Although we give a proof for k = 3 only, we are intentionally writing the

lemma for general k as we expect the lemma holds for all k ≥ 3. The joint

walk w 6= w′ ∈ Hk,1 : |w∩w′| = ` corresponds to H(w) = D27, for ` = 1; and

H(w) = D23, for ` = 2 in Figure 6.13. Define M̃ ≡M − diag(M), and let �
denote the Hadamard product of two matrices. We have,∑

w 6=w′∈Hk,1:|w∩w′|=2

ωM(w)ωM(w′)

= (1/4)
∑
i,j∈[d]

((
M̃2 � M̃2 − (M̃ � M̃)2

)
� (M̃ � M̃)

)
i,j
. (6.87)

Let’s denote the quantity in (6.87) by C1, we have,∑
w 6=w′∈Hk,1:|w∩w′|=1

ωM(w)ωM(w′)

= (1/8)
∑
i∈[d]

(
diag(M̃3)� diag(M̃3)− 2diag((M̃ � M̃)3)

)
i
− 2C1 .

(6.88)

It is easy to verify Equation (6.86) for k = 3 and ` ∈ {1, 2} using the fact

that M is a µ incoherent symmetric matrix with its off-diagonals bounded

by µσmax(
√
r/d). For ` = 0, quantity in (6.86) is the sum of each pair of
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disjoint triangles. For sum of all triangles, we have,∑
w∈Hk,1

ωM(w) = (1/6)
∑
i∈[d]

(
diag(M̃3)

)
i
≤ (µσmax)3r . (6.89)

Using Equations (6.87), (6.88) and (6.89), bound for ` = 0 follows immedi-

ately. Bound for ` = k, follows by using the fact that Mi,j ≤ µσmax(
√
r/d)

for i 6= j ∈ [d].

6.9 k-cyclic pseudographs

We provide an enumeration of all k-cyclic psuedographs for k ∈ {4, 5, 6, 7}
in Figures (7.2–6.17).

6.10 Efficient computation of ωM(H) for

k ∈ {4, 5, 6, 7}
In this section we provide the complete matrix oeprations for copmuting

γM(H)’s. Equations (6.90) - (6.96) give expressions to compute γM(H) for

H ∈ H4 as labeled in Figure 7.2. Equations (6.97) - (6.108) give expressions

to compute γM(H) for H ∈ H5 as labeled in Figure 6.11.

For expressions to compute γM(H) for H ∈ H6 and H ∈ H7 as labeled

in Figure 6.13, we refer the reader to MATLAB code available at https:

//github.com/khetan2/Schatten_norm_estimation.

For brevity of notations and readability, we define the following additional

notations. Let A�B denote the Hadamard product. For A ∈ Rd×d, let

sum(A) denote a vector v ∈ Rd such that vi =
∑

j∈[d] Ai,j. With a slight

abuse of notation, for v ∈ Rd, let sum(v) denote sum of all elements of v that

is sum(v) =
∑

i∈[d] vi. Let sum(γM(Hi) : γM(Hj)) ≡
∑j

i′=i γM(Hi′). Define

R ≡ 1d×d − diag(1d×d), that is R is an all-ones matrix except on diagonals

which are zeros. Further, for brevity, we omit the subscript M from the

notations γM(H), OM and DM .
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γ(B1) = sum(sum(D�D�D�D)) (6.90)

γ(B2) = sum(sum(O�O�O�O)) (6.91)

γ(B3) = 4 tr(O∗O∗D∗D) (6.92)

γ(B4) = 2 sum(sum((O�O)∗(O�O)�R)) (6.93)

γ(B5) = 2 tr(O∗D∗O∗D) (6.94)

γ(B6) = tr(O∗O∗O∗O)− sum(γ(B2) : γ(B4)) (6.95)

γ(B7) = tr(M∗M∗M∗M)− sum(γ(B1) : γ(B6)) (6.96)

γ(C1) = tr(D�D�D�D�D) (6.97)

γ(C2) = 5 sum(sum(D∗O�O�O�O)) (6.98)

γ(C3) = 5 sum(sum((D�D�D)∗(O�O))) (6.99)

γ(C4) = 5 tr((O�O�O)∗O∗O) (6.100)

γ(C5) = 5 sum(sum(D∗(O�O)∗(D�D))) (6.101)

γ(C6) = 5 sum(sum(((O�O)∗D∗(O�O))�R)) (6.102)

γ(C7) = 5 sum(sum((D∗(O�O)∗(O�O))�R)) (6.103)

γ(C8) = 5 tr(O∗O∗O∗(D�D)) (6.104)

γ(C9) = 5 sum(diag(O�O�O)�sum(O�O))

−10 tr((O�O�O)∗O∗O)) (6.105)

γ(C10) = tr(O∗O∗O∗O∗O)− γ(C4)− γ(C9) (6.106)

γ(C11) = 5 tr(O∗D∗O∗D∗O) (6.107)

γ(C12) = tr(M∗M∗M∗M∗M)− sum(γ(C1) : γ(C11)) (6.108)
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Figure 6.7: The proposed estimator (in blue solid lines) outperforms matrix
completion approaches (in orange solid lines) in estimating the ground
truths empirical cumulative distribution function of the r strictly positive
singular values (in black solid line) for two examples: one peak at σi = 1 on
the top and two peaks at σi = 1 or σi = 2 on the bottom.
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Figure 6.8: Each colormap in each block for k ∈ {3, 4, 5, 6} show empirical

probability of the event
{∣∣‖M‖kk − Θ̂k(PΩ(M))

∣∣/‖M‖kk ≤ δ
}

, for δ = 0.5
(left panel) and δ = 0.2 (right panel). Ω is generated by clique sampling of
matrix M with a clique of size ` (vertical axis). M is a positive
semi-definite matrix of size d = 1000. The solid lines correspond to our
theoretical prediction ` =

√
kr1−2/k.
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the proposed estimator and the simple scaled sampled matrix approach is
smaller.
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B1 B2 B3 B4

B5 B6 B7

Figure 6.10: The 4-cyclic pseudographs H4.

C1 C2 C3 C4

C5 C6 C7 C8

C9 C10 C11 C12

Figure 6.11: The 5-cyclic pseudographs H5.
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D1 D2 D3

D4 D5 D6

D7 D8 D9

D10 D11 D12

D13 D14 D15

D16 D17 D18

D19 D20 D21

D22 D23 D24

Figure 6.12: The 6-cyclic pseudographs H6.
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D25 D26 D27

D28 D29 D30

D31 D32

Figure 6.13: The 6-cyclic pseudographs H6.
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E1 E2 E3

E4 E5 E6

E7 E8 E9

E10 E11 E12

E13 E14 E15

E16 E17 E18

E19 E20 E21

Figure 6.14: The 7-cyclic pseudographs H7
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E22 E23 E24

E25 E26 E27

E28 E29 E30

E31 E32 E33

E34 E35 E36

E37 E38 E39

Figure 6.15: The 7-cyclic pseudographs H7
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E40 E41 E42

E43 E44 E45

E46 E47 E48

E49 E50 E51

E52 E53 E54

E55 E56 E57

E58 E59 E60

Figure 6.16: The 7-cyclic pseudographs H7.
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E61 E62 E63

E64 E65 E66

E67 E68 E69

Figure 6.17: The 7-cyclic pseudographs H7.
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CHAPTER 7

NUMBER OF CONNECTED
COMPONENTS IN A GRAPH:

ESTIMATION VIA COUNTING PATTERNS

With the increasing size of modern datasets, a common network analysis task

involves sampling a graph, due to restrictions on memory, communication,

and computation resources. From such a subgraph with sampled nodes and

their interconnections, we want to infer some global properties of the original

graph that are relevant to the application in hand. This paper focuses on the

task of inferring the number of connected components. It is a fundamental

graph property of interest in various applications such as estimating the

weight of the minimum spanning trees [35, 17], estimating the number of

classes in a population [80], and visualizing large networks [169].

In the sampled subgraph, the count of connected components in general can

be smaller as well as larger than the true value. Some connected components

might not be sampled at all, whereas the connected nodes in the original

graph is not guaranteed to be connected in the subgraph. It is not at all

clear how the true number of components is related to the complex structure

of the sampled graph. It is unknown how to unravel the complex relationship

between the sampled subgraph and the global property of interest, making it

challenging to use standard statistical approaches; there is no existing general

estimator for the number of connected components. In this paper, we propose

encoding the sampled subgraph by counting patterns in the subgraph, and

prove that it makes its connection to the number of connected components

transparent.

We represent a graph by a vector of counts of all possible patterns, also

known as network motifs. For example, the first and second entries in this

count vector encodes the number of nodes and (twice) the number of edges,

respectively. Later entries encode the count of increasingly complex patterns:

the number of times a pattern is repeated in the graph. This vector is clearly

a redundant over-representation whose dimension scales super exponentially

in the graph size. Perhaps surprisingly, for the purpose of inferring a global
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property, it suffices to have the first few hundred dimensions of this vec-

tor, corresponding to the counts of very small patterns. For counting those

patterns, we introduce novel algorithms, and give a precise characterization

of how the complexity (the size of the patterns included in the estimation)

trades off with accuracy (the mean squared error).

Problem statement and our proposed approach. We want to estimate

the number of connected components in a simple graph G = (V,E) from

a sampled subset of its nodes and the corresponding subgraph. Let N be

the number of vertices and cc(G) the number of connected components in

G. We consider the subgraph sampling model, that is, a subset of vertices

is sampled at random and the induced subgraph is observed. We consider a

Bernoulli sampling model, where each vertex is sampled independently with

a probability p. Let Ω be the set of randomly observed vertices, and GΩ be

the corresponding induced subgraph, i.e. GΩ = (Ω, EΩ) where (i, j) ∈ EΩ if

i, j ∈ Ω and (i, j) ∈ E. We want to estimate cc(G) from GΩ. We propose a

novel spectral approach, which makes transparent the relation between the

counts of patterns and the number of connected components.

We propose characterizing the number of connected components as the

count of zero eigenvalues of its Laplacian matrix L ∈ Rn×n given by

L ≡ D − A , (7.1)

where D = diag(A1) is the diagonal matrix of the degrees, and A is the

adjacency matrix of the graph G. The rank of L reveals cc(G) as

cc(G) = N − rank(L)

= N −
∑
i∈[N ]

I
[
σi(L) > 0

]
, (7.2)

where the σi(L)’s are the singular values of the graph Laplacian L. Using this

relation directly for estimation is an overkill as estimating the singular values

is more challenging than estimating cc(G). Instead, we use a few steps of

functional approximations to relate to the pattern counts. By Gershgorin’s

circle theorem, we have σi(L) ≤ 2dmax, where dmax is the maximum degree

in G. We therefore normalize L by 1/β for some β ≥ 2dmax to ensure all

eigenvalues lie in the unit interval [0, 1] and denote it by L̃ = (1/β)L. For any
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constant 0 < α < 1 that separates the zero and non-zero eigenvalues such

that α < mini{σi(L̃) : σi(L̃) 6= 0}, we consider the following approximation of

the rank function. We approximate the step function in (7.2) by a continuous

piecewise linear function Hα : [0, 1]→ [0, 1] illustrated in Figure 7.4:

Hα(x) =

1 if x ∈ [α, 1] ,

x
α

if x ∈ [0, α] .
, and (7.3)

cc(G) = N −
∑
i∈[N ]

Hα

(
σi(L̃)

)
,

where we used the fact that the approximation is exact under our assumption

that the spectral gap is lower bounded by α. To connect it to the pattern

counts, we propose a further approximation using a polynomial function

fα : R → R of a finite degree m. Precisely, for fα(x) = a1x + · · · + amx
m

(e.g. Figure 7.4), we immediately have the following relation:

N∑
i=1

fα(σi(L̃)) =
m∑
k=1

ak
βk
‖L‖kk , (7.4)

where ‖L‖kk is the Schatten-k norm of L which is defined as sum of k-th

power of its singular values: ‖L‖kk ≡
∑N

i=1 σi(L)k. As we choose fα(x) to be a

close approximation of the desired Hα(x), we have the following approximate

relation: cc(G) ≈ N−∑m
k=1(ak/β

k)‖L‖kk, which can be made arbitrarily close

by choosing a larger degree m.

Finally, we propose using the fact that ‖L‖kk = Tr(Lk) is a sum of the

weights of all length k closed walks. Once we compute the (weighted) count

of those walks for each pattern, this gives a direct formula to approximate the

number of connected components from the counts. This approximation can

be made as accurate as we want, by choosing the right order m in the poly-

nomial approximation. Unlike the singular values, the (weighted) counts can

be directly estimated from the sampled subgraph in a statistically efficient

manner. We introduce a novel unbiased estimator Θ̂k(GΩ) for Schatten-k

norms of L in Section 7.1 that uses the counts of patterns in the sampled

subgraph, and appropriately aggregates the estimated counts of the original

graph. Together with a polynomial approximation fα(x), this gives a novel
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estimator:

ĉc(GΩ, α, β,m) ≡ N −
m∑
k=1

ak
βk

Θ̂k(GΩ) , (7.5)

where Θ̂k(GΩ) is an unbiased estimate of Schatten-k norm of L defined in

(7.12) and ak’s are the coefficients in the polynomial approximation fα(x) =

a1x+ · · ·+ amx
m as defined as in (7.22).

Related work. It has been suspected that there is a fundamental connec-

tion between the number of connected components in the original graph and

the counts of various patterns in the sampled graph. Although previous at-

tempts to make this connection precise have been unsuccessful [73, 74], there

is enough evidence to suggest that this is plausible. Existing estimators cus-

tomized for two simple extreme cases of forests and unions of disjoint cliques

all rely only on the counts of a few extremely simple patterns.

For a forest G = (V,E), the estimator introduced in [73] exploits the sim-

ple relation that the number of connected components is cc(G) = |V | − |E|.
Hence, we only need to estimate the number of edges. This is a straightfor-

ward procedure that uses the counts of k-stars in the sampled subgraph for

k ∈ {0, 1, . . .}. A k-star is a graph with one central node with k adjacent

nodes, mutually disjoint.

For a union of disjoint cliques G = (V,E), the estimator introduced in [73]

exploits the simple relation that the number of connected components is

cc(G) =

|V |∑
k=1

{ # of cliques of size k } .

We only need to estimate the number of cliques of each size k in the original

graph. This is straightforward as the observed size of the cliques follow a

multinomial distribution. This requires only the counts of k-cliques in the

sampled subgraph for k ∈ {1, 2, . . .} [80, 73]. A k-clique is a fully connected

graph with k nodes. These approaches have recently been extended in [118]

to include chordal graphs, which introduces a novel idea of smoothing to

achieve a strong performance guarantees. However, none of these methods

can be applied to our setting where we consider the original graph to be a

general graph.
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Contributions. We pose the problem of estimating the number of con-

nected components as a spectral estimation problem of estimating the rank

of the graph Laplacian. This is further split into two tasks of first estimat-

ing the Schatten k-norms of the Laplacian and then applying a functional

approximation.

We propose an unbiased estimator of the Schatten k-norm ‖L‖kk based on

the counts of patterns in the subsampled graph, known as k-cyclic pseudo-

graphs. The main challenge is in estimating the diagonal entries of L (which

is the degree of each node), that is critical in computing the weighted counts

of the k-cyclic pseudographs. To overcome this challenge, in Section 7.1, we

introduce an estimator that uses a novel idea of partitioning the subsampled

graph and stitching the estimated degrees in each partition together.

Combining the estimated Schatten norms with polynomial approximation

of Hα(x) in (7.3), we introduce a novel estimator of the number of connected

components, which to the best of our knowledge is the first estimator that

works on general graphs. We provide a sharp characterization of the bias-

variance tradeoff of our estimator in Section 7.4. Numerical experiments

show that for unions of disjoint cliques where competing estimators exist,

the proposed generic estimator outperforms (in accuracy) even those estima-

tors tailored for this structure. Further, both approaches have comparable

runtimes. We also give experimental results for union of Erdös-Rényi graphs,

for which there is no algorithm for estimating the number of connected com-

ponents.

7.1 Unbiased estimator of Schatten-k norms of a graph

Laplacian

In this section, we focus on the unnormalized L as Schatten norms are homo-

geneous and the normalization can be applied afterwards. We first provide

an alternative method for computing ‖L‖k, and show how it leads to a novel

estimator of the Schatten norm from a sampled subgraph. We use an alter-

native expression of the Schatten k-norm of a positive semidefinite L as the

trace of the k-th power:

(‖L‖k)k = Tr(Lk) . (7.6)
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Such a sum of the diagonal entries is the sum of weights of all closed walks of

length k, where the weight of a walk is defined as follows. A length-k closed

walk in G = (V,E) is a sequence of vertices w = (w1, w2, . . . , wk, wk+1) with

w1 = wk+1 and either (wi, wi+1) ∈ E or wi = wi+1 for all i ∈ [k]. Note that

we allow repeated nodes and repeated edges. Essentially, these are walks in a

graph G augmented by self-loops at each of the nodes. We define the weight

of a walk w in G to be

µG(w) ≡
k∏
i=1

Lwiwi+1
, (7.7)

which is the product of the weights along the walk and L = D − A is the

graph Laplacian. It follows from (7.6) that

‖L‖kk =
∑

w: all length k closed walks

µG(w) . (7.8)

Even though this formula holds for any general matrix L, it simplifies signif-

icantly for graph Laplacians, as its all non-zero off-diagonal entries are −1

(and its diagonal entries are the degrees of the nodes). Consider a length-3

walk w = (u, v, v, u) whose pattern is shown in the subgraph A2 in Figure 7.1.

This walk has weight µG(w) = (−1)2dv, where dv is the degree of node v. Sim-

ilarly, a walk (u, u, u, u) of pattern A1 in Figure 7.1 has weight µG(w) = d3
u,

and a walk w = (u, v, x, u) of pattern A3 has weight µG(w) = (−1)3.

In general, for a node u in a walk w of length k, let su denote the number

of self-loops traversed in the walk on node u. Then, it follows that

µG(w) = (−1)(k−
∑
u∈w su)

∏
u∈w

dsuu , (7.9)

where du is the degree of node u in G. The weight of a walk is ±1 if there

are no self loops in the walk. Otherwise, its absolute value is the product

of the degrees of the vertices corresponding to the self loops, and its sign is

determined by how many non-self loop edges there are.

The first critical step in our approach is to partition the summation in

Eq. (7.8) according to the pattern of the respective walk, which will make

(i) counting those walks of the same pattern more efficient; and (ii) also

de-biasing straight forward (see Equation (7.12)) under ransom sampling.
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We refer to component-wise scaling w.r.t. the inverse of the probability of

being sampled as de-biasing, which is a critical step in our approach and

will be explained in detail later in this section. Following the notations from

enumeration of small cycles in [6] and [115], we use the family of patterns

called k-cyclic pseudographs:

‖L‖kk =
∑
H∈Hk

∑
w:H(w)=H

µG(w) , (7.10)

where Hk is the set of patterns that have k edges, and {w : H(w) = H} is

the set of walks on G that have the same pattern H. We give formal defi-

nitions below. k-cyclic pseudographs expand the standard notion of simple

k-cyclic graphs, and include multi-edges and loops, which explains the name

pseudograph.

Definition 7.1. Let Ck = (Vk, Ek) denote the undirected simple cycle with

k nodes. An unlabelled and undirected pseudograph H = (VH , EH) is called

a k-cyclic pseudograph for k ≥ 3 if there exists an onto node-mapping from

Ck = (Vk, Ek), i.e. f : Vk → VH , and a one-to-one edge-mapping g : Ek → EH

such that g(e) = (f(ue), f(ve)) for all e = (ue, ve) ∈ Ek. We use Hk to denote

the set of all k-cyclic pseudographs. We use c(H) to the number of different

node mappings f from Ck to a k-cyclic pseudograph H. Each closed walk w

of length k is associated with one of the graphs in Hk, as there is a unique

H that the walk is an Eulerian cycle of under a one-to-one mapping of the

nodes. We denote this graph by H(w) ∈ Hk.

A1 A2 A3

c(A1) = 1 c(A2) = 3 c(A3) = 6

Figure 7.1: The 3-cyclic pseudographs H3 = {A1, A2, A3}.

Figure 7.1 shows examples of all 3-cyclic pseudographs. H3 = {A1, A2, A3}
and each one is a distinct pattern that can be mapped from a triangle graph

C3. In the case of A1, there is only one mapping from C3 to A1 and corre-

sponding multiplicity is c(A1) = 1. Also, a walk w = (u, u, u, u) on the graph
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B1 B2 B3 B4

B5 B6 B7

Figure 7.2: The 4-cyclic pseudographs H4.

G has pattern A1, which we denote by H(w) = A1. In the case of A2, any of

the three nodes can be mapped to the left-node of A2, which gives c(A2) = 3.

In the case of A3, each permutation of the three nodes are distinct, which

gives c(A3) = 6. We show more examples of length 4 in Figure 7.2. k-cyclic

pseudographs for larger k can be enumerated as well (e.g. [115]).

For a pattern H, let SH denote the set of self-loops in H, and su denote

the number of self loops at node u in the walk w. Then the summation of

walks can be partitioned according to their patterns as:

‖L‖kk =
∑
H∈Hk

(−1)k−|SH |
{ ∑
w:H(w)=H

∏
u∈w

dsuu

}
, (7.11)

which follows from substituting (7.9) in (7.10). This expression does not

require the (computation of) singular values and leads to a natural unbiased

estimator given a sampled subgraph. As the probability of a walk being

sampled depends only on the pattern, we introduce a novel estimator Θ̂k(GΩ)

of ‖L‖kk that de-biases each pattern separately:

Θ̂k(GΩ) =
∑
H∈Hk

(−1)k−|SH |

p|VH |

{ ∑
w:H(w)=H

θw(GΩ)I(w ⊆ GΩ)
}
, (7.12)

where |VH | is the number of nodes in H, p|VH | is the probability that walk

with pattern H is sampled (i.e. all edges involves in the walk are present in

the sampled subgraph GΩ), and I(w ⊆ GΩ) denotes the indicator that all

nodes in the walk w are sampled. θw(GΩ) is defined below.

As the degrees of the nodes in the original graph are unknown, it is chal-
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lenging to estimate the polynomial of the degrees
∏

u∈w d
su
u in Eq. (7.11),

from the sampled graph. To this end, we introduce a novel estimator θw(GΩ)

in Section 7.2, which is unbiased; it satisfies

E[θw(GΩ)|I(w ⊆ GΩ)] =
∏
u∈w

dsuu .

It immediately follows by taking the expectation of (7.12), that Θ̂k(GΩ) is

unbiased, i.e.

EΩ[Θ̂k(GΩ)] = ‖L‖kk . (7.13)

7.2 An unbiased estimator of the polynomial of the

degrees

Our strategy to get an unbiased estimator of
∏

u∈w d
su
u is to first partitioning

the nodes in the original graph G to get a more insightful factorization of∏
u∈w d

su
u in Eq. (7.16) (see Figure 7.3) that removes dependences between

the summands, and next by estimating each term independently in the fac-

torization.

2

31

w = (1, 2, 2, 2, 3, 3, 1) H(w)

1

2

3

G⌦
G

Figure 7.3: We are partitioning the original graph G with respect to a
length-(k = 6) closed walk w = (1, 2, 2, 2, 3, 3, 1). Its corresponding k-cyclic
pseudograph H(w) ∈ H6 is shown on the top. Red nodes are not connected
to either 2 or 3, which are the nodes of interest in w as they have self loops.
Blue nodes are only connected to 2, purple to only 3, and blue to both 2
and 3.
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Consider a concrete task of estimating
∏

u∈w d
su
u = (d2)2(d3)1 = 62 × 6,

for a walk w = (1, 2, 2, 2, 3, 3, 1) in the observed subgraph GΩ. Note that we

only see GΩ, whose degrees are very different from the original graph. For

instance, node 2 now has degree 3 and node 3 has degree 3 in the sampled

graph. Further, these random variables (the observed degrees) are correlated,

making estimation challenging. To make such correlations apparent, we first

give a novel partitioning of the nodes V in the following.

7.2.1 Partitioning V

Our strategy is first to partition the nodes V in the original graph, with

respect to a walk w = (w1, . . . , wk+1) of interest. For a closed walk w, let

U = {u1, . . . , u`} denote the set of nodes in w that have at least one self-loop,

let ` = |U | denote its cardinality, and let {s1, . . . , s`} denote the number of

self-loops at each node. In the running example, we have U = {u1 = 2, u2 =

3}, ` = 2, s1 = 2, and s2 = 1. As our goal is to estimate (d2)2(d3), we

partition the nodes with respect to how they relate to the nodes in U = {2, 3}.
Concretely, there are four partitions: nodes that are not connected to either

2 or 3 (shown in red in Figure 7.3), nodes that are only connected to 2 (shown

in green), nodes that are only connected to 3 (shown in purple), and nodes

that are connected to both 2 and 3 (shown in blue). Nodes in each partition

contribute in different ways to the target quantity (d2)2(d3), which will be

precisely captured in the factorization in Eq. (7.16). In general, we need to

consider all such variations in the partitioning, which gives

V =
⋃
T⊆U

VT,U\T , (7.14)

where VT,T ′ =
{⋂

v∈T ∂v
}⋂{⋂

v∈T ′ ∂v
c
}

is the set of nodes that are adjacent

to all nodes in T but are not adjacent to any nodes in T ′, and ∂v denotes

the neighborhood of node v and ∂vc denotes the complement of ∂v. We let

V∅,U =
⋂
v∈U ∂v

c and VU,∅ =
⋂
v∈U ∂v. Essentially, we are labelling each node

according to which nodes in U it is adjacent to, and grouping those nodes with

the same label. In the running example, V = VU,∅ ∪ V{3},{2} ∪ V{2},{3} ∪ V∅,U ,

where the partitions are subset of nodes in blue, purple, green, and red,

respectively.
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Let dT,U\T = |VT,U\T | denote the size of a partition such that

du =
∑
T∈Tu

dT,U\T , (7.15)

for any u ∈ U where Tu = {T ⊆ U |u ∈ T} is the set of subsets of U containing

u. For example, d2 = 6 which is the sum of blue and green nodes, and d3 = 6

which is the sum of blue and purple nodes.

We are partitioning the neighborhood of u such that each term can be

separately estimated. This ensures we handle the correlations among the

degrees of different nodes in w correctly. The quantity of interest is∏
i∈[`]

dsiui =
∏
i∈[`]

( ∑
T∈Tui

dT,U\T

)si
=

∑(
T

(1)
1 ,...,T

(s1)
1 ,··· ,T (1)

` ,··· ,T (s`)

`

)
∈(Tu1 )s1×···×(Tu` )

s`

{∏̀
j=1

sj∏
i=1

d
T

(i)
j ,U\T (i)

j

}
, (7.16)

where T
(i)
j is a i-th choice of a set in Tuj that contains the node uj for i ∈ [sj],

and [`] = {1, . . . , `} denotes the set of positive integers up to `. The second

equation follows directly from exchanging the product and the summation.

This alternative expression is crucial in designing an unbiased estimator, since

each term in the summation can now be estimated separately as follows.

Consider a task of estimating a single term in (7.16), and we merge those

T
(i)
j ’s that happen to be identical:

∏̀
j=1

sj∏
i=1

d
T

(i)
j ,U\T (i)

j
=

∏
T∈T

(dT,U\T )tT , (7.17)

where T = {T (1)
1 , . . . , T

(s1)
1 , · · · , T (1)

` , · · · , T (s`)
` } is the current set of par-

titions allowing for multiple entries of the same set, and tT is the

multiplicity, i.e. how many times a set T appears in the set T =

(T
(1)
1 , . . . , T

(s1)
1 , · · · , T (1)

` , · · · , T (s`)
` ). Each term in the right-hand side can

be now separately estimated, as (a) VT,U\T ’s are disjoint and (b) we know

for the sampled subgraph the membership of each sampled node. This fol-

lows from the fact that, conditioned on the event that {w ⊆ Ω}, we know

how the sampled nodes in Ω are connected to any node in {wi}k+1
i=1 and in
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particular those with self-loops denoted by U . Hence, for any node in Ω the

membership (or the color in the Figure 7.3) is trivially revealed. Therefore,

we can handle (the degrees dT,U\T in) each partition separately, and estimate

each monomial in
∏

T∈T(dT,U\T )tT . The problem is reduced to the task of

estimating dsT,U\T for some integer s and some partition VT,U\T .

7.2.2 Unbiased estimator of dsT,U\T

From the original graph G = (V,E) (where the size of each partition is

denoted by dT,U\T ), we observe a sampled subgraph GΩ = (Ω, EΩ) (where the

size of each partition in GΩ is denoted by dT,U\T (Ω)), and we let dT,U\T (w)

denote the size of the partition intersecting the walk w = (w1, . . . , wk+1).

Precisely, dT,U\T (Ω) ≡ |VT,U\T
⋂

Ω|, and dT,U\T (w) ≡ |VT,U\T
⋂{wi}k+1

i=1 |. We

do not allow multiple counts when computing the size, such that d{2},{3}(Ω) =

2 and d{2},{3}(w) = 1, in the example.

Let us focus on a particular walk w on a graph G, its corresponding U

and a fixed T ⊆ U , such that VT,U\T and dT,U\T are fixed. Now dT,U\T (Ω) is

a random variable representing how many nodes in the partition VT,U\T are

sampled. Conditioned on the fact that w is sampled, and hence a dT,U\T (w)

sampled nodes are already observed, the remaining (dT,U\T−dT,U\T (w)) nodes

are sampled i.i.d. with probability p. Hence, conditioned on {w ⊆ Ω}, the

size of the sampled partition is distributed as

dT,U\T (Ω) ∼ Binom(dT,U\T − dT,U\T (w), p) + dT,U\T (w) . (7.18)

This leads to a natural unbiased estimator of the monomial dsT,U\T as

d̂
(s)
T,U\T = 〈(A−1)s+1 , d 〉 , (7.19)

where d = [1 , dT,U\T (Ω) , dT,U\T (Ω)2, . . . , dT,U\T (Ω)s]> is a column vector in

Rs+1 of the monomials of the observed size of the partition, A is the unique

matrix satisfying

E[d] = A [1 , dT,U\T , . . . , d
s
T,U\T ]> , (7.20)

and (A−1)s+1 is the (s + 1)-th row of A−1. One can check immediately that
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E[d̂
(s)
T,U\T ] = 〈(A−1)s+1,E[d] 〉 = dsT,U\T , hence giving the desired unbiased

estimator. The matrix A is a lower triangular matrix which depends only

on s, p and the structure of the walk via dT,U\T (w). In terms of these three

parameters, the required vector (A−1)s+1 has a closed form expression, and

hence the estimator can be computed in a straight forward manner. It uses

the moments of a binomial distribution, which can be computed immediately.

An example of A for s = 3 is given in (7.51), where one should plug-in

` = dT,U\T (w) + 1, ω = dT,U\T + 1 and τ̃ = dT,U\T (Ω). This leads to an

unbiased estimator of
∏

i∈[`] d
si
ui

by replacing (7.19) into (7.17) and (7.16):

θ(w,GΩ) = ∑(
T

(1)
1 ,...,T

(s1)
1 ,··· ,T (1)

` ,··· ,T (s`)

`

)
∈(Tu1 )s1×···×(Tu` )

s`

{∏
T∈T

d̂
(tT )
T,U\T

}
. (7.21)

By construction, it is immediate that the estimator is unbiased:

E[θ(w,GΩ)|I(w ⊆ Ω)] =
∏

u∈w d
su
u .

7.3 Polynomial approximation

The remaining goal in our approach is to design a polynomial approximation

of the target function Hα : [0, 1] → [0, 1] defined in (7.3) for a fixed scalar

α ∈ (0, 1). Concretely, for a given integer m, we want a degree-m polynomial

approximation f(x) of Hα(x) such that (i) f(0) = 0; (ii) the approximation

error (as measured by the `∞ norm) is small in the interval [α, 1]; and (iii) we

can provide an upper bound on the approximation error: maxx∈[α,1] |Hα(x)−
f(x)|. The first condition can be met by any function with proper scaling

and shifting, and strictly enforcing it ensures that we make fair comparisons.

The second condition ensures we have a good approximation, as the non-zero

singular values only lie in the interval [α, 1]. In particular, the approximation

error outside of this interval is irrelevant. The last condition ensures we get

the desired performance guarantees for the estimation error of the number

of connected components. The (upper bound on the) approximation error of

the polynomial function directly translates into the end-to-end error on the

estimation.

A first attempt might be to use a Chebyshev approximation [36, 144] di-
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rectly on Hα(x). This is optimal in terms of achieving a target `∞ error with

the smallest degree in all regimes of [0, 1]. However, we only care about the

`∞ error in [α, 1]. As shown in magenta curve in Figure 7.4, the Chebyshev

approximation C(x) unnecessarily fits the curve in (0, α], resulting in larger

error in [α, 1].

A natural fix is to use filter design techniques, e.g. Parks-McClellan al-

gorithm [165], where Chebyshev polynomials have been applied to design

high pass filters with similar constraints as ours. This will give a polynomial

approximation with small approximation error in the desired pass band of

[α, 1]. However, these techniques do not come with the desired approximation

guarantee that we seek.

One approach proposed in [217] does come with a provable error bound.

This approximation B(x) composes a Chebyshev approximation of a constant

degree q with the CDF of a beta distribution of degree (m/q−1)/2. The beta

distribution boosts the approximation of the function in the interval [α, 1],

thus providing an error bound of O((cα)m), where cα is a constant that de-

pends on α. Figure 7.4 shows that B(x) (in green) still unnecessarily fits the

curve in (0, α], as it starts with a (lower-degree) Chebyshev approximation

of Hα(x).

Our goal is to design a new polynomial approximation that ignores the

region (0, α] completely, such that it achieves improved performance in [α, 1],

and also comes with a provable error bound. We propose using a parametric

family that ensures fb(0) = 0:

fb(x) = 1−
m∏
i=1

(1− bix) , (7.22)

for a vector b = [b1, . . . , bm] ∈ Rm. We provide an upper bound on the

approximation error achieved by the optimal b∗, provide a choice of b̃ in a

closed form that achieves the same error bound, and provide a heuristic for

locally searching for the optimal b∗ to improve upon the closed-form b̃.

Proposition 7.2. For any α ∈ (0, 1) and m ≥ 2, the optimal parameter

b∗ ∈ arg minb∈Rm maxx∈[α,1] |Hα(x)− fb(x)| achieves error bounded by

max
x∈[α,1]

|Hα(x)− fb∗(x)| ≤
(1− α

1 + α

)m
. (7.23)
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A proof is provided in Section 7.6.10. As the optimal b∗ is challenging to

find, one option is to simplify the optimization by searching over a smaller

space. By constraining all bi’s to be the same, solving for minimum `∞ error

gives a closed form solution b̃ ≡ (2/(1 +α))[1, . . . , 1] that achieves the bound

in (7.23) with equality, i.e. maxx∈[α,1] |Hα(x)− fb̃(x)| = ((1− α)/(1 + α))m.

For practical use, we prescribe a slightly better approximation using a

local search algorithm in Algorithm 13. The approximation guarantee is

compared for α = 0.2 and varying m in Figure 7.4 against the analytical

choice fb̃(x), the standard Chebyshev approximation C(x) of the first kind,

and the approximation B(x) from [217]. The proposed fb̂(x) significantly

improves upon both, achieving a faster convergence. The key idea is to

exploit the fact that we care about approximating only in the regime of [α, 1].

There might be other techniques to design better polynomial approximation

than ours, e.g. [165], but might not come with a performance guarantee.

The inset in the top panel of Figure 7.4 illustrates how the proposed b̂ in

red admits more fluctuations to achieve smaller `∞ error, compared to the

uniform choice of b̃. In Algorithm 13, starting from a moderate perturbation

around b̃, we iteratively identify the point x′ achieving the maximum error

and update b such that the error at x′ is decreased. This approximation can

be done offline for many random initializations for the desired α and m; the

one with minimum error can be stored for later use.

Algorithm 13 Local search for a polynomial approximation

Input: degree m, α , number of iterations T , step size δ > 0
Output: b̂ ∈ Rm

bi ⇐ (2/(1 + α)) + U[−1, 1] for all i ∈ [m]
for t = 1 to T do
x′ ⇐ arg maxx∈[α,1]

∣∣∏
i∈[m](1− bix)

∣∣
b⇐ b+ sign(1− fb(x′))× δ ×∇bfb(x

′)
end for

7.4 Main results

The polynomial approximation fb̂(x) of the form (7.22) can easily be trans-

lated into the standard polynomial with coefficients a = (a1, . . . , am) such

that fb̂(x) = a1x + · · · + akx
k. Together with the Schatten norm estimator
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Θ̂k(GΩ) in (7.12), this gives the proposed estimate ĉc(GΩ, α, β,m) in (7.5).

We first give an upper bound on the multiplicative error for a special case

of union of cliques, and give a general bound in Theorem 7.4. The overall

procedure achieves the following, for a special case of union of cliques, which

are also called transitive graphs:

Theorem 7.3. If the underlying graph G is a disjoint union of cliques with

clique sizes ωi, for each connected component 1 ≤ i ≤ cc(G), ωmax ≡
maxi{ωi} and ωmin ≡ mini{ωi}, then for any choice of β ≥ ωmax and

α ≤ ωmin/β, and any integer m ≥ 1, there exist a function g(m) = O(m!)

and a constant C > 0 such that for ωmin > C,

E
[
(ĉc(GΩ, α, β,m)− cc(G))2

]
cc(G)2

≤

g(m) (1− pm)

cc(G)2 p β2

cc(G)∑
i=1

(
ω4
i

(
1 + (ωip)

1−2m
))

+ γ2m N2

cc(G)2
, (7.24)

where γ = (1− α)/(1 + α). Moreover, if there exist some positive constants

ci’s such that ω3
i p ≥ cim! or ωip

3 ≤ ci/m! for all i, then (7.24) holds with

g(m) = O(cm) for some constant c > 0.

A proof of Theorem 7.3 is provided in Appendix 7.6.6. This clearly shows

the tradeoff between the variance (the first term in the RHS) and the bias

(the second term in the RHS). If we choose larger m, our functional approx-

imation becomes more accurate resulting in a smaller bias. However, this

will require counting larger patterns in the estimate of Θ̂k(GΩ), leading to a

larger variance.

In general, the complexity of our estimator for union of cliques is O(m ×
cc(G)), as all relevant quantities to compute Θ̂k(GΩ) can be pre-computed

and stored in a table for all combinations of k and the size of the observed

cliques. At execution time, we only need to look up one number for each

clique we observe and for each Θ̂k(GΩ) we are estimating. Hence, the above

guarantee also characterizes the trade-off between the computational com-

plexity and the accuracy. For example, when spectral gap α is small, we

need large m with longer run-time to get bias as small as we need. We

emphasize here that our estimator is generic and does not assume the true

graph is union of cliques. The same generic estimator happens to be more
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efficient, when the observed subgraph is a union of cliques, as shown precisely

in Lemma 7.8.

Consider the bias term, which captures how the error increases for graphs

with smaller spectral gap in L. The normalized spectral gap for union of

cliques is ωmin/ωmax, and balanced components result in a small spectral gap

and a more accurate estimation.

Consider the variance term, and as an extreme example, consider the case

when all cliques are of the same size ω = N/cc(G). It immediately follows

that for β = ωmax = ωmin and α = 1, there is no bias and γ = 0. Further as-

suming ωp > 1, we can choose some small m = O(1) to minimize the variance

which scales as O(N2/(cc(G)3 p)). Hence, to achieve arbitrarily small error,

it is sufficient to have sample size Np scale as (N/cc(G))3. This implies that

finite multiplicative error is guaranteed only for cc(G) = Ω(N2/3).

Such a condition on cc(G) increasing with respect to N seems to be un-

avoidable in general. Consider a case when cc(G) = cN for some constant

c. Then, we need m = (1/2) logγ(δc
2/2) to make the bias as small as we

want, say δ/2. Suppose the connected components are balanced such that

ωmax = O(1), then the variance term will be at most δ/2, if p = Ω(mε/N),

where ε depends on γ and c.

Note that the best known guarantees for estimators tailored for union of

cliques still require cc(G) = Ω(N1−ε) for small but strictly positive p, where

the ε can be made arbitrarily small with a small sampling probability p

(e.g. [73, 118]).

We run synthetic experiments on a graph of N = 3775 nodes and union of

50 cliques, each of size {51, 52, . . . , 100}. Figure 7.5 shows that we improve

upon three competing estimators for a broad range of p. ĉcchordal is the best

known estimator for chordal graphs from [118], and ĉcclique is a smoothed

version of ĉcchordal explicitly using the knowledge that the underlying graph

is a union of cliques. These are tailored for chordal graphs and cliques,

respectively, and cannot be applied to general graphs. Our generic algorithm,

with an appropriate choices of α, β, and m, outperforms these approaches

for unions of cliques. In particular, when p is small, variance dominates and

choosing small m helps, whereas when p is large, bias dominates and choosing

large m helps.

Theorem 7.4. For any graph G with size of connected components ωi, for
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each component 1 ≤ i ≤ cc(G), and degree of each node d
(i)
j , for 1 ≤ j ≤ ωi

with di ≡ maxj{d(i)
j }, and dmax ≡ maxi,j{d(i)

j }, dmin ≡ mini,j{d(i)
j }, for any

choice of β ≥ 2dmax and α ≤ σmin(L)/β, and any integer m ≥ 1, there exist

a function g(m) = O(2m
2
) such that,

E
[
(ĉc(GΩ, α, β,m)− cc(G))2

]
cc(G)2

≤

g(m) (1− pm)

cc(G)2 p β2

cc(G)∑
i=1

(
ω2
i d

2
i

(
1 + (dip)

1−2m
))

+ γ2m N2

cc(G)2
, (7.25)

where γ = (1− α)/(1 + α). Moreover, if there exist some positive constants

ci’s such that d3
i p ≥ ci2

m2
or dip

3 ≤ ci/2
m2

for all i, then (7.25) holds with

g(m) = O(cm) for some constant c > 0.

A proof of Theorem 7.4 is provided in Appendix 7.6.6. This guarantee

shows a similar bias-variance tradeoff, with similar dependence on m, which

controls the computational complexity and α which is the normalized spec-

tral gap of the original graph Laplacian. The main difference in this generic

setting is how computational complexity depends on m. Since we need to

estimate θw(GΩ) which is an unbiased estimate of
∏

u∈w d
su
u , we need to com-

pute it separately for each observed walk w of length k that involves at least

one self loop. For the other walks, we exploit a recent algorithm in counting

patterns from [115] inspired by a celebrated result from [6], and compute

their weighted counts. This can be made as a look-up table, and overall the

complexity scales as O(cc(G) × ω3
max) for m ≤ 7 and for larger m scales as

O(cc(G) × ωm/2max × 2m/2). If one has faster algorithms for counting patterns

those can be seamlessly included in the procedure, for example using recent

advances in recursive methods for counting structures from [41]. Our code is

publicly available at url-anonymized.

We run experiments in Figure 7.5 on a graph of size N = 5000 with

50 components each drawn from Erdös-Rényi graph with probability half

G100,0.5. A moderate m = 5 is sufficient to achieve multiplicative error as

small as 0.002, which implies that we make a small mistake in one out of ten

instances. Note that ĉcchordal and ĉcclique cannot be applied as the observed

subgraph is neither cliques nor chordal. We provide the first estimator for

such general graphs. As the bias does not depend on p, this experiment

implies that with only m = 5 the bias is already smaller than 0.002 and the
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variance is dominating. This is due to the fact that union of Erdös-Rényi

graphs exhibit large spectral gaps. The variance decreases linearly in this

log-log scale, with respect to the sampling probability p.

For the example of union of Erdös-Rényi graphs Gn,q of the same size with

cc(G) = N/n connected components, the (normalized) spectral gap is Ω(1)

for a large enough q. This exhibits the desired spectral gap, as long as q is

sufficiently large, e.g. q = Ω(log n/n). The ideal case is when q = 1, which

recovers the union of cliques. The normalized spectral gap is one, which is

the maximum possible value. On the other hand, the spectral gap can be also

made arbitrarily small. Consider a union of n-cycles, where each component

is a cycle of length n. In this case, the normalized spectral gap scales as

O(1/n2), which can be quite small. For general graphs, the difficulty (both

in computational complexity and sample complexity) depends on the spectral

gap of the original graph. If spectral gap is small, then we need higher degree

polynomial approximation functions to make the bias small, which in turn

requires larger patterns to be counted. This increases the computational

complexity and also the variance in the estimate. More samples are required

to account for this increased variance.

7.5 Conclusion

We address the problem of estimating the number of connected components

in an undirected simple graph, when only a subgraph is observed, where

the nodes are chosen uniformly at random. Existing methods relied on spe-

cial structures of the graphs, and can only be applied to union of disjoint

cliques, union of disjoint trees, and chordal graphs. Applying a key insight

of viewing the number of connected components as a spectral property that

depends on the singular values of the graph Laplacian, we propose a novel

spectral approach to this problem. Based on the fact that the number of

connected components are the number of zero-valued singular values of the

graph Laplacian, we make several innovations. First, we propose weighted

count of small patterns (which are called network motifs) to estimate the

k-th Schatten norm of the graph Laplacian. Next, to get an estimate of

the (monomials of the) degrees, we propose a novel partitioning scheme that

gives an unbiased estimate of the desired quantity to be used in the estimate
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of the k-th Schatten norms. We propose a polynomial approximation of the

linearly interpolated step function, and prove a upper bound on the approx-

imation guarantee. Putting these together, we introduce the first estimator

with provable performance guarantees, that works for general graphs.

We next discuss several challenges in applying this framework to real world

graphs.

Counting patterns. When the underlying graph G is a disjoint union of

cliques, computational complexity of our estimator is O(m× cc(G)). In this

case, for any clique of size k, count of all possible patterns in it and the

estimates of θw(GΩ) for any walk w, characterized by the degrees of the self

loops it involves, can be pre-computed and stored in a table for look-up at

the time of execution. θw(GΩ) is an unbiased estimate of of the polynomial of

the node degrees
∏

u∈w d
su
u . For general graphs, to compute Θ̂k(GΩ), we need

to compute θw(GΩ) separately for each observed walk w that has at least one

self loop. For the walks that do not involve any self-loop, we can use matrix

multiplication based pattern counting algorithms proposed in [115] form ≤ 7.

For m > 7, one can use homomorphism based a recent recursive algorithm

from [41]. Therefore, for general graphs the major computational complexity

arises in computing θw(GΩ) for walks w that has at least one self-loop. In

a different sampling scenario, if we have the additional information of the

degree of each node that we observe then computing θw(GΩ) can be made fast

for all the walks w. Another option is to apply recent advances in sampling-

based methods for counting patterns, including wedge sampling [181], the

3-path sampling [99], Moss [203], GRAFT [170], and using Hamiltoniam

paths for debiasing [38]. However, it is not immediate how to include the

estimation of the monomials of the degrees into these existing fast methods.

Other sampling techniques. In practical settings, sampling nodes uni-

formly at random might be unrealistic. Our estimator generalizes naturally

to a broader class of sampling schemes, which we call graph sampling. Con-

sider a scenario where you first sample an unlabelled mother graph H0 of the

same size as G (the graph of interest) from any distribution (in particular

we do not require any independence on the sampled edges). Then, we apply

a permutation drawn uniformly at random to assign node labels to the unla-

belled graph H0. Let H denote this labelled graph, which we use to sample

the original graph of interest G. Specifically, for all edges in H, we observe
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whether the corresponding edge is present or not in G. Namely, we observe

the adjacency matrix of G, but masked by the adjacency matrix of H. The

random permutation ensures that the sampling probability for a pattern only

depends on the shape of the pattern and not the specific labels of the nodes

involved, making our algorithm extendible up to properly applying the de-

biasing as per the new sampling model. The model studied in this paper is

a special case of graph sampling where H0 is a clique of random size, drawn

according to a binomial distribution.

On the other hand, more practical sampling scenarios are adaptive to the

topology of the graph, creating selection biases. Examples include crawling

a connected path from a starting node, sampling higher degree nodes, or

sampling via random walks. These create dependencies among the topology

and the sampling, which we believe is outside the scope of this paper, but

nevertheless poses an interesting new research direction.

7.6 Proofs

We provide proofs for main results and technical lemmas. Recall

ĉc(GΩ, α, β,m) = N −∑m
k=1

ak
βk

Θ̂k(GΩ), where Θ̂k(GΩ) is an unbiased es-

timate of Schatten-k norm of L defined in (7.12) and ak’s are coefficients of

polynomial fb(x) defined in (7.22). We show in (7.28) that for the proposed

estimator, bias is bounded as

∣∣cc(G)− E
[
ĉc(GΩ, α, β,m)

]∣∣ ≤ (N − cc(G))((1− α)/(1 + α))m

= (N − cc(G))γm , (7.26)

where γ ≡ (1 − α)/(1 + α). For the choice of b̃ ≡ (2/(1 + α))[1, . . . , 1], the

coefficient of xk in fb(x) is bounded as |ak| ≤
(
m
k

)
2k ≤ 2m2k ≤ 4m. Therefore

the mean square error is bounded by

E
[
(ĉc(GΩ, α, β,m)− cc(G))2

]
=

24mVar

( m∑
k=1

1

βk
Θ̂k(GΩ)

)
+
(

(N − cc(G))γm
)2

. (7.27)

Since the Schatten norm estimator is unbiased, E[Θ̂k(GΩ)] = ‖L‖kk, we have
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E
[
ĉc(GΩ, α, β,m)

]
= N −∑N

i=1 fα(σi(L̃)). where fα is defined in Equation

(7.4). Note that β is chosen such that the non-zero eigenvalues of L̃ = L/β are

bounded between α and 1. With the proposed choice of polynomial function

fα, we have fα = fb. Using, Equation (7.3), cc(G) = N −∑N
i=1Hα(σi(L̃)),

along with maxx∈[α,1] |Hα(x)−fb̃(x)| = ((1−α)/(1+α))m, where b̃ ≡ (2/(1+

α))[1, . . . , 1], we have,

∣∣∣cc(G)− E
[
ĉc(GΩ, α, β,m)

]∣∣∣ =
N∑
i=1

(
Hα(σi(L̃))− fb̃(x)

)
=

∑
i:σi(L̃)=0

(
Hα(σi(L̃))− fb̃(x)

)
+

∑
i:σi(L̃)6=0

(
Hα(σi(L̃))− fb̃(x)

)
≤ cc(G)

(
Hα(0)− fb̃(0)

)
+ (N − cc(G)) max

x∈[α,1]
|Hα(x)− fb̃(x)|

≤ (N − cc(G))((1− α)/(1 + α))m = (N − cc(G))γm . (7.28)

For the two cases: (a) when the underlying graph G is disjoint union of

cliques, and (b) a general graph G with maximum degree dmax, we provide

bounds on the variance of the Schatten k-norm estimator that leads to the

bounds on mean square error using Equation (7.27).

Denote each connected component of G by G(i) for 1 ≤ i ≤ cc(G), and

let G
(i)
Ω denote the randomly observed subgraph of the connected component

G(i). Then, we have,

Var

( m∑
k=1

1

βk
Θ̂k(GΩ)

)
=

cc(G)∑
i=1

Var

( m∑
k=1

1

βk
Θ̂k(G

(i)
Ω )

)
. (7.29)

Note that, our estimator of Schatten k-norm naturally decomposes, and can

be computed separately for each connected component G(i) and then added

together to get the estimate for the graph G.

7.6.1 Proof of Theorem 7.3

The following lemma provides bound on the variance of Schatten k-norm

estimator for a clique graph. We give a proof in Section 7.6.2.

Lemma 7.5. For a clique graph G on ω vertices, there exists a universal pos-

itive constant C such that for ω ≥ C, variance of Schatten k-norm estimator
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Θ̂k(GΩ) is bounded by

Var
(
Θ̂k(GΩ)

)
≤ g(k)

ω2k+2

p

(
1 +

1

(ωp)2k−1

)
, (7.30)

where g(k) = O(k!). Moreover, if there exists a positive constant c such that

ω3p ≥ ck! or ωp3 ≤ c/k! then (7.30) holds with g(k) = poly(k).

Using Equations (7.27) and (7.29) along with Lemma 7.5, and the fact

that β ≥ ω, Theorem 7.3 follows immediately.

7.6.2 Proof of Lemma 7.5

For a k-cyclic pseudograph H = (VH , EH), let SH denote the set of self-loops

in H. Recall that in (7.12) Schatten k-norm estimator of Laplacian L is given

by

Θ̂k(GΩ) =
∑
H∈Hk

(−1)k−|SH |

p|VH |

{ ∑
w:H(w)=H

θ(w,GΩ)I(w ⊆ GΩ)
}
.

For a clique graph G, the analysis of the above estimator simplifies sig-

nificantly. We illustrate this with an example in Figure 7.7. Consider a

length k = 6 walk w = (1, 2, 2, 2, 3, 3, 1) with a corresponding k-cyclic pseu-

dograph H(w). In general, the degree estimator θ(w,GΩ) is chosen such that

E[θ(w,GΩ)] = d2
2d3 where d2 and d3 are the degrees of nodes 2 and 3 in

G, respectively. This simplifies significantly for a clique graph due to the

fact that the degree of those nodes in a closed walk w are the same. Note

that our estimator is general, and does not use this information or the fact

that the underlying graph component is a clique. It is only the analysis that

simplifies. Therefore, for a clique graph G, the degree estimator θ(w,GΩ)

satisfies E[θ(w,GΩ)|w ⊆ GΩ] = (ω − 1)|SH |, where ω is the size of the clique

G. In the example, we have ω = 7 and |SH | = 3, therefore E[θ(w,GΩ)] = 63.

Hence, it is best to further partition Hk according to the number of nodes

` = |VH | and the number of self-loops s = |SH |. Precisely, we define

Hk,`,s ≡ {H(VH , EH) ∈ Hk : |VH | = ` and |SH | = s} ,

for ` = 1, s = k and 2 ≤ ` ≤ k, 0 ≤ s ≤ k − `. There are total |{w ∈ W :
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H(w) ∈ Hk,`,s}| ≤ `2k−sω` corresponding walks in this set. Here, W denotes

the collection of all length k closed walks on a complete graph of ω vertices.

We slightly overload the notion of complete graph to refer to an undirected

graph with not only all the ω(ω − 1)/2 simple edges but also with ω self loops

as well. when G is a clique graph, the estimator (7.12) can be re-written as

Θ̂k(GΩ) =
k∑
`=1

k−`+1∑
s=0

∑
H∈Hk,`,s

{(−1)k−s

p`
×

∑
w∈W :H(w)=H

θ(w,GΩ)I(w ⊆ GΩ)
}
. (7.31)

Given this unbiased estimator, we provide an upper bound on the variance

of each of the partitions. For any two walks w,w′ ∈ W , let |w ∩ w′| denote

the number of overlapping unique vertices of walks w and w′. We have,

Var
(
Θ̂k(GΩ)) =

k∑
`=1

k−`+1∑
s=0

∑
H∈Hk,`,s

{ 1

p2`

×
∑

w∈W :H(w)=H

Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)}

+ 2
k∑

˜̀=0

∑
w,w′∈W
|w∩w′|=˜̀

Cov
(
θ(w,GΩ)I(w ⊆ GΩ) , θ(w′, GΩ)I(w′ ⊆ GΩ)

)

× (−1)|SH(w)|+|SH(w′)|

p|VH(w)|+|VH(w′)|
. (7.32)

The following technical lemma provides upper bounds on the variance and

covariance terms. We provide a proof in Section 7.6.3.

Lemma 7.6. Under the hypothesis of Lemma 7.5, for a length-k walk w over

` distinct nodes with s ≥ 1 self-loops, the following holds:

Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤ f(`, s)

(
p`−1ω2s−1 + ωp`+1−2s

)
+ p`ω2s, (7.33)

and when ` = 1, s = k, we have,

Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤ f(k)ω2k−1 + g(k)ωp2−2k + pω2k, (7.34)

and for any length-k walks w1, w2 over `1, `2 distinct nodes with ˜̀unique over-
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lapping nodes, |w1 ∩w2| = ˜̀, s1, s2 ≥ 1 self-loops respectively, the covariance

term can be upper bounded by:

Cov
(
θ(w1, GΩ)I(w1 ⊆ GΩ) , θ(w2, GΩ)I(w2 ⊆ GΩ)

)
≤ f(`′, s′)p((`1+`2−˜̀)−(s1+s2))

(
(ωp)(s1+s2) + ωp

)
, (7.35)

for some function f(`, s) = O(k!), g(k) = poly(k), where p is the vertex

sampling probabiliy. `′ ≡ max{`1, `2} and s′ ≡ max{s1, s2}.

We use this lemma to get bound on Var
(
Θ̂k(GΩ)). First, we get a bound

on the total variance term. For a walk w ∈ W with H(w) ∈ Hk,`,s with

1 ≤ s ≤ k − 2, using (7.33), we have,

ω`

p2`
Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤ f(`, s)

(ω`+2s−1

p`+1
+

ω`+1

p`+2s−1

)
+

ω2s+`

p`

≤ f(k)
(ω2k−3

p3
+

ω3

p2k−3

)
+

ω2k−2

p2
. (7.36)

For a walk w ∈ W with H(w) ∈ Hk,`,s with ` = 1, s = k, using (7.34), we

have,

ω`

p2`
Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤ f(k)ω2kp−2 + g(k)ω2p−2k + w2k+1p−1 . (7.37)

For a walk w with s = 0, θ(w,GΩ) = 1, and, we have,

ω`

p2`
Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤ ω`

p`
. (7.38)

Combining, Equations (7.36), (7.37), and (7.38), and using |{w ∈ W :
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H(w) ∈ Hk,`,s}| ≤ `2k−sω`, we have

k∑
`=1

k−`+1∑
s=0

∑
H∈Hk,`,s

{ 1

p2`

∑
w∈W :H(w)=H

I(w ⊆ G)×

Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)}
≤ f(k)ω2p−2k + ω2k+1p−1 , (7.39)

and if ωp3 ≤ 1/f(k), then the above quantity is bounded by g(k)ω2p−2k(1 +

o(1)). If ω3p ≥ f(k), then the above quantity is bounded by ω2k+1p−1(1 +

o(1)).

Consider covariance term of two length-k walks w1, w2 over `1, `2 distinct

nodes with ˜̀unique overlapping nodes, |w1∩w2| = ˜̀, and s1, s2 ≥ 1 self-loops

with s1 + s2 < 2k. Since there are a total of f(k)ω`1+`2−˜̀
such walks, using

(7.35), we have

ω`1+`2−˜̀
Cov

(
θ(w1, GΩ)I(w1 ⊆ GΩ) , θ(w2, GΩ)I(w2 ⊆ GΩ)

)
× (−1)|SH(w1)|+|SH(w2)|

p|VH(w1)|+|VH(w2)|
(7.40)

≤ ω`1+`2−˜̀

p˜̀+s1+s2

(
(ωp)s1+s2 + ωp

)
(7.41)

≤ ω`1+`2+s1+s2

(ωp)˜̀
+ ωp

ω`1+`2−˜̀

ps1+s2+˜̀
(7.42)

≤ ω2k+1 + ωp
ω2

p2k−1
(7.43)

where in (7.42), for the first term the maximum is achieved at `1 = 1, s =

k, `2 = 2, s2 = k − 2, ˜̀ = 0, for the second term the maximum is achieved

at same `1, s1, `2, s2 with ˜̀ = 1. Note that in the expression (7.41), the first

term is dominating when ωp ≥ 1, and the second term is dominating when

ωp < 1.

When s1 + s2 = 2k the two walks are self loop walks on single node with

s1 = s2 = k. Since the graph G is a clique graph, θ(w,GΩ) for self loop walks

depends only upon observed size of the clique, and θ(w1, GΩ) = θ(w2, GΩ).
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Therefore, the expression in (7.40) can be bounded as:

ω`1+`2−˜̀
Cov

(
θ(w1, GΩ)I(w1 ⊆ GΩ) , θ(w2, GΩ)I(w2 ⊆ GΩ)

)
× (−1)|SH(w1)|+|SH(w2)|

p|VH(w1)|+|VH(w2)|

≤ ω2`

p2`
Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤ f(k)ω2k+1p−2 + g(k)ω3p−2k + w2k+2p−1 , (7.44)

where (7.44) follows from (7.37).

Lemma 7.5 follows immediately by combining (7.32) with (7.66), (7.43)

and (7.44).

7.6.3 Proof of Lemma 7.6

We use the following technical lemma to get bounds on conditional variance

and covariance of the estimator θ. We provide a proof in Section 7.6.4.

Lemma 7.7. Under the hypothesis of Lemma 7.5, for length-k walks w1, w2

over `1, `2 distinct nodes with s1, s2 ≥ 1 self-loops respectively, the conditional

variance of estimator θ(w1, GΩ), defined in (7.21), given that all the nodes

in the walk are sampled can be upper bounded by

Var
(
θ(w1, GΩ)

∣∣∣w1 ⊆ GΩ

)
≤ f(`1, s1)

(
p−1(ω − `1)2s1−1 + (ω − `1)p1−2s1

)
, and (7.45)

E
[
θ(w1, GΩ)θ(w2, GΩ)

∣∣∣I(w1 ⊆ GΩ)I(w2 ⊆ GΩ)
]

≤ f(`′, s′)p−(s1+s2)
(

(ωp)s1+s2 + ωp
)
, (7.46)

for some function f(`, s) = O(k!), where p is the vertex sampling probability.

`′ ≡ max{`1, `2} and s′ ≡ max{s1, s2}. Moreover, for a length k walk w with

` = 1, and s = k,

Var
(
θ(w,GΩ)

∣∣∣w ⊆ GΩ

)
≤ f(k)(ω − 1)2k−1

p
+
g(k)(ω − 1)

p2k−1
, (7.47)

for some function g(k) = poly(k).
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Recall for a clique graph, we have E[θ(w,GΩ)|w ⊆ GΩ] = (ω− 1)s. There-

fore, we have,

Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
= E

[
Var
(
θ(w,GΩ)I(w ⊆ GΩ)

∣∣∣I(w ⊆ GΩ)
)]

+ Var
(
E
[
θ(w,GΩ)I(w ⊆ GΩ)

∣∣∣I(w ⊆ GΩ)
])

= p` Var
(
θ(w,GΩ)

∣∣∣w ⊆ GΩ

)
+ p`(1− p`)(ω − 1)2s

≤ f(`, s)
(
p`−1(ω − `)2s−1 + (ω − `)p`+1−2s

)
+ p`(1− p`)(ω − 1)2s

≤ f(`, s)
(
p`−1ω2s−1 + ωp`+1−2s

)
+ p`ω2s , (7.48)

where the inequality follows from Equation (7.45). Similarly, for a walk w

with ` = 1, and s = k, we have,

Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤ f(k)ω2k−1 + g(k)ωp2−2k + pω2k ,

where we used the inequality in (7.47).

For covariance term, we have,

Cov
(
θ(w1, GΩ)I(w1 ⊆ GΩ) , θ(w2, GΩ)I(w2 ⊆ GΩ)

)
≤ E

[
θ(w1, GΩ)θ(w2, GΩ)

∣∣∣I(w1 ⊆ GΩ)I(w2 ⊆ GΩ)
]
p(`1+`2−˜̀)

≤ f(`′, s′)p((`1+`2−˜̀)−(s1+s2))
(

(ωp)(s1+s2) + ωp
)
, (7.49)

where the inequality follows from Equation (7.46).

7.6.4 Proof of Lemma 7.7

When G is a union of disjoint cliques, the estimator θ(w,GΩ) defined in (7.21)

has a compact representation. This follows from the fact that for any two

nodes i and j that are connected in GΩ, the neighborhoods of i and j in GΩ

exactly coincide. If this happens, then the estimator θ(w,GΩ) simplifies as

follows. Consider a walk w with s self-loops, k edges (including self loops),

and ` distinct nodes. Define a random integer τ̃ as the degree of a node in
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the clique that w belongs to in the sampled graph GΩ, conditioned on the

fact that all nodes in w are sampled (if a walk w is sampled then it must

belong to the same clique.). The randomness comes from the sampling of Ω.

It is straightforward that τ̃ ∼ Binom(ω − `, p) + (`− 1) as there are already

(`− 1) neighbors from the walk w and the rest of ((ω − 1)− (`− 1)) nodes

are sampled in Ω with probability p, where ω is the size of the clique in

the original graph G. For notational simplification, define a random integer

τ ≡ τ̃ − (` − 1) that is distributed as τ ∼ Binom(ω − `, p). In the example

in Figure 7.7, for the walk w = (1, 2, 2, 2, 3, 3, 1), we have ` = 3, s = 3,

ω = 7 and a random instance of τ̃ = 4 that is τ = 2. We claim that the

estimator θ(w,GΩ) given in (7.21) is a function of only τ , `, s and p, and can

be simplified as follows, and give a proof in Section 7.6.5.

Lemma 7.8. When the underlying G is a union of disjoint cliques and GΩ

is a subgraph obtained via vertex sampling with a probability p, for a length

k walk w in GΩ with ` distinct nodes and s self-loops, we have

θ(w,GΩ) = 〈A−1
s+1, τ〉 , (7.50)

where τ ≡ τ̃ − (` − 1) and τ̃ is the degree of any node in the clique that

w belongs to in the sampled graph GΩ, τ = [1, τ, τ 2, . . . , τ s] is a column

vector of monomials of τ up to degree s, and A−1
s+1 is the (s + 1)-th row of

the inverse of the matrix A ∈ R(s+1)×(s+1) satisfying Aω = E[τ ], for

ω = [1, (ω − 1), (ω − 1)2, . . . , (ω − 1)s], a column vector of monomials of

(ω − 1). Further, A is a lower-triangular matrix that depends only on ` and

p, such that maxi∈[s+1] |(A−1)s+1,i| = O(p−s).

In the running example, s = 3, τ̃ = 4, and ` = 3, and therefore we have

A =


1 0 0 0

p− `p p 0 0

`2p2 − `p2 − `p+ p −2`p2 + p2 + p p2 0

A41 A42 −3`p3 + 3p3 p3

 , (7.51)

where A41 = −`3p3 + 3`2p2 + `p3 − 3`p2 − `p + p and A42 = 3`2p3 − 6`p2 −
p3 + 3p2 + p. For any s, corresponding A can be computed immediately

from the moments of a Binomial distribution up to degree s. Since ω =

E[A−1τ ], this representation immediately reveals that E[θ(w,GΩ)|w ⊆ GΩ] =
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E[〈A−1
s+1, τ〉] = (ω − 1)s. Note that τ is conditioned on the event that all the

nodes in w are sampled.

With this definition, the variance of θ(w,GΩ) can be upper bounded as

follows. We will let f(`, s) denote a function over ` and s that captures the

dependence in ` and s that may change from line to line, and only track the

dependence in ω and p.

Var
(
θ(w,GΩ)

∣∣∣w ⊆ GΩ

)
≤ f(`, s) max

i∈[s+1]
Var
(
(A−1)s+1,i τ

i−1
)

≤ f(`, s) p−2s Var(τ s)

= f(`, s)p−2s
(
E[τ 2s]− E[τ s]2

)
≤ f(`, s)p−2s

(
(ω − `)2sp2s + f(s)(ω − `)2s−1p2s−1

+ (ω − `)p− (ω − `)2sp2s
)

≤ f(`, s)
(
p−1(ω − `)2s−1 + (ω − `)p1−2s

)
, (7.52)

where the first inequality follows from the fact that τ is an s+ 1 dimensional

vector, the second inequality follows from that fact that maxi |(A−1)s+1,i| =
O(p−s) from Lemma 7.8 and maxi = Var(τ i−1) = Var(τ s), and in the third in-

equality we used the fact that τ ∼ Binom(ω−`, p) and a result from [18] that

E[(Binom(d, p))s] ≤ ∑s
j=1 S(s, j)(dp)j where S(s, j) is the Sterling number

of second kind. S(s, s) = 1, S(s, 1) = 1 and S(s, j) ≤ f(s), for 2 ≤ j ≤ s−1.

We also used Jensen’s inequality E[(Binom(d, p))s] ≥ E[(Binom(d, p))]s. This

proves the desired bound in (7.33).

To prove the bound in (7.47), observe that when ` = 1, τ ∼ Binom(ω −
1, p), and we can tighten the above set of inequalities

Var
(
θ(w,GΩ)

∣∣∣w ⊆ GΩ

)
≤ g(k) max

i∈[k+1]
Var
(
(A−1)k+1,i τ

i−1
)

≤ g(k) p−2k Var(τ k)

= g(k)p−2k
(
E[τ 2k]− E[τ k]2

)
≤ g(k)p−2k

(
(ω − 1)2kp2k + f(k)(ω − 1)2k−1p2k−1

+ (ω − 1)p− (ω − 1)2kp2k
)

≤ f(k)p−1(ω − 1)2k−1 + g(k)(ω − 1)p1−2k . (7.53)
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For the covariance term, conditioned on the event that both the walks w1

and w2 are observed, distribution of the random degree integer of each walk

is τ̃1 = τ̃2 = τ̃12, where τ̃12 ∼ Binom(ω − (`1 + `2 − ˜̀), p) + (`1 + `2 − ˜̀− 1).

Therefore, the shifted Binomial random variable of each walk τ1 = τ̃1− (`1−
1) = τ̃12 − (`1 − 1), and τ2 = τ̃2 − (`2 − 1) = τ̃12 − (`2 − 1) For the walk w1,

with number of nodes `1, self loops s1, lets denote the matrix A in (7.50) by

A1, and similarly for walk w2, denote it by A2. Then we have,

E
[
θ(w1, GΩ)θ(w2, GΩ)

∣∣∣I(w1 ⊆ GΩ)I(w2 ⊆ GΩ)
]

≤ f(`′, s′) max
i1∈[s1+1],i2∈[s2+1]

E
[
(A−1

1 )s1+1,i1 τ
i1−1
1 (A−1

2 )s2+1,i2 τ
i2−1
2

]
(7.54)

≤ f(`′, s′)p−(s1+s2)E
[
τ s11 τ

s2
1

]
(7.55)

≤ f(`′, s′)p−(s1+s2)
(

(ωp)s1+s2 + ωp
)
, (7.56)

where the first inequality follows from the fact that τ 1 is an s1 + 1 dimen-

sional vector, and τ 2 is an s2 + 1 dimensional vector, the second inequality

follows from that fact that maxi |(A−1
1 )s1+1,i1| = O(p−s1) from Lemma 7.8

and maxi1,i2 = E[τ i1−1
1 τ i2−1

2 ] = E[τ s11 τ
s2
2 ], and in the third inequality we used

a result from [18] that E[(Binom(d, p))s] ≤ ∑s
j=1 S(s, j)(dp)j where S(s, j)

is the Sterling number of second kind. S(s, j) ≤ f(s), for 1 ≤ j ≤ s. This

proves the desired bound in (7.46).

7.6.5 Proof of Lemma 7.8

We are left to prove that the estimator θ(w,GΩ) simplifies as in (7.50) when

the original graph is a clique graph(or a union of disjoint cliques).

We use the notations introduced in Section 7.2 and Section 7.6.4. Consider

a closed walk w of length k on ` distinct nodes with U = {u1, · · · , u˜̀} set

of nodes in it that have at least one self-loop, |U | = ˜̀, and a total of s self

loops. If the underlying graph is a clique graph the partition of V defined in

(7.14), for any T ⊆ U , is as follows:

VT,U\T =


∅ if |T | < |U | − 1

dU,∅ if T = U

v if T = U \ v, for any v ∈ U .
(7.57)
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Recall that dU,∅ ≡ ∩v∈U∂v. Therefore, we have,

dT,U\T (w) =


0 if |T | < |U | − 1

`− ˜̀ if T = U

1 if T = U \ v, for any v ∈ U .
(7.58)

If the underlying clique graph is of size ω then |dU,∅| = ω − ˜̀. Using the

fact dT,U\T (Ω) ∼ Binom(dT,U\T − dT,U\T (w), p) + dT,U\T (w), as explained in

Section 7.2, we have,

dT,U\T (Ω) ∼


0 if |T | < |U | − 1

Binom(ω − `, p) + (`− ˜̀) if T = U

1 if T = U \ v, for any v ∈ U .

Using Equation (7.57) it is immediate that that degree of any node u ∈ U
is du = dU,∅ + (˜̀− 1), and hence, E[θ(w,GΩ)|w ∈ GΩ] =

(
dU,∅ + (˜̀− 1)

)s
=

(ω − 1)s. Therefore, an alternative characterization of the estimator defined

in (7.21) is as following: θ(w,GΩ), conditioned on the event that all the

nodes in the walk w are sampled, is a random variable dependent only upon

dU,∅(Ω) ∼ Binom(ω − `, p) + (` − ˜̀) such that its conditional expectation is

E[θ(w,GΩ)|w ∈ GΩ] = (ω − 1)s. With change of notations it is immediate

that the estimator defined in (7.21) is same as the estimator in (7.50) when

the underlying graph is a clique graph(or a disjoint union of cliques).

By the definition of A, it follows that the diagonal entries are exactly

diag([1, p, . . . , ps]) and the bottom-left off-diagonal entris are all Θ(1) with

respect to p, and the top-right off-diagonal entries are all zeros. Applying the

inverse to this lower triangular matrix, it follows that A−1 is also a lower tri-

angular matrix with diagonal entries diag([1, p−1, . . . , p−s]) and the bottom-

left off-diagonal entries are all Θ(1). It follows that maxi∈[s+1] |(A−1)s+1,i| =
O(p−s).

7.6.6 Proof of Theorem 7.4

The following lemma provides bound on variance of Schatten k-norm estima-

tor for a connected general graph with maximum degree dmax. We provide a
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proof in Section 7.6.7

Lemma 7.9. For a connected graph G on ω vertices with maximum degree

dmax, variance of Schatten k-norm estimator Θ̂k(GΩ) is bounded by

Var
(
Θ̂k(GΩ)

)
≤ h(k)

ω2dmax
2k

p

(
1 +

1

(dmaxp)2k−1

)
, (7.59)

where h(k) = O(2k
2
). Moreover, if there exists a positive constant c such that

dmax
3p ≥ c2k

2
or dmaxp

3 ≤ c/2k
2

then (7.59) holds with h(k) = poly(k).

Using Equations (7.27) and (7.29) along with Lemma 7.9, Theorem 7.4

follows immediately.

7.6.7 Proof of Lemma 7.9

We use the notations introduced in Section 7.2 and Section 7.6.2. Denote the

size of the connected component by ω and let dmax be the maximum degree

of any node in the connected component.

The following technical lemma provides upper bounds on the variance and

covariance terms. We provide a proof in Section 7.6.8.

Lemma 7.10. Under the hypothesis of Lemma 7.9, for a length-k walk w

over ` distinct nodes with s ≥ 1 self-loops, the following holds:

Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤ h(k)

(
p`dmax

2s + dmaxp
`+1−2s

)
, (7.60)

and when ` = 1, s = k, we have,

Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤ f(k)dmax

2k−1 + g(k)dmaxp
2−2k + pdmax

2k , (7.61)

and for any length-k walks w1, w2 over `1, `2 distinct nodes with ˜̀unique over-

lapping nodes, |w1 ∩w2| = ˜̀, s1, s2 ≥ 1 self-loops respectively, the covariance

term can be upper bounded by:

Cov
(
θ(w1, GΩ)I(w1 ⊆ GΩ) , θ(w2, GΩ)I(w2 ⊆ GΩ)

)
≤ h(k)p((`1+`2−˜̀)−(s1+s2))

(
(dmaxp)

(s1+s2) + dmaxp
)
, (7.62)
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for some function h(k) = O(2k
2
), f(k) = O(k!), and g(k) = poly(k), where

p is the vertex sampling probabiliy.

The total count of length k closed cycles on ` distinct nodes in a gen-

eral graph on ω nodes graph with maximum degree dmax is bounded by

f(k)ωdmax
`−1. It follows from the observation that fixing a node in the

cycle, there are at most dmax
`−1 paths to ` − 1-hop neighbors. That is

|w ∈ W : H(w) ∈ Hk,`,s| ≤ f(k)ωdmax
`−1 for any 1 ≤ s ≤ k.

We use these inequalities to get bound on variance and covariance terms

in (7.32).

For a walk w ∈ W with H(w) ∈ Hk,`,s with 1 ≤ s ≤ k − 2, using (7.60),

we have,

ωdmax
`−1

p2`
Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤ h(k)

(dmax
`+2s−1

p`
+

dmax
`

p`+2s−1

)
≤ h(k)ω

(dmax
2k−3

p2
+
dmax

2

p2k−3

)
. (7.63)

For a walk w ∈ W with H(w) ∈ Hk,`,s with ` = 1, s = k, using (7.61), we

have,

ω

p2`
Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤

f(k)ωdmax
2k−1p−2 + g(k)ωdmaxp

−2k + ωdmax
2kp−1 . (7.64)

For a walk w with s = 0, θ(w,GΩ) = 1, and, we have,

ωdmax
`−1

p2`
Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)
≤ ωdmax

`−1

p`
. (7.65)

Combining, Equations (7.63), (7.64), and (7.65), and using |w ∈ W :
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H(w) ∈ Hk,`,s| ≤ f(k)ωdmax
`−1, we have

k∑
`=1

k−`+1∑
s=0

∑
H∈Hk,`,s

{ 1

p2`

∑
w∈W :H(w)=H

I(w ⊆ G)×

Var
(
θ(w,GΩ)I(w ⊆ GΩ)

)}
≤ h(k)ωdmaxp

−2k + ωdmax
2kp−1 , (7.66)

and if dmaxp
3 ≤ 1/h(k), then the above quantity is bounded by

g(k)ωdmaxp
−2k(1 + o(1)). If dmax

3p ≥ h(k), then the above quantity is

bounded by ωdmax
2kp−1(1 + o(1)).

Analysis of covariance terms in (7.32) follows along the similar lines as that

of the clique graph case and the result in Lemma 7.9 follows immediately.

7.6.8 Proof of Lemma 7.10

We give a lemma similar to Lemma 7.7 for the case of a general graph that

provides a bound on conditional variance and conditional covariance terms.

We give a proof in Section 7.6.9.

Lemma 7.11. Under the hypothesis of Lemma 7.9, for length-k walks w1, w2

over `1, `2 distinct nodes with s1, s2 ≥ 1 self-loops respectively, the conditional

variance of estimator θ(w1, GΩ), defined in (7.21), given that all the nodes

in the walk are sampled can be upper bounded by

Var
(
θ(w1, GΩ)

∣∣∣w1 ⊆ GΩ

)
≤

h(k)
(
dmax

2s1 + dmaxp
1−2s1

)
, and (7.67)

E
[
θ(w1, GΩ)θ(w2, GΩ)

∣∣∣I(w1 ⊆ GΩ)I(w2 ⊆ GΩ)
]
≤

h(k)p−(s1+s2)
(

(dmaxp)
s1+s2 + dmaxp

)
, (7.68)

for some function h(k) = O(2k
2
), where p is the vertex sampling probability.

Moreover, for a length k walk w with ` = 1, and s = k,

Var
(
θ(w,GΩ)

∣∣∣w ⊆ GΩ

)
≤ f(k)p−1dmax

2k−1 + g(k)dmaxp
1−2k , (7.69)

for some function f(k) = O(k!), and g(k) = poly(k).
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Using the above lemma, proof of Lemma 7.10 follows along the lines of the

proof of Lemma 7.6.

7.6.9 Proof of Lemma 7.11

Recall that for a general graph θ(w,GΩ) is an unbiased estimator of
∏

u∈w d
su
u

and is given in (7.21). It is easy to see that for any given walk w on ` distinct

nodes and with s self-loops,

Var
(
θ(w,GΩ)|w ⊆ GΩ

)
≤ h(k) max

T

{
Var

({∏
T∈T

d̂
(tT )
T,U\T

})}
,

where h(k) = O(2k
2
). It follows from the fact that there are at most k/2

distinct nodes with self loops and hence at most 2k/2−1 partitions in (7.14)

which leads to at most 2k
2/4 summation terms in (7.16). Further

∏
T∈T d̂

(tT )
T,U\T

is the product of independent random variables. Observe that using Lemma

7.7, we have

Var
(
d̂

(tT )
T,U\T

)
≤ f(k)

(
p−1dmax

2tT−1 + dmaxp
1−2tT

)
(7.70)

and E[d̂
(tT )
T,U\T ] ≤ dmax

tT . Using the fact that for independent random variables

X1, X2, · · · , Xn,

Var(X1X2 · · ·Xn) =
n∏
i=1

(
Var(Xi) + (E[Xi])

2
)
−

n∏
i=1

(E[Xi])
2 , (7.71)

we have,

max
T

{
Var

({∏
T∈T

d̂
(tT )
T,U\T

})}
≤
∏
T∈T

f(k)
(
p−1dmax

2tT−1 + dmaxp
1−2tT + dmax

2tT
)

≤ f(k)
(
dmax

2s + dmaxp
1−2s

)
(7.72)

where in the last inequality we used that
∑

T∈T tT = s. (7.67) follows

from collecting the above inequalities. (7.68) follows from the definition of

θ(w,GΩ) given in (7.21) and the proof of (7.46) of Lemma 7.7. (7.69) follows
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directly from (7.47) of Lemma 7.7.

7.6.10 Proof of Proposition 7.2

max
x∈[α,1]

|Hα(x)− fb∗(x)| ≤ max
x∈[α,1]

|Hα(x)− fb̃(x)| , (7.73)

= max
{
|Hα(α)− fb̃(α)|, |Hα(1)− fb̃(1)|

}
(7.74)

=

(
1− α
1 + α

)m
(7.75)

where b̃ ≡ (2/(1 + α))[1, . . . , 1].
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Figure 7.4: Top: four polynomial approximations to H0.2(x) of degree

k = 10, fb̂(x) with b̂ chosen according to Algorithm 13, fb̃(x) with

b̃ = (2/1.2)1 as prescribed above, Chebyshev approximation C(x), and the
composite approximation B(x) from [217]. Bottom: approximation error
achieved by the proposed fb̂(x) improves upon other polynomial functions.
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ĉc(GΩ, 0.5, 100, 15)

Figure 7.5: The proposed estimator for two choices of the degree m of the
polynomial. With the right choice of m, we improve upon competing
estimators when the original graph is a union of cliques.

 0.001

 0.01

 0.1

 1

 0.1  0.5  1

 

vertex sampling probability p
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w = (1, 2, 2, 2, 3, 3, 1) H(w)

Figure 7.7: For a set of cliques G, we get a sampled GΩ. An example of a
length-(k = 6) closed walk w = (1, 2, 2, 2, 3, 3, 1) and its corresponding
k-cyclic pseudograph H(w) ∈ H6.
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and Christopher Ré. Data programming: Creating large training sets,
quickly. In Advances in Neural Information Processing Systems, pages
3567–3575, 2016.

[173] Paramesh Ray. Independence of irrelevant alternatives. Econometrica:
Journal of the Econometric Society, pages 987–991, 1973.

330



[174] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cam-
bridge university press, 2008.

[175] F. Roosta-Khorasani and U. Ascher. Improved bounds on sample size
for implicit matrix trace estimators. Foundations of Computational
Mathematics, 15(5):1187–1212, 2015.

[176] H. Rue and L. Held. Gaussian Markov random fields: theory and
applications. CRC Press, 2005.

[177] A. Saade, F. Krzakala, and L. Zdeborová. Matrix completion from
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